04;10

Сильноточный широкоапертурный электронный пучок в разряде с повышенной ионизацией газа при давлении до десятков TORR

© А.Р. Сорокин

Институт физики полупроводников СО РАН, Новосибирск E-mail: ars@isp.nsc.ru

В окончательной редакции 15 декабря 2008 г.

Исследован импульсный разряд с дополнительной ионизацией газа вспомогательным электронным пучком — ЭП1. Он распространяется над поверхностью катода и обеспечивает повышение тока основного широкоапертурного пучка — ЭП в сторону анода и полного тока разряда над полным током эквивалентного аномального разряда до порядка величины. Пучок ЭП1 формировался со стенки выемки в катоде. Предложенное устройство работает в широком диапазоне рабочих давлений, до десятков Torr, без внесения изменений в устройстве.

PACS: 52.80.Hc.

1. В работах [1,2] исследован широкоапертурный разряд с давлением газа до десятков Тогг, в котором реализован режим, назовем его сильноточным, когда ток его электронного пучка j_{EB} превышает полный ток j_{AD} эквивалентного (напряжение питания U и давление p фиксированы) аномального разряда $\alpha = j_{EB}/j_{AD} > 1$ до порядка величины. В гелии

$$j_{AD}/(p_{\rm He})^2 = 2.5 \cdot 10^{-12} (U_{cf})^3 \cdot A/{\rm cm}^2 \cdot {\rm Torr}^{-2},$$
 (1)

где U_{cf} — катодное падение потенциала (КПП). Оценить j_{AD} можно заменой U_{cf} на U. В известных источниках электронных пучков (ЭП)

1

сильноточный режим реализуется в разрядах с катодной плазмой, т.е. когда эмиттером электронов пучка служит граница этой плазмы.

В широко используемых источниках с $\alpha > 1$ катодную плазму формируют с помощью отдельного низковольтного разряда, в том числе в разряде с полым катодом. Все они низкого давления: с широкоапертурным пучком до $p \sim 0.01$ Torr [3], а с пучком малой апертуры до $p \sim 0.1$ Torr [4]. В них электроны пучка извлекают из катодной плазмы, например через сетчатый электрод, и ускоряют отдельным несамостоятельным высоковольтным разрядом. Расширение диапазона рабочих p в источниках ЭП не теряет своей актуальности.

В других источниках с катодной плазмой и $\alpha > 1$ используется высоковольтный разряд с полым катодом, в котором область сильного, ускоряющего электроны поля примыкает к входу в катодную полость, а эмиттером служит плазма в полости. В них с увеличением апертуры *D*, давления или напряжения питания разряд становится неустойчивым. Формируется положительный столб с распространением его на всю область между анодом и катодом с его внедрением в катодную полость. Разряд переходит в низковольтную форму без ЭП. Например, в режиме с $\alpha > 1$ и *D* < 1 ст высоковольтная форма сохранялась до $p_{\rm Ar} \sim 0.01$ Torr [5]. Основная причина, ограничивающая предельные параметры источников на разряде с полым катодом, связана с формированием слишком плотной плазмы в катодной полости [6].

В [1,2] рабочее давление газа увеличено за счет относительного понижения плотности катодной плазмы заменой одной из стенок катодной полости диэлектрической пластиной. Для формирования же широкоапертурного ЭП пучок, сформированный перед входом в катодную полость, использован как вспомогательный — ЭП1. ЭП1, распространяясь над поверхностью части катода (она является продолжением металлической стенки катодной полости), открытой отверстием D в диэлектрической пластине, служащей второй стенкой полости, дополнительно ионизует газ. Токи полный *j* и основного пучка *j*_{EB} в сторону анода возрастают. В сочетании с эффектом понижения эмиссии электронов для вспомогательного пучка из катодной плазмы это позволило на порядки расширить возможности сильноточного источника в целом, в частности работать до давлений в десятки Torr. В отличие от известных источников сильноточных ЭП в предложенной в [1,2] конструкции разделены условия работы источника при повышенных давлениях — определяются размером ширины полости δ (расстояние

между металлической и диэлектрической стенками полости), и условия формирования широкоапертурного пучка — определяются размером отверстия D в диэлектрической пластине. Апертура D сильноточного ЭП сверху ограничена длиной L пробега электронов ЭП1 над поверхностью открытой части катода, которая, очевидно, должна быть $\geq D/2$. Длина пробега электронов с энергией $eU_e = (100-10^4)$ eV:

$$p_{\rm He}L = 6.5 \cdot 10^4 \cdot (eU_e)^{1.54}$$
 Torr · cm. (2)

В разряде следует заменить в (2) U_e на U_{cf} , а оценить L — заменой U_e на U [7].

Для фиксированного значения δ в сильноточном режиме разряда на анод верхний предел рабочего давления обусловлен переходом разряда, формирующего пучок ЭП1, в низковольтный режим с исчезновением ЭП1, а нижний — с резким падением интенсивности ЭП1. Для повышения рабочего давления требуется уменьшать δ , что для малых δ приводит к паразитному искровому пробою со дна катода на кромку отверстия D в диэлектрической пластине и далее на анод. Напряжение питания приходится снижать, чем и ограничивается верхняя граница p [1,2].

Таким образом, диапазон рабочих давлений рассмотренного устройства зависит от величины δ . Так, для $\delta = 0.5$ mm область давлений, когда существует сильноточный ($\alpha \ge 1$) широкоапертурный D = 22 mm электронный пучок, $p \approx 2.2-20$ Torr. Причем для p = 20 Torr напряжение горения разряда с пучком продолжительностью $t_{EB} = 600$ ns, из-за начала искрения, не должно было превышать 1 kV, когда $\alpha = 1$. Для меньших p требовалось увеличить δ .

Ниже представлены результаты исследования сильноточного устройства с удаленной катодной полостью. Оставлен только выступ высотой Δ катода. Плоская часть выступа, для уменьшения тока разряда на нее, со стороны анода прикрыта диэлектрической пластиной с отверстием D, совпадающим с диаметром выемки в катоде. Пучок ЭП1 формируется со стенки выступа Δ одновременно с основным ЭП (в [1,2] сильноточному режиму разряда мог предшествовать обычный тлеющий разряд) и распространяется над остальной, плоской частью катода, дополнительно ионизуя газ, чем достигается $\alpha > 1$ для ЭП. Отсутствие катодной полости позволило работать в более широком диапазоне p без внесения изменений в устройство.

2. Опыты проводились с ячейкой, катодный узел которой изображен на рис. 1 в масштабе, задаваемом размером $D = 22 \,\mathrm{mm}$. В нем часть

Рис. 1. Катодный узел разрядной ячейки.

катода, в виде кольцевого вкладыша с $\Delta = 4$ mm, ответственная за формирование ЭП1, отделена от катода стеклянной пластиной толщиной 1 mm. Это позволяло оставлять вкладыш под свободным потенциалом, исключив тем самым формирование ЭП1. Для определения тока — j_{EB} ЭП с апертурой D часть его j_c направлялась на коллектор через сетчатый анод с геометрической прозрачностью $\mu = 0.56$, расположенный от дна катода на d = 14.2 mm, так что $j_{EB} = j_c/\mu$. Отверстия в сетке ≈ 0.5 mm. Коллектор размещался на расстоянии $L_d = 5.2$ mm (область дрейфа ЭП) от сетки. Полный ток разряда определялся отношением j = I/S измеренного тока к площади S = 3.8 cm² отверстия D, т. е. с включением в j тока со стенки Δ вкладыша. Эффективность η формирования ЭП определялась с учетом μ :

$$\eta = j_{EB} / j = j_c (j\mu)^{-1}.$$
(3)

Кроме параметра α введем параметр $\alpha_j = j/j_{AD}$, характеризующий превышение полного тока разряда над j_{AD} . Больший ток j представляет интерес, например, для возбуждения обычных газоразрядных лазеров, требующих высокого уровня накачки. Использовался разряд со слабой прокачкой гелия для повышения устойчивости разряда по отношению к искрообразованию с примесью 1% О₂, что существенно не сказывалось на параметрах разряда по сравнению с разрядом в гелии [2,7]. Другие особенности измерений и проведения опытов содержатся в [2,7].

Осциллограммы на рис. 2 получены в условиях: *а* — вкладыш под свободным потенциалом, т. е. в отсутствие ЭПІ; *b* — вкладыш соединен с катодом. Напряжения заряда искусственной формирующей импульс возбуждения разряда линии в обоих случаях были одинаковыми.

Рис. 2. Осциллограммы разряда, *p* = 6.5 Torr.

В моменты времени, отмеченные вертикальными линиями, параметры α , α_j , η и U составили: для рис. 2, a (отметим их штрихом) — $\dot{\alpha} = 1.4$, $\dot{\alpha}_j = 1.9$, $\dot{\eta} = 0.77$, U' = 3 kV; для рис. 2, $b - \alpha = 10.7$, $\alpha_j = 23$, $\eta = 0.47$, U = 1.5 kV.

Приведенные осциллограммы демонстрируют увеличение параметров α , α_j для рис. 2, *b* на порядок. Из-за уменьшения *U* горения разряда и появления затрат на формирование ЭП1 параметр η для рис. 2, *b* снизился. Если из *j* исключить ток с внутренней поверхности δ вкладыша, параметр η даже несколько превысит $\dot{\eta}$. В представленном опыте важно, что возросший параметр α получен при меньшем *U* горения разряда.

3. Работа устройства при различных p проиллюстрирована осциллограммами на рис. 3. Для p = 11.7 Torr, рис. 3, a: $\alpha = 1.9$, $\alpha_j = 19$, $\eta = 0.16$, U = 1.5 kV. Существенное уменьшение α , η по сравнению

Рис. 3. Осциллограммы разряда для различных давлений: a - 11.7; b - 50; c - 0.76 Torr (разрывы осциллограмм соответствуют изменению их масштабов).

со случаем рис. 2, *b* произошло из-за перераспределения потенциала по длине промежутка *d*, приводящего к реальному уменьшению U_{cf} и к увеличению падения потенциала на положительном столбе разряда. В результате ток j_{AD} , определенный по (1) с заменой U_{cf} на *U*, оказался завышенным, а параметр α заниженным. Поскольку эффективность η определяется величиной U_{cf} [7], то η уменьшался одновременно с U_{cf} , когда падает эффективность эмиссии от бомбардировки катода быстрыми атомами, возникающими в процессах перезарядки ионов [7]. Оценки с заменой U_{cf} на *U* справедливы, когда *d* не намного превышает длину l_{cf} области КПП — $p_{\text{He}}l_{cf} = 0.48$ Тогг · ст. В описанных опытах $l_{cf} \ll d = 14.2$ mm: для рис. 2 — $l_{cf} = 0.74$ mm, а для рис. 3, *a* — 0.4 mm. Замечания относятся и к аномальному разряду в целом [7].

Сказанное наиболее проявляется для p = 50 Torr, когда $l_{cf} = 0.1$ mm, рис. 3, *b*: $\alpha = 0.05$, $\alpha_j = 2.2$, $\eta = 0.02$, U = 1.25 kV. Дополнительное снижение параметров происходит, поскольку, согласно (2), лишь малая часть пучка достигает коллектора. В разобранных 3 случаях (рис. 2, рис. 3, *a*, *b*) оптимальным будет *d* меньшего размера, когда при том же *U* повысится U_{cf} .

Обсудим параметры разряда для p = 0.76 Тогг (рис. 3, c). В качестве примера использовалась иная ячейка: D = 22 mm, $\Delta = 4$ mm, d = 12.1 mm, $\mu = 0.56$, $L_d = 5.8$ mm. В ней отсутствовали вкладыш и стеклянная пластина, а для формирования ЭП1 служила стенка высотой Δ выемки в катоде. Параметры разряда в моменты времени, отмеченные вертикальными линиями I, 2, следующие: $I - \alpha = 3.5, \alpha_j = 6, \eta = 0.58, U = 3.5$ kV; $2 - \alpha = 27.5, \alpha_j = 41.6, \eta = 0.66, U = 1.12$ kV. Поскольку $l_{cf} = 6.3$ mm > Δ , то ЭП1 внедрялся в область КПП разряда, что уменьшало число перезарядок ионов, рожденных в ней пучком ЭП1, и снижало эмиссию от быстрых атомов, а следовательно, параметры α , α_j , η . Условия разряда в d соответствуют левой ветви кривой Пашена, когда его развитие затруднено. Оценки, как в [7], дают для времени развития разряда в период пробоя разрядного промежутка ~ 200 пs. Реально оно может быть выше.

4. Исследован разряд с дополнительной ионизацией газа вспомогательным пучком ЭП1 со стенки выступа Δ выемки в катоде, распространяющимся над поверхностью катода, чем обеспечивалось превышение тока основного пучка ЭП в сторону анода и полного тока разряда над полным током эквивалентного аномального разряда до порядка величины. Отсутствие катодной полости позволило работать в более широком

диапазоне рабочих давлений, до десятков Тогг, без внесения изменений в устройстве. Являясь более универсальным устройством, чем устройство в [1,2], в нем дополнительно можно регулировать параметры разряда, на уже изменением элементов в катодном узле. Так, изменяя высоту выступа Δ , можно регулировать интенсивность ионизации газа и тем самым токи разряда. Для повышения эффективности формирования ЭП следует выступ Δ заменить кольцевым вкладышем, как на рис. 1, так, чтобы ЭП1 не внедрялся в область КПП разряда.

Список литературы

- [1] Сорокин А.Р. // Письма в ЖТФ. 2007. Т. 33. В. 11. С. 70-78.
- [2] Сорокин А.Р. // ЖТФ. 2009. Т. 79. В. 3. С. 46–53.
- [3] Источники заряженных частиц с плазменным эмиттером. Сборник / Под ред. Щанина П.М. Екатеринбург: УИФ "Наука", 1993. 150 с.
- [4] Бурачевский Ю.А., Бурдовицин А.В., Мытников Е.М. и др. // ЖТФ. 2006.
 Т. 76. В. 10. С. 62–65.
- [5] Boring K.L., Stauffer L.H. // Proceedings of the National Electronics Conference. Chicago, 1963. V. 19. P. 535–544.
- [6] Завьялов М.А., Крейндель Ю.Е., Новиков А.А. и др. Плазменные процессы в технологических электронных пушках. М.: Энергоатомиздат, 1989. 256 с.
- [7] Сорокин А.Р. // ЖТФ. 2006. Т. 76. В. 5. С. 47-55.