02;04;12

Источник рентгеновского излучения на основе наносекундного разряда в воздухе атмосферного давления с субнаносекундной длительностью импульса

© И.Д. Костыря, В.Ф. Тарасенко

Институт сильноточной электроники СО РАН, Томск E-mail: VFT@loi.hcei.tsc.ru

Поступило в Редакцию 24 декабря 2008 г.

Исследованы характеристики рентгеновского излучения из диода, заполненного воздухом атмосферного давления. На основе генератора СЛЭП-150 (максимальная амплитуда напряжения $\sim 140\,\rm kV$, длительность импульса на полувысоте $\sim 1\,\rm ns$ и длительность фронта $\sim 0.3\,\rm ns)$ создан источник мягкого рентгеновского излучения с длительностью импульса на полувысоте не более 600 ps и экспозиционной дозой $\sim 3\,\rm mR}$ за импульс. Показано, что основной вклад в регистрируемую экспозиционную дозу дают рентгеновские кванты с эффективной энергией $\sim 7.5\,\rm keV.$

PACS: 52.80.Mg

1. Хорошо известно, что при наносекундном пробое различных газов повышенного давления генерируются рентгеновское излучение и пучки убегающих электронов (см. [1–10], а также ссылки в этих работах). Наибольшие экспозиционные дозы рентгеновского излучения при наносекундном разряде в газах повышенного давления регистрируются в неоднородном электрическом поле с катодом, имеющим малый радиус кривизны. Величина экспозиционной дозы рентгеновского излучения, как правило, уменьшается с ростом давления в газонаполненном диоде и при заполнении диода тяжелыми газами. За окном газового диода, заполненного воздухом атмосферного давления, при наносекундной длительности импульса высокого напряжения наибольшая экспозиционная доза рентгеновского излучения е работах [9,10] в режиме генерации сверхкороткого лавинного электронного

54

пучка (СЛЭП) с наибольшей амплитудой. На промежуток подавались импульсы напряжения отрицательной полярности от генератора РАДАН-220 [11]. Рентгеновское излучения регистрировалось за анодом из медной фольги толщиной 20 µm, который соединялся с корпусом газового диода. Дозиметр Arrow-Tech, Inc (Model 138) устанавливался на расстоянии 1-2 mm от анода. Зарегистрированная длительность импульса рентгеновского излучения не превышала 2 ns на полувысоте и определялась временным разрешением полупроводникового детектора СППД11-04. Энергия рентгеновских квантов за окном газового диода была сравнительно высокой. В экспозиционную зону основной вклад давали две группы рентгеновских квантов с эффективной энергией ~ 30 и $\sim 80\,\mathrm{keV}$. Недостатком источника коротких импульсов рентгеновского излучения, описанного в [9,10], является распространение в одном направлении с рентгеновскими квантами электронов пучка, который также регистрировался за медной фольгой толщиной 20 µm. Как показали наши исследования [9,10], полупроводниковые детекторы (СППД11-04) и фотопленка РФ-3 имели чувствительность к электронам пучка в несколько раз большую, чем к рентгеновским квантам. Данное обстоятельство затрудняет применение рентгеновского излучения, формируемого в газовых диодах, а также регистрацию рентгеновского излучения. В [12] экспериментально было показано, что при использовании потенциального анода в газовом диоде, как и в вакуумном, можно получать потоки рентгеновского излучения без наличия в них электронов пучка. Однако эффективность рентгеновского источника была мала, экспозиционная доза за окном газового диода не превышала 0.1 mR.

Цель данной работы — создать на основе заполненного воздухом атмосферного давления диода источник рентгеновского излучения с длительностью импульса на полувысоте менее 1 пѕ эффективной энергией рентгеновских квантов < 10 keV, который бы позволял получать экспозиционные дозы мягкого рентгеновского излучения > 1 mR. При этом в потоке рентгеновских квантов за окном газового диода электронов пучка не должно быть.

2. Эксперименты проводились с использованием трех наполненных воздухом атмосферного давления промежутков, два из которых показаны на рис. 1, а третий описан в [5, 7, 9, 10]. На газовые диоды подавались импульсы напряжения от генератора СЛЭП-150 [13], который имел волновое сопротивление высоковольтной линии ~ 30Ω. Амплитуда им-

Рис. 1. Расположение электродов в газонаполненном диоде (a, b) и осциллограмма импульса рентгеновского излучения (c). *Dos* — дозиметр, A — анод, F — фильтр из фольги, K — катод, l — расстояние между фильтром и анодом, d — расстояние между катодом и анодом.

пульса напряжения на высокоомной нагрузке составляла ~ 140 kV. Длительность импульса напряжения при согласованной нагрузке составляла ~ 1 ns, а его фронт ~ 0.3 ns. Отметим, что энергия, запасаемая в высоковольтной линии генератора СЛЭП-150, была в ~ 10 раз меньше, чем в

генераторе РАДАН-220, а максимальное напряжение генератора было в ~ 1.5 раза меньше. В работе использовались импульсы напряжения как положительной, так и отрицательной полярности. При положительной полярности генератора импульсы напряжения подавались на плоский анод диаметром 30 mm с закругленными краями (рис. 1, a) или на анод в виде конуса с диаметром основания 6 mm и закругленной радиусом 1 mm вершиной (рис. 1, b). Применялись катоды двух типов: из сетки с шагом 10 mm (рис. 1, a) и из медного кольца (рис. 1, b). Сетка была выполнена из нержавеющей стали, диаметр отдельных проволочек равнялся 0.5 mm. За фольгой, на которой крепились трубчатые катоды, и за сеткой на расстоянии 3.5 mm устанавливались экраны из медной или алюминиевой фольги. Экраны соединялись по всему периметру с корпусом газового диода. Плоская поверхность анода на рис. 1, а выполнялась из нержавеющей стали. Анод в виде стержня также был выполнен из нержавеющей стали. В третьем газовом диоде катод был выполнен в виде трубки диаметром 6 mm из нержавеющей стали с толшиной стенки 100 µm. а заземленный анод из алюминиевой или медной фольги был плоским.

Экспозиционная доза рентгеновского излучения определялась с помощью дозиметра Arrow-Tech, Inc (Model 138), порог чувствительности которого соответствовал энергии квантов ~ 5 keV. При энергии квантов 30 keV чувствительность дозиметра достигала максимума и при дальнейшем увеличении энергии рентгеновских квантов существенно не изменялась. Форма импульсов рентгеновского излучения и их относительная амплитуда регистрировались с помощью алмазного детектора, временно́е разрешение которого составляло ~ 0.6 ns. Кроме того, рентгеновское излучение и электронный пучок фиксировались по засветке пленки РФ-3, которая помещалась в черную бумагу толщиной $\sim 100\,\mu$ m. Для измерения электрических сигналов использовались осциллографы TDS6604 (6 GHz, 20 GS/s) или TDS-3034 (0.3 GHz, 2.5 GS/s).

3. Предварительные эксперименты при отрицательной полярности импульсов высокого напряжения генератора СЛЭП-150 с третьим газовым диодом показали, что наибольшая экспозиционная доза рентгеновского излучения, как и в работах [9,10], составляет за один импульс ~ 0.6 mR. В этих экспериментах использовались анод из медной фольги толщиной 20 μ m, который был соединен с корпусом диода, и межэлектродный зазор 12 mm. При использовании анода из алюминиевой фольги толщиной 10 μ m экспозиционная доза уменьшалась в ~ 2 раза,

а амплитуда СЛЭП увеличивалась в пять раз и составила $\sim 10 \text{ A}$. Почернение пленки РФ-3 за анодом из алюминиевой фольги толщиной $10\,\mu\text{m}$ также было более сильным, чем за анодом из медной фольги толщиной $20\,\mu\text{m}$.

Исследования величины экспозиционной дозы при различных катодах и анодах показало, что наибольшие дозы рентгеновского излучения регистрируются при использовании катода из сетки и плоского анода (рис. 1, *a*), на который подавались импульсы высокого напряжения положительной полярности. Экспозиционная доза рентгеновского излучения зависела от толщины и материала фильтра F и была наибольшей при минимальной толщине фильтра (алюминий, 10 µm), который устанавливался за сетчатым катодом К. Эта доза при межэлектродном зазоре 4 mm составила ~ 1.5 mR. Если учесть кривую чувствительности дозиметра Arrow-Tech, Inc (Model 138), то регистрируемую дозу необходимо увеличить в два раза, и она составила не менее 3 mR за импульс. Основной вклад (> 90%) в эту дозу дает сравнительно мягкое рентгеновское излучение, которое получить при использовании вакуумного диода и субнаносекундного генератора из-за влияния на амплитуду тока пучка объемного заряда существенно сложнее. Ток I пучка в плоском вакуумном диоде при $S \gg d^2$ определяется выражением [11]:

$$I = (2e/m)^{1/2} U^{3/2} S / 9\pi d^2, \tag{1}$$

где е и m — заряд и масса электрона, U — напряжение на промежутке, S — площадь катода, d — межэлектродный промежуток. Для получения рентгеновских квантов преимущественно с энергией < 10 keV необходимо уменьшать напряжение на промежутке, однако ток пучка в вакуумном диоде при этом существенно уменьшится. Кроме того, в вакуумных диодах долю мягкого рентгеновского излучения уменьшает поглощение в окне, используемом для вывода рентгеновского излучения из вакуума в воздух.

На рис. 2 приведены зависимости величины экспозиционной дозы от толщины фильтра из алюминия. Оценка показала, что эффективная энергия рентгеновских квантов составляет ~ 7.5 keV. Эффективная энергия рентгеновских квантов определялась из соотношения

$$D_2 = D_1 \exp(-\mu\rho h), \tag{2}$$

где D_1 — экспозиционная доза перед фильтром h[mR], D_2 экспозиционная доза за фильтром h[mR], μ — массовый коэффициент

Рис. 2. Кривые ослабления экспозиционной дозы рентгеновского излучения фильтрами из алюминия для газового диода на рис. 1, *a*.

ослабления $[cm^2/g]$, ρ — плотность фильтра $[g/cm^3]$, h — толщина фильтра [cm]. По данным рис. 2 и формулы (2) для рентгеновских квантов рассчитывалась величина μ . Далее из таблиц в [14] выбиралась энергия рентгеновских квантов, которая соответствовала величине μ . Данная энергия рентгеновских квантов определялась как эффективная энергия.

На рис. 1, с приведена осциллограмма импульса рентгеновского излучения, полученная с помощью алмазного детектора. Длительность импульса рентгеновского излучения на полувысоте составила ~ 600 ps и соответствовала временному разрешению используемого детектора. Как было показано нами ранее [9], длительность импульса СЛЭП в этих условиях не превышает 80 ps на полувысоте при регистрации тока пучка через отверстие диаметром 1 mm и увеличивается до ~ 100 ps при регистрации тока пучка со всей поверхности фольги. Механизм генерации СЛЭП с учетом последних экспериментальных данных, который определяет параметры импульсов рентгеновского излучения, подробно изложен в [9].

4. Таким образом, в данной работе показано, что на основе наносекундного диффузного разряда в воздухе атмосферного давле-

ния можно создавать источники мягкого рентгеновского излучения с субнаносекундной длительностью импульса и сравнительно большой экспозиционной дозой (> 3 mR). По сравнению с источниками рентгеновского излучения на основе вакуумных диодов источники с газовыми диодами атмосферного давления отличаются простотой и потенциально имеют большой срок службы. При использовании газового диода нет необходимости формировать субнаносекундный импульс высокого напряжения, что существенно упрощает конструкцию высоковольтного импульсного генератора, а также нет необходимости использовать для вывода рентгеновского излучения тонкие вакуумноплотные фольги, что значительно повышает надежность диода и упрощает его конструкцию.

Список литературы

- [1] Станкевич Ю.Л., Калинин В.Г. // ДАН СССР. 1967. Т. 177. № 1. С. 72–73.
- [2] Тарасова Л.В., Худякова Л.Н., Лойко Т.В., Цукерман В.А. // ЖТФ. 1974. Т. 44. В. 3. С. 564–568.
- [3] Буранов С.Н., Горохов В.В., Карелин В.И., Павловский А.И., Репин П.Б. // Квантовая электроника. 1991. Т. 18. № 7. С. 891–893.
- [4] Василяк Л.М., Ветчинин С.П., Поляков Д.Н. // Письма в ЖТФ. 1999. Т. 25.
 В. 18. С. 74–80.
- [5] Tarasenko V.F. // Appl. Phys. Lett. 2006. V. 88. N 8. P. 1501(1-3).
- [6] Krompholz H.G., Hatfield L.L., Neuber A.A., Kohl K.P., Chaporro J.E., Ryu H.-Y. // IEEE Trans. of Plasma Science. 2006. V. 34. N 3. P. 927–936.
- [7] Костыря И.Д., Тарасенко В.Ф. // Письма в ЖТФ. 2007. Т. 33. В. 10. С. 41-48.
- [8] Репин П.Б., Репьев А.Г. // ЖТФ. 2008. Т. 78. В. 1. С. 78-85.
- [9] Tarasenko V.F., Baksht E.K., Burachenko A.G., Kostyrea I.D., Lomaev M.I., Rybka D.V. // Plasma Devises and Operation. 2008. V. 16. N 4. P. 267–298.
- [10] Тарасенко В.Ф., Бакшт Е.Х., Бураченко А.Г., Костыря И.Д., Ломаев М.И., Петин В.К., Рыбка Д.В., Шляхтун С.В. // Физика плазмы. 2008. Т. 34. № 12. С. 1110–1119.
- [11] Месяц Г.А. Импульсная энергетика и электроника. М.: Наука, 2004. 704 с.
- [12] *Kostyrya I.D., Tarasenko V.F. //* Изв. вузов. Физика. 2006. № 11. Приложение. С. 112–115.
- [13] Костыря И.Д., Тарасенко В.Ф., Шитц Д.В. // ПТЭ. 2008. № 4. С. 159–160.
- [14] Saloman E.B., Hubbell J.H., Scofield J.H. // Data Nucl. Data Tables. 1988. V. 38. P. 1–197.