⁰⁵ Исследование электронной структуры катионов Mn, Sr, La, Ce и Sm в манганитах $Ln_{1-x}Sr_xMnO_3$ (Ln = La, Ce, Sm) методом смещений рентгеновских линий

© А.Е. Совестнов, А.В. Тюнис, Э.В. Фомин, А.А. Петрунин, А.И. Курбаков, Б.Т. Мелех

Петербургский институт ядерной физики им. Б.П. Константинова РАН, Гатчина E-mail: asovest@pnpi.spb.ru

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург

Поступило в Редакцию 29 мая 2008 г.

На кристалл-дифракционных спектрометрах измерены смещения рентгеновских K_{α} -линий Mn, Sr, La, Ce и Sm в манганитах $Ln_{1-x}Sr_xMnO_3$ (Ln = La, Ce, Sm). В системе $Sm_{1-x}Sr_xMnO_3$ обнаружены смещения K_{α} -линий Mn, соответствующие увеличению валентности от Mn³⁺ до Mn⁴⁺. В системе Ce_{1-x}Sr_xMnO₃, кроме того, обнаружено увеличение валентности Се практически до четырех. Показано, что полученные зависимости валентности Mn от концентрации Sr не отвечают простейшей модели смеси локальных ионов Mn³⁺ и Mn⁴⁺, обычно используемой для таких систем. Продемонстрировано, что связи Sr, La и Sm в исследованных манганитах имеют заметно ковалентный характер. Обнаружено, что в катиондефицитном Sm_{1-y}Mn_{1-z}O₃ наблюдается не только увеличение валентности Mn, но и уменьшение ковалентности Sm.

PACS: 32.30.Rj, 32.70.Jz, 34.70.+e, 36.20.Kd, 75.47.Gk, 75.47.Lx.

Уже более 20 лет в физике твердого тела большое внимание уделяется исследованию смешанных оксидов (на основе лантанидов Ln и щелочно-земельных элементов A = Ca, Sr, Ba) с кристаллической структурой типа перовскита. Вначале это были купраты $\text{Ln}_{1-x}^{3+} A_x^{2+} \text{CuO}_4$ — высокотемпературные сверхпроводники, в последние лет десять — манганиты типа $\text{Ln}_{1-x}^{3+} A_x^{2+} \text{MnO}_3$, обладающие колоссальным магнитосопротивлением [1]. Наряду с перспективным практическим применением манганиты $\text{Ln}_{1-x} A_x \text{MnO}_3$ являются привлекательными для фундаментальных исследований, поскольку их фазовые диаграммы необычайно

55

богаты разнообразием различных видов упорядочений и фазовых переходов.

Несмотря на большой объем разноплановых исследований манганитов $Ln_{1-x}A_xMnO_3$, особенно на основе La [2,3], остаются нерешенные проблемы, отсутствует ряд необходимых данных. В частности, мало информации об электронном строении Mn, а для лантаноидов и щелочно-земельных элементов таких данных практически нет. Вместе с тем еще в самом начале исследований манганитов $Ln_{1-x}A_xMnO_3$ было ясно, что основой их необычных свойств является замещение Ln^{3+} двухвалентными Ca^{2+} , Sr^{2+} или Ba^{2+} . Так как в решетке перовскита сумма валентностей катионов равна шести, то в $Ln^{3+}MnO_3$ и $Sr^{2+}MnO_3$ валентность Mn равна 3+ (ионы Mn^{3+}) и 4+ (Mn^{4+}) соответственно. В манганитах $Ln_{1-x}Sr_xMnO_3$ замена Ln^{3+} на Sr^{2+} вызовет переходы от Mn^{3+} к Mn^{4+} , и валентность марганца будет меняться как 3 + x (см., например, [4]), т.е. рассматривается модель чисто ионной связи.

Данная работа посвящена исследованию электронных состояний Mn, Sr, La, Ce и Sm в манганитах $Ln_{1-x}Sr_xMnO_3$ (Ln = La, Ce, Sm) методом смещений рентгеновских линий. Этот набор объектов исследований, во-первых, перекрывает весь диапазон реализуемых Srсодержащих манганитов, а во-вторых, содержит системы как с чисто трехвалентным La, так и с "предрасположенными" к валентности 4+ (Ce) и к валентности 2+ (Sm). Поэтому в таких манганитах наряду с изменением валентности марганца можно предполагать и валентные переходы $Ce^{3+} \rightarrow Ce^{4+}$ или $Sm^{3+} \rightarrow Sm^{2+}$. При этом валентность Mn в $Ce_{1-x}Sr_xMnO_3$ будет меньше, а в $Sm_{1-x}Sr_xMnO_3$, наоборот, — больше, чем в "нормальной" системе $Ln_{1-x}^{3+}Sr_xMnO_3$, поскольку Ce^{4+} частично скомпенсирует дефицит валентности, вызванный атомами Sr^{2+} , а Sm^{2+} внесет дополнительный. Изучение электронной структуры La здесь можно рассматривать как контрольный опыт. Такое комплексное исследование манганитных систем с точки зрения электронных структур катионов проведено впервые.

Уникальность метода смещения рентгеновских линий состоит в том, что он позволяет однозначно идентифицировать тип электрона (s, p, d, f), принимающего участие в химической связи, и имеет высокую чувствительность к заселенности валентных орбиталей (до ~ 0.02 el./atom). Метод был разработан О.И. Сумбаевым и подробно описан в обзоре [5].

Большинство исследованных в данной работе образцов $Ln_{1-x}Sr_xMnO_3$ (Ln = La, Ce, Sm) были приготовлены высокочастотным

Рис. 1. *а* — зависимости смещений рентгеновских $K_{\alpha 1}$ -линий Sr (относительно SrO) от составов манганитов Ln_{1-x}Sr_xMnO₃ (Ln=La, Ce, Sm); *b* — зависимости смещений рентгеновских $K_{\alpha 1}$ -линий La и Sm (относительно La₂O₃ и Sm₂O₃) от составов манганитов La_{1-x}Sr_xMnO₃ и Sm_{1-x}Sr_xMnO₃ соответственно.

плавлением соответствующих смесей окислов лантаноидов и марганца и карбоната стронция, остальные — по керамической технологии. Качество образцов всех использованных соединений контролировалось рентгенофазовым анализом с помощью дифрактометра ДРОН-2. Непосредственно были исследованы три системы — La_{1-x}Sr_xMnO₃ ($x \le 0.38$), Ce_{1-x}Sr_xMnO₃ ($x \ge 0.60$) и Sm_{1-x}Sr_xMnO₃ ($0 \le x \le 1$); практически однофазные образцы с меньшим содержанием La и с большим содержанием Се получить не удалось из-за выпадения паразитных фаз, что в литературе известно [6,7].

В основном эксперименте измерялись смещения (разность энергий) рентгеновских $K_{\alpha 1}$ -линий Мп (на спектрометре по Иоганну) и Sr, La, Ce, Sm (на спектрометрах по Кошуа) относительно реперных соединений известной валентности: Mn₂³⁺O₃, Sr²⁺O, La₂³⁺O₃, Ce³⁺F₃ и Sm₂³⁺O₃. В случае Мп измерения проводились также и на $K_{\alpha 2}$ -линии. Результаты исследований приведены на рис. 1–3.

Как следует из рис. 1, смещения $K_{\alpha 1}$ -линий (а значит, и электронные структуры) Sr, La и Sm практически не зависят от состава

Рис. 2. Зависимости смещений рентгеновских K_a -линий Mn (относительно Mn₂O₃) от составов манганитов Ln_{1-x}Sr_xMnO₃ (Ln = Sm, Ce) и смеси Mn₂O₃ и MnO₂, соответствующей молекулярному соотношению $(1 - x)Mn_2^{3+}O_3 + 2xMn^{4+}O_2$ и/или атомарному соотношению $(1 - x)Mn^{3+} + xMn^{4+}$. *a* — смещение K_{a1} -линии, *b* — смещение K_{a2} -линии.

исследованных образцов и средние величины равны $\Delta E(\text{Sr}) = 31 \pm 2$, $\Delta E(\text{La}) = 43 \pm 2$ и $\Delta E(\text{Sm}) = 27 \pm 2$ meV. ("Аномальный" результат $\Delta E(\text{Sm})$ для SmMnO₃ будет рассмотрен ниже). Если в качестве калибровочных смещений на целый 4d- и 5d-электрон принять ~ 200 и ~ 70 meV [8] соответственно, то наблюдаемые смещения $\Delta E(\text{La})$, $\Delta E(\text{Sm})$ и $\Delta E(\text{Sr})$ (эффективно) отвечают наличию у La, Sm и Sr примерно 0.5, 0.4 и 0.2 *d*-электрона на атом. Таким образом, кристаллохимические связи (по крайней мере) Sr, La и Sm в манганитах имеют заметную ковалентную составляющую.

Иная ситуация имеет место для церия в Ce_{1-x}Sr_xMnO₃ — экспериментальные смещения его $K_{\alpha 1}$ -линии (ΔE (Ce) = -225 ± 14 , -272 ± 18 и -451 ± 23 meV для образцов с x = 0.60, 0.67 и 0.85 соответственно) значительно отличаются от аналогичных данных для La и Sm как по знаку, так и по абсолютной величине и по зависимости от x. Из величин ΔE (Ce) для исследуемых манганитов и для Ce⁴⁺O₂

Результаты исследования электронной структуры Mn в манганитах $Ce_{1-x}Sr_xMnO_3$ и $Sm_{1-x}Sr_xMnO_3$ представлены на рис. 2. Подобные исследования для Mn в $La_{1-x}Sr_xMnO_3$, к сожалению, невозможны, поскольку K_{α} -линии Mn совпадают с L_{II} -краем поглощения лантана, что приводит к непредсказуемым паразитным смещениям.

Как видно из рис. 2, при x = 0, т.е. в SmMnO₃, смещения $K_{\alpha 1}$ и $K_{\alpha 2}$ -линий марганца относительно Mn₂O₃ (-11 ± 5 и -30 ± 5 meV соответственно) отличны от нуля, что, очевидно, следует рассматривать совместно с аномально малым смещением K_{a1}-линии Sm в этом соединении (рис. 1, b). Дополнительный отжиг этого образца на воздухе при температуре $T = 1000^{\circ}$ С в течение 10 и 20 h привел к еще большему отличию смещения $K_{\alpha 1}$ -линии Mn от нуля ($\Delta E = -17 \pm 5$ и $-25 \pm 4 \,\mathrm{meV}$ соответственно), тогда как смещение $K_{\alpha 1}$ -линии Sm не изменилось. Из этого можно сделать вывод, что наш образец является катиондефицитным $Sm_{1-v}Mn_{1-z}O_3$, как, например, $La_{1-v}Mn_{1-z}O_3$ в [9]. Тогда вследствие относительного избытка кислорода наблюдается смещение K_{α} -линий (т. е. увеличение валентности, как в [9]) Mn, но, кроме того, еще и уменьшенное смещение $K_{\alpha 1}$ -линии Sm, что отвечает уменьшенной его ковалентности. Для стехиометричного SmMnO₃, очевидно, смещения K_a -линий Mn должны быть равны нулю, что отвечает Mn³⁺, такому как Mn₂O₃.

Из рис. 2 видно, что смещения $K_{\alpha 1}$ - и $K_{\alpha 2}$ -линий марганца для SrMnO₃ (-270 ± 5 и -91 ± 3 meV соответственно) практически такие же, как для MnO₂ (-267 ± 3 и -89 ± 3 meV). Отрицательный знак наблюдаемых смещений однозначно свидетельствует, что они обусловлены удалением 3*d*-электрона (увеличением валентности) марганца. Из практически идентичности смещений $K_{\alpha 1}$ - и $K_{\alpha 2}$ -линий марганца для MnO₂ и SrMnO₃ следует, что в обоих этих случаях Mn одинаково четырехвалентен. Таким образом, при предельных концентрациях стронция в системе Sm_{1-x}Sr_xMnO₃, т.е. в SmMnO₃ и SrMnO₃, валентность Mn равна трем (как в Mn₂O₃) и четырем (как в MnO₂) соответственно.

В промежуточной области (при замещении самария стронцием) наблюдаемые смещения отвечают валентности Mn больше трех, причем

Рис. 3. Корреляции между смещениями рентгеновских $K_{\alpha 1}$ - и $K_{\alpha 2}$ -линий Mn по данным для манганитов $Ln_{1-x}Sr_xMnO_3$ (Ln = Sm, Ce), $Ln_{1-x}Bb_xMnO_3$ ($Pr_{0.67}Sr_{0.33}MnO_3$, $Nd_{0.88}Ca_{0.12}MnO_3$, $Nd_{0.77}Ba_{0.23}MnO_3$) и смеси Mn_2O_3 и MnO_2 (см. подпись к рис. 2).

эта валентность монотонно растет по величине с ростом x (рис. 2). Однако, во-первых, эти смещения отклоняются от линейной зависимости от x, предполагаемой простейшей моделью смеси ионов Mn³⁺ и Mn⁴⁺ (см. например, [4]). Результат для такой модели (см. рис. 2, ромбы) имитируется с помощью механической смеси окислов марганца Mn₂O₃ и MnO₂. Во-вторых, наблюдаемые смещения $K_{\alpha 1}$ - и $K_{\alpha 2}$ -линий отклоняются от прямой линии в противоположные стороны. Обнаруженные эффекты характерны не только для системы Sm_{1-x}Sr_xMnO₃. Еще большее отклонение смещений $K_{\alpha 1}$ -линии от линейной зависимости от x наблюдается для системы Ce_{1-x}Sr_xMnO₃ (рис. 2). Это объясняется тем, что дефицит валентности, вносимый в систему атомами Sr²⁺, компенсируется увеличением валентности не только марганца, но и церия. Таким образом, наши данные не подтверждают, что в Sr-допированных манганитах имеется смесь ионов Mn³⁺ и Mn⁴⁺ с концентрацией ионов Mn⁴⁺, равной концентрации Sr.

Более наглядно несогласие наших данных с ожидаемыми для ионной модели следует из рассмотрения корреляции между смещениями $K_{\alpha 1}$ -

и $K_{\alpha 2}$ -линий Mn. Смесь состояний Mn³⁺ и Mn⁴⁺ может быть разная: либо на уровне смеси кристаллитов ("доменов"), либо на уровне смеси атомов в кристаллической решетке (аналогичное Mn₃O₄, например), либо на уровне волновой функции (ковалентности). Однако во всех этих случаях, независимо от концентрации ионов (состояний) Mn⁴⁺, будет 100%-ная линейная корреляция смещений Ка1- и Ка2-линий, пример которой для механической смеси окислов марганца Mn₂O₃ и MnO₂ представлен на рис. 3 точечной прямой. Очевидно, что эта же прямая относится и к случаю смеси локальных ионов Mn³⁺ (таких как в SmMnO₃) и Mn⁴⁺ (как в SrMnO₃), что обычно рассматривается для манганитов. Из этого же рис. З ясно видно, что данные для системы Sm_{1-x}Sr_xMnO₃ ложатся далеко от этой прямой на ломаную линию с точкой излома, отвечающей $x \approx 0.5$. Для полноты картины мы поместили на рис. З наши же данные по смещениям Ка1- и Ка2-линий для Ce_{1-x}Sr_xMnO₃, а также для Pr_{0.67}Sr_{0.33}MnO₃, Nd_{0.77}Sr_{0.23}MnO₃ и Nd_{0.88}Ca_{0.12}MnO₃. Из рисунка видно, что данные для такого довольно широкого спектра манганитов удовлетворительно ложатся на одну кривую, что свидетельствует о достаточно общем характере полученной корреляционной зависимости. Такая кривая означает, что, вопервых, кристаллохимическая связь марганца в смешанных манганитах $Sm_{1-r}Sr_rMnO_3$ не такая, как в $SrMnO_3$ (т.е. и в MnO_2), и, вовторых, при $x \approx 0.5$, по-видимому, происходит существенное изменение этой связи. Это наиболее яркое и прямое указание на специфичность кристаллохимической связи в допированных манганитах. Косвенные указания на это в литературе известны (например, в [4] отмечалось, что К-край Mn La_{1-х}Ca_хMnO₃ слишком узок для смеси локальных ионов Mn³⁺ и Mn⁴⁺). По-видимому, можно предположить, что специфичность этой связи обусловлена участием в ней не только 3d-, но и 4*p*-электронов Mn, вклады которых через расщепление их уровней в кристаллическом поле будут зависеть от конкретных параметров кристаллической структуры манганитов. В этом случае корреляционная $K_{\alpha 1}$ - $K_{\alpha 2}$ -зависимость может быть непростой.

Таким образом, из наших данных следует, что кристаллохимическая связь в Sr-допированных манганитах $Ln_{1-x}Sr_xMnO_3$ сложнее, чем предполагает простая ионная модель.

В заключение благодарим А.И. Егорова за синтез Mn_2O_3 и MnO_2 , Ю.П. Черненкова — за интерес к работе, В.В. Федорова — за стимулирование работы и полезные обсуждения.

Список литературы

- Colossal magnetoresistance. Charge ordering and related properties of manganese oxides. / Ed. C.N.R. Rao, B. Raveau. Singapore: World Scientific, 1998. 356 p.
- [2] Colossal magnetoresistive oxides / Ed. Y. Tokura. Gordon and Breach. 2000. 358 p.
- [3] Дунаевский С.М. // ФТТ. 2004. Т. 46. В. 2. С. 193–211.
- [4] Bridges F., Booth C.H., Anderson M., Kwei G.H., Neumeier J.J., Snyder J., Mitchell J., Gardner J.S., Brosha E. // Phys. Rev. B. 2001. V. 63. N 21. 214405 (P. 1–14).
- [5] Сумбаев О.И. // УФН. 1978. Т. 124. В. 2. С. 281–306.
- [6] Leontion A.A., Ladavos A.K., Armatas G.S., Trikalitis P.N., Pomonis P.J. // Applied Catalysis A: General. 2004. V. 263. P. 227–239.
- [7] Mandal P., Hassen A., Loidl A. // Phys. Rev. B. 2004. V. 69. N 22. 224418 (P. 1–6).
- [8] Grushko Yu.S., Paderno Yu.B., Mishin K.Ya., Molkanov L.I., Shadrina G.A., Konovalova E.S., Dudnik E.M. // Phys. Stat. Sol. (b). 1985. V. 128. P. 581–597.
- [9] Mahendiran R., Tiwary S.K., Raychaudhuri A.K., Ramakrishnan T.V., Mahesh R., Rangavittal N., Rao C.N.R. // Phys. Rev. B. 1996. V. 53. N 6. P. 3348– 3358.