06

P-*n*-детекторы ядерного излучения на основе пленок 4*H*-SiC для работы при повышенных температурах (375°C)

© Е.В. Калинина, А.М. Иванов, Н.Б. Строкан

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: evk@mail.ioffe.ru

Поступило в Редакцию 27 августа 2007 г.

Впервые представлены результаты исследования спектрометрических характеристик в температурном интервале $25-375^{\circ}$ С, проведенного на детекторах, выполненных на основе 4*H*-SiC ионно-легированных p^+ -*n*-переходов. Тестирование α -частицами с энергией 5.8 MeV проводилось в специально созданной высокотемпературной измерительной камере. Выявлены факторы, связанные со структурными характеристиками как исходного материала, так и ионнолегированных p^+ -*n*-переходов, ограничивающие температурный предел работы детекторов в спектрометрическом режиме. Наблюдаемое повышение эффективности диффузионно-дрейфового переноса заряда с ростом температуры объяснено увеличением диффузионной длины неосновных носителей.

PACS: 61.82.Fk, 61.80.-x

Введение. Благодаря своим электрофизическим свойствам, широкозонные полупроводники являются перспективными материалами при создании высокотемпературных детекторов для мониторинга ядерных излучений в "горячих" точках ядерных реакторов на атомных станциях и космических объектах, при утилизации ядерных отходов и отработанного ядерного топлива. Наиболее обещающим из них представляется 4*H*-SiC, обладающий отличными механическими, электрическими и химическими свойствами. Эпитаксиальные слои 4*H*-SiC, выращенные методом газотранспортного осаждения (CVD), высокой степени чистоты с толщинами в несколько сотен микрон в настоящее время промышленно выпускаются вплоть до 3 дюймов в диаметре.

Использование 4*H*-SiC чистых CVD-слоев толщинами до $30 \div 50 \,\mu$ m позволило создать детекторы на основе Cr-барьеров Шоттки, которые при тестировании α -частицами имели разрешения по энергии

63

0.5–0.34%, соизмеримые с параметрами Si-детекторов [1,2]. Структуры с барьерами Шоттки на подобных эпитаксиальных слоях исследовались как детекторы α - и рентгеновского излучения при температурах 90 и 107°С соответственно [3,4]. В этих структурах не отмечалось влияния роста температуры на эффективность собирания заряда. Одновременно наблюдавшийся низкий уровень шума в приборах подтверждал возможность работы SiC-детекторов при повышенных температурах.

Поскольку использование барьеров Шоттки имеет серьезные температурные ограничения, несомненный интерес для создания высокотемпературных детекторов представляют структуры с p - n-переходами. Наиболее перспективными являются детекторы на основе ионнолегированных (ИЛ) p-n-переходов, где возможно сформировать тонкие высоколегированные p^+ -эмиттеры, которые могут служить эффективным "входным окном" с малыми потерями энергии. Детекторы на структурах 4*H*-SiC и ИЛ Al p^+ -*n*-переходами имели 100%-ную эффективность собирания заряда, созданного α -частицами, с разрешением по энергии $\leq 2\%$ [5]. Именно на таких структурах были впервые исследованы спектрометрические характеристики детекторов и матриц из 4 детекторов при их рабочей температуре 170 и 140°C соответственно [6,7].

В настоящем сообщении приведены результаты по спектрометрии аналогичных 4*H*-SiC детекторов с ИЛ Al p^+ -*n*-переходами в температурном интервале 25–375°C.

Методика эксперимента. Детекторные структуры изготавливались на основе 4*H*-SiC CVD-слоев толщиной $\leq 45 \,\mu$ m с концентрацией нескомпенсированных доноров $N_d - N_a = (4-6) \cdot 10^{14} \,\mathrm{cm}^{-3}$, которые выращивались на коммерческих подложках 4*H*-SiC с концентрацией $N_d - N_a = 1 \cdot 10^{19} \,\mathrm{cm}^{-3}$. $P^+ - n$ -переходы изготавливались имплантацией ионов Al с энергией 100 keV и дозой $5 \cdot 10^{16} \,\mathrm{cm}^{-2}$, с последующим высокотемпературным активационным отжигом при температуре 1700°C в течение 15 s. Детекторные мезаструктуры площадью $10^{-3} \,\mathrm{cm}^2$ формировались ионно-плазменным травлением без специальной обработки периферии $p^+ - n$ -переходов [7].

Исследуемые структуры помещались в специально разработанную высокотемпературную камеру, обеспечивающую нагрев детекторов до 500°С в процессе их тестирования α -частицами с энергией ≈ 5.8 MeV. Давление в камере при измерении характеристик детекторов поддер-

живалось сорбционным насосом и не превышало 10⁻⁴ mm ртутного столба.

Прямые и обратные вольт-амперные характеристики (ВАХ) детекторных структур измерялись до температуры 400°С. Измерения характеристик детекторов проводились в температурном интервале $25 \div 375^{\circ}$ С с использованием стандартной для задач спектрометрии установки. Полоса пропускания усилительного тракта формировалась *RC*-фильтром из цепочек дифференцирования-интегрирования сигнала с постоянной времени 3 μ s. Получаемые амплитудные спектры регистрировались анализатором с числом каналов 4000.

Результаты эксперимента и их обсуждение. В результате имплантации ионов Al и отжига в указанных режимах, на глубине $0.3 \div 0.4 \,\mu\text{m}$ от поверхности формировался p^+ -*n*-переход с концентрацией акцепторов $N_a - N_d = 5 \cdot 10^{19} \,\text{cm}^{-3}$ в p^+ -слое [7]. Детекторные структуры на основе таких p^+ -*n*-переходов имели дифференциальные сопротивления в прямом направлении $\leq 3 \cdot 10^{-3} \,\Omega \cdot \text{cm}^{-2}$ и напряжения пробоя 1700 V. При этом токи от приложенного обратного напряжения возрастали линейно с температурой до 400°C. Линейный характер указывал на отсутствие микроплазменных пробоев и токов утечки по периферии в детекторных структурах в исследуемом интервале температур, что являлось предпосылкой низкого уровня шумов детекторов при повышенных температурах [5].

Как известно, именно шумы, связанные с возрастанием тока при повышении температуры, являются основным препятствием для работы детекторов на основе традиционных полупроводников (Ge, Si, CdTe). Широкозонные полупроводники, в том числе и SiC, отличаются малыми генерационными токами при 25°С и, как следствие, малыми шумами в приборе [5]. Но даже экспоненциальный рост генерационных токов с температурой позволяет рассчитывать на возможность работы SiC детекторов в спектрометрическом режиме. Согласно данным работы [8], при температуре 400–500°С генерационные токи в 4*H*-SiC ИЛ p^+ -*n*-переходах составляют 10⁻¹³–10⁻¹² А.

Экспериментально наблюдаемый ход шума детектора в температурном интервале $20 \div 375^{\circ}$ С при напряжении смещения U = 150 V представлен на рис. 1. При таком обратном напряжении уже имело место насыщение как амплитуды сигнала, так и разрешения по энергии (рис. 2 и 3). Как видно, при нагреве детекторов до 300°С уровень шума не изменялся, сравнительно с начальной величиной. Ток детектора,

Рис. 1. Зависимость величины шума имплантированного детектора от температуры.

естественно, возрастал, но оставался менее тока кремниевого полевого транзистора на входе зарядочувствительного предусилителя. Поскольку было зафиксировано отсутствие микроплазменных пробоев и токов утечки по периферии в детекторных структурах в исследуемом интервале температур, обратные токи, а следовательно и шумы, определялись генерационными токами и токами утечки объемной природы. Рост шума на 50% происходил при 375°C и не может быть обусловлен только генерационными токами по причине их малости при таких температурах. Известно, что дробовое происхождение токов, а значит и шумов, объясняется наличием шунтов на пути прохождения тока. Вероятностный характер дробовых токов обусловливает экспоненциальную их зависимость с ростом температуры [8]. По-видимому, именно объемные утечки по шунтам определили экспоненциальный рост шума при температурах выше 375°С, что явилось температурным пределом для снятия детекторных характеристик. Наличие шунтов определяется качеством как исходного материала, так и структурными особенностями

Рис. 2. Эффективность собирания заряда при 300°C в зависимости от приложенного обратного смещения. Фрагмент: зависимость величины сигнала от температуры при 100 V обратного смещения.

формируемых ИЛ Al p^+ -*n*-переходов. В частности, наличие шунтов связывалось с присутствием в областях интерфейса подложка-CVD-слой и p^+ -*n*-переходов 3С квантовых ям в 4*H*-SiC. Количество появляющихся ям возрастает с ростом температуры прибора. Кроме того, известно, что при росте CVD-слоев могут возникать дефекты упаковки с малыми энергиями образования, которые также могут служить шунтами для протекающего тока [9]. Вероятно, именно структурные характеристики определили температурный предел спектрометрических характеристик исследуемых детекторов.

Эффективность собирания заряда (ССЕ), определяемая как перенесенный в детекторе заряд, нормированный на заряд, внесенный регистрируемой частицей, представлена на рис. 2 в функции квадратного корня от смещения. Слагаемое 2.8 V представляет величину контактной разности потенциалов. Зависимость имеет типичный вид с линейно нарастающим участком, переходящим к насыщению. Последнее

Рис. 3. Зависимость разрешающей способности детектора при 300°C от приложенного обратного смещения.

происходит при смещениях $U \approx 150$ V, когда протяженность области электрического поля $W \propto (U + 2.8)^{1/2}$ становится близкой к пробегу α -частиц $R = 21 \,\mu$ m. Принимая среднее по исходной пластине 4*H*-SiC значение для концентрации $N_d - N_a = 5 \cdot 10^{14}$ сm⁻³, имеем $W = 18.1 \,\mu$ m. Поскольку длины диффузии дырок составляют $L_p > 10 \,\mu$ m [2], указанного смещения достаточно для полного переноса заряда, внесенного в межэлектродную область детектора. Измеренные значения ССЕ, хотя и достигают насыщения, оказываются меньше 1 вследствие неоптимизированной конструкции "входного окна" детектора.

Показательно также приведенное на фрагменте рис. 2 изменение с ростом температуры величины сигнала. Зависимость снималась при смещении 100 V, когда область поля составляла $W = 14.8 \,\mu\text{m}$. Это заметно меньше пробега *R* и практически равно, согласно кривой Брегга, значению 0.66*R* — положению центра тяжести распределения заряда, созданного α -частицей. Таким образом, перенос заряда в существенной мере определялся диффузией дырок. На этом основании изменение

величины сигнала (значит и ССЕ) следует относить к возрастанию с ростом температуры величины L_p , что находится в согласии с ранее полученными данными [6,7].

Разрешение по энергии (FWHM) определяется как ширина спектральной линии на уровне 0.5 от максимума, нормированная на среднюю энергию. Ее зависимость от смещения приведена на рис. 3. Сопоставляя с ходом ССЕ (см. рис. 2), видим четкое соответствие указанных основных характеристик детектора. Рост ССЕ (более полный перенос заряда) сопровождается улучшением разрешения (меньшей шириной линии). Результирующее наименьшее значение FWHM = 1.35% уступает полученной ранее в работе [2] величине 0.34%. В первую очередь это связано (как уже отмечалось выше) со структурой "входного окна". Дополнительно отметим, что в данной работе ставилась задача работоспособности прибора при температурах до 300°С.

Заключение. Прогнозируемые возможности SiC в качестве "детектирующей среды" успешно оправдываются на практике. В представленных выше детекторах достигнуто сочетание работоспособности при повышенных, как минимум, до 300°C температурах и высокого разрешения по энергии. Указанные характеристики позволяют рассматривать результат работы в целом как появление детекторов нового типа.

Работа выполнена при поддержке грантов президента РФ — Ведущие научные школы НШ-5920.2006.2 и проекта РФФИ № 05-02-08012, а также со стороны исследований по программам коллаборации RD-50 (CERN).

Список литературы

- Иванов А.М., Калинина Е.В., Константинов А.О., Онушкин Г.А., Строкан Н.Б., Холуянов Г.Ф., Hallen А. // Письма в ЖТФ. 2004. Т. 30. В. 14. С. 1.
- [2] Строкан Н.Б., Иванов А.М., Калинина Е.В., Холуянов Г.Ф., Онушкин Г.А., Давыдов Д.В., Виолина Г.Н. // ФТП. 2005. Т. 39. В. 3. С. 382.
- [3] Ruddy A.H., Dulloo A.R., Seidel J.G., Seshardi S., Rowland L.B. // IEEE Trans. Nucl. Science. 1998. V. 45. P. 536.
- [4] Bertuccio G., Casiraghi R., Cetronio A., Lanzieri C., Nava F. // Nucl. Instr. & Meth. A. 2004. V. 518. P. 433.
- [5] Калинина Е.В., Коссов В.Г., Строкан Н.Б., Иванов А.М., Яфаев Р.Р., Холуянов Г.Ф. // ФТП. 2006. Т. 40. С. 1123.

- [6] Kalinina E., Strokan N., Ivanov A., Sadohin A., Azarov A., Kossov V., Yafaev R., Lashaev S. // Materials Science Forum. 2007. V. 556–557. P. 941.
- [7] Калинина Е.В., Строкан Н.Б., Иванов А.М., Ситникова А.А., Садохин А., Азаров А., Коссов В.Г., Яфаев Р.Р. // Принято для публикации в ФТП.
- [8] Strel'chuk A.M., Savkina N.S. // Materials Science and Engineering B. 2001. V. 80. P. 378.
- [9] Sumakeris J.J., Bergman J.P., Das M.K., Hallin C., Hull B.A., Janzen E., Lendenmann H., O'Loughlin M.J., Paisley M.J., Ha S., Skowronski M., Palmour J.W., Carter C.H., Jr. // Materials Science Forum. 2006. V. 527–529. P. 141.