01;10 Оптимальное коллимирование пучка заряженных частиц в зондоформирующих системах

© А.Г. Пономарев

Институт прикладной физики НАН Украины, 40030 Сумы, Украина e-mail: ponom@ipflab.sumy.ua

(Поступило в Редакцию 3 октября 2007 г. В окончательной редакции 24 марта 2008 г.)

Представлен подход к определению оптимальных размеров коллиматоров, при помощи которых на входе в зондоформирующую систему формируется исходное фазовое множество пучка заряженных частиц с максимальным объемом. Это позволяет обеспечить фокусировку пучка в пятно на мишени с заданными параметрами и максимальным током. Динамика фазовых множеств рассмотрена с учетом нелинейных эффектов, вызванных аберрациями.

PACS: 41.85.-p, 41.85.Ct, 41.85.Lc, 41.85.Si

Введение

Задача фокусировки пучка заряженных частиц с целью уменьшения в некоторой поперечной плоскости (плоскости мишени) его фазовых линейных или угловых координат возникает в различных областях науки и техники. Это ионные и электронные пушки, которые применяются в пучковой литографии (direct beam writing), приборы вторичной ионной масс-спектрометрии, электронные и ядерные сканирующие микроанализаторы, коллайдеры, где для увеличения вероятности столкновения ускоренных частиц необходимо сфокусировать встречные пучки до минимально возможных поперечных линейных размеров.

Системы, цель которых состоит в концентрации частиц в заданном малом фазовом пятне на мишени, принято называть зондоформирующими системами (ЗФС). При этом системы, создающие пятно с малыми линейными размерами на мишени, в работе [1] называются поперечным зондом или микрозондом, а системы, которые концентрируют все частицы в малом угловом диапазоне — угловым зондом или прожектором. Создание оптимальных ЗФС основывается на стремлении получить не только фазовое пятно минимально возможных размеров, а также призвано обеспечить достаточно высокую плотность частиц в этом фазовом пятне.

Зондоформирующие системы с высокими коэффициентами линейного или углового уменьшения обеспечивают сильную деформацию исходного фазового объема пучка и, как правило, имеют высокие аберрации, которые приводят к уширению фазового пятна. Поэтому зачастую в качестве критерия оптимальности системы выбирают величину соотношения коэффициентов уменьшения и аберраций [2,3], что является необходимым условием, но не достаточным, так как, формируя на входе в ЗФС пучок с фазовым объемом, плохо согласующийся с самой системой, можно получить далеко не оптимальные параметры пучка на мишени. В работе [4] был предложен критерий максимального эмиттанса пучка, который описывает максимальный фазовый объем, трансформируемый ЗФС в пятно на мишени с заданными линейными размерами. Этот подход был применен в работе [5] при оптимизации ЗФС ядерного сканирующего микрозонда на базе электростатического перезарядного ускорителя ЭГП-10.

В настоящей работе предлагается расширение метода максимального эмиттанса для оптимизации ЗФС типа "прожектор". Угловой коллиматор, ограничивающий угловое расхождение частиц пучка, может располагаться произвольно вдоль оптического тракта.

Аксептанс зондоформирующей системы

Традиционные методы расчета оптики зондоформирующих систем состоят, как правило, из двух этапов. На первом определяются значения запитывания активных элементов, призванных обеспечить продольное распределение электромагнитных полей, которые в случае микрозонда создают стигматическую фокусировку пучка в плоскости мишени, а для случая прожектора обеспечивают на выходе из зондоформирующей системы движение частиц пучка параллельно оси системы. Эти вычисления проводятся в первом приближении. На втором этапе вычисляются аберрации ЗФС для данного распределения полей. Однако суждение о качестве зондоформирующей системы можно представить более полно при рассмотрении процесса фокусировки пучка заряженных частиц. В том случае немаловажным является такая характеристика системы, как ее пропускная способность.

На рис. 1 схематически представлена ЗФС, в которой пятно пучка на мишени является некоторой виртуальной апертурой. В этом случае величина максимального фазового объема пучка, который будет трансформирован при помощи ЗФС из плоскости объекта (P_0) в плоскость

Рис. 1. Схематическое изображение зондоформирующей системы с двумя прямоугольными коллиматорами.

мишени (P_t) с заданной величиной проекции на одну из фазовых плоскостей, как известно, называется аксептансом зондоформирующей системы. Для вычисления формы максимального фазового объема пучка и самого аксептанса системы с целью определенности дальнейшего изложения определим фазовые координаты частиц пучка $\varphi(z) = (x, y, x', y')^T$, где x = x(z), y = y(z) — линейные поперечные координаты, определяющие расположение частицы относительно оси пучка z; x' = x'(z), y' = y'(z) — угловые координаты, задающие направление движения частицы относительно оси z.

Стационарное уравнение движения, описывающее эволюцию фазового множества частиц пучка в процессе фокусировки с помощью электрических и магнитных полей, может быть записано в общем виде

$$\frac{d\boldsymbol{\varphi}}{dz} = \mathbf{F}(m, q, \mathbf{B}, \mathbf{E}, \boldsymbol{\varphi}, \delta), \quad \boldsymbol{\varphi}(0) = \boldsymbol{\varphi}_0 \in \mathbf{g}_{\tau}, \quad (1)$$

где *m*, *q* — масса и заряд частицы пучка соответственно, **B** = **B**(*x*, *y*, *z*), **E** = **E**(*x*, *y*, *z*) — распределение векторов магнитного и электрического полей в области прохождения пучка, $\delta = (p - p_0)/p_0$ — разброс частицы пучка по импульсу, определяющий отклонение импульса каждой частицы *p* от его средней величины p_0 , **g**_{τ} — начальное фазовое множество частиц пучка в плоскости объекта.

В силу того что здесь рассматриваются ЗФС, обеспечивающие фокусировку пучков, по своим энергетическим характеристикам близких к монохроматическим, тогда фазовые координаты φ и разброс по импульсу δ являются малыми величинами, по которым правомочно произвести разложение правой части уравнения (1) в ряд по системе линейно независимых степенных функций $x^i y^j x'^k y'^l \delta^m$. Тогда обычно (1) преобразуется к варианту с ограничением рядом порядка малости N

$$\frac{d\boldsymbol{\varphi}}{dz} = \sum_{\substack{i,j,k,l,m\\i+i+k+l+m \le N}} C_{ijklm} x^i y^j x'^k y'^l \delta^m, \quad \boldsymbol{\varphi}(0) = \boldsymbol{\varphi}_0 \in \mathbf{g}_{\tau}, \quad (2)$$

где $\mathbf{C}_{ijklm} = \mathbf{C}_{ijklm}(p_0, \mathbf{E}_0, \mathbf{B}_0, z)$ — векторные коэффициенты ряда, $\mathbf{E}_0 = \mathbf{E}_0(z)$, $\mathbf{B}_0 = \mathbf{B}_0(z)$ — распределение электрического и магнитного полей вдоль оси z соответственно.

Если рассмотреть систему линейно независимых функций $\{x^i y^j x'^k y'^l \delta^m\}$ как обобщенные фазовые координаты, или, как их называют авторы работы [1], фазовые моменты, и применяя процедуру погружения уравнения (2) в пространство фазовых моментов, изложенную в той же работе, можно получить систему линейных дифференциальных уравнений относительно фазовых моментов в виде

$$\frac{d\mathbf{\Phi}}{dz} = \mathbf{P} \cdot \mathbf{\Phi}, \quad \mathbf{\Phi}(0) = \mathbf{\Phi}_0 \in \mathbf{G}_{\tau}, \tag{3}$$

где $\Phi(z) = (x^i y^j x'^k y'^l \delta^m)^T$, $i + j + k + l + m = n \le N$ — фазовые моменты частицы пучка, n —порядок фазовых моментов, $\mathbf{P} = \mathbf{P}(p_0, \mathbf{E}_0, \mathbf{B}_0, z)$ — квадратная матрица, \mathbf{G}_{τ} — начальное множество фазовых моментов в плоскости объекта.

Ниже будут рассмотрены фазовые моменты в виде

$$\Phi = \{\Phi_i\} = (x, x', y, y', x\delta, x'\delta, y\delta, y'\delta, x^2, xx', x'^2, y^2, yy', y'^2, xy, x'y, xy', x'y', x^3, x^2x', xx'^2, x'^3, xy^2, xyy', xy'^2, x'y^2, x'y'^2, y'^3, y'^2, y'^3, y'^3, yx^2, yxx', yx'^2, y'x^2, y'x^2, y'x'^2, y'x'^2, rm e i = 1, \dots, 38,$$
(4)

которые описывают нелинейную динамику фазового множества частиц пучка в зондоформирующих системах с учетом аберраций до третьего порядка (N = 3).

В тех случаях, когда необходимо рассматривать эволюцию некоторого множества, а не одного лишь элемента, эффективно перейти к нахождению матричной функции — матрицанта $\mathbf{R}(\mathbf{P}, z/z_0)$ уравнения (3), такого, что $\mathbf{\Phi}(z) = \mathbf{R}(\mathbf{P}, z/z_0)\mathbf{\Phi}(z_0)$, который позволяет вычислять эволюцию множества фазовых моментов, тогда

$$\frac{d\mathbf{R}}{dz} = \mathbf{P} \cdot \mathbf{R}, \quad \mathbf{R}(z_0/z_0) = \mathbf{I}, \tag{5}$$

где I — единичная матрица.

Фазовые моменты первого порядка представляют собой фазовые координаты, поэтому первые четыре строки матрицанта $\mathbf{R}(\mathbf{P}, z_t/z_0)$ представляют собой коэффициенты уменьшения и аберрации преобразования фазовых координат частицы из плоскости объекта z_0 в плоскость мишени z_t . В дальнейшем предполагается, что матрицант вычислен одним из аналитических или численных методов, изложенных в [1,6].

Теперь обратимся вновь к зондоформирующей системе, схематически изображенной на рис. 1. Пусть необходимо сфокусировать пучок на мишени в квадратное фазовое пятно

$$\begin{aligned} [\max(\Phi_{1+\tau}) - \min(\Phi_{1+\tau})] \\ &\times [\max(\Phi_{3+\tau}) - \min(\Phi_{3+\tau})] = d_{\tau}^2. \end{aligned}$$

где в соответствии с (4) при $\tau = 0$ ЗФС является микрозондом, а при $\tau = 1$ — прожектором, соответственно d_{τ}

Рис. 2. Проекции на фазовые плоскости xx' и yy' максимального проходимого фазового объема пучка в магнитной квадрупольной зондоформирующей системе: a, b — для случая микрозонда (\mathbf{g}_0) при транспортировке его на мишень в квадратное пятно с $d_0 = 1 \,\mu$ m; c, d — для случая прожектора (\mathbf{g}_1) при транспортировке его на мишень в квадратное угловое пятно с $d_1 = 0.01$ mrad. Контуры в виде параллелограммов на рисунках ограничивают проекции максимального фазового объема пучка, сформированного с помощью двух коллиматоров.

имеет линейную или угловую размерность. Необходимо при этом решить обратную задачу по определению проходимого максимального фазового объема пучка \mathbf{g}_{τ} и аксептанса ЗФС a_{τ} с заданным фазовым размером пятна на мишени d_{τ} , такого, что

$$\mathbf{g}_{\tau} = \{(x_0, y_0, x_0', y_0') \mid |T_{\tau x}(x_0, y_0, x_0', y_0', \delta, z_t)| \le d_{\tau},\$$

$$|T_{\tau y}(x_0, y_0, x'_0, y'_0, \delta, z_t)| \le d_{\tau}, \left(T_{0x}(x_0, y_0, x'_0, y'_0, \delta, z_a)\right)^2 + \left(T_{0y}(x_0, y_0, x'_0, y'_0, \delta, z_a)\right)^2 \le r_a^2, |\delta| \le \delta_{\max}\},$$
(6)

где

$$T_{\tau x}(x_0, y_0, x'_0, y'_0, \delta, z) = \sum_{j=1}^{38} R_{1+\tau, j}(\mathbf{P}, z/z_0) \Phi_{0j},$$
$$T_{\tau y}(x_0, y_0, x'_0, y'_0, \delta, z) = \sum_{j=1}^{38} R_{3+\tau, j}(\mathbf{P}, z/z_0) \Phi_{0j}$$

— преобразование фазовых координат из плоскости z_0 в плоскость z; $z_a \in [z_1, z_2]$ — область ионопровода с радиусом апертуры r_a , проходящего внутри активных

оптических элементов (рис. 1); z_t — координата плоскости мишени.

Для иллюстрации вычислений была выбрана несколько модифицированная зондоформирующая система на базе квадруплета магнитных квадрупольных линз из работы [7], которая рассмотрена в режимах микрозонда ($\tau = 0$) и прожектора ($\tau = 1$) и имеет следующие основные геометрические и ионно-оптические параметры:

$$z_1 - z_0 = 280 \text{ cm}, \quad z_t - z_2 = 12 \text{ cm}, \quad z_t - z_0 = 406 \text{ cm},$$
(7)

коэффициенты уменьшения

$$(\tau = 0): D_x = 1/\langle x/x \rangle = D_y = 1/\langle y/y \rangle = 68.6,$$

$$(\tau = 1): A_x = 1/\langle x'/x \rangle = A_y = 1/\langle y'/y \rangle = 2425 \,\mu\text{m/mrad},$$

хроматические аберрации

$$(\tau = 0): \langle x/x'\delta \rangle = -959, \langle y/y'\delta \rangle = -175 \,\mu\text{m/mrad}/\%,$$

$$(\tau = 1): \langle x'/x'\delta \rangle = -0.27,$$

$$\langle y'/y'\delta \rangle = -0.32 \,\text{mrad/mrad}/\%,$$

сферические аберрации

$$\begin{aligned} (\tau = 0) : \langle x/x'^3 \rangle &= 8350, \, \langle x/x'y'^2 \rangle = 1459, \\ \langle y/y'^3 \rangle &= 129, \, \langle y/y'x'^2 \rangle = 1459 \, \mu \text{m/mrad}^3, \\ (\tau = 1) : \langle x'/x'^3 \rangle &= 0.023, \, \langle x'/x'y' \rangle = 0.039, \\ \langle y'/y'^3 \rangle &= 0.041, \, \langle y'/y'x'^2 \rangle = 0.039 \, \text{mrad/mrad}^3. \end{aligned}$$

На рис. 2 показаны проекции максимальных фазовых объемов пучка \mathbf{g}_0 (рис. 2, *a*, *b*) и \mathbf{g}_1 (рис. 2, *c*, *d*) в плоскости объектного коллиматора при максимальном относительном разбросе частиц по импульсу $\delta_{\text{max}} = 2.5 \cdot 10^{-4}$,

Рис. 3. *а* — Сечения максимального проходимого фазового объема пучка в случае микрозонда. В каждом из прямоугольников представлена одинаково масштабированная форма сечения фазового объема $\mathbf{g}_0(y_i, y'_j) = \{x, x' | y_i - -\Delta y/2 < y < y_i + \Delta y/2, y'_j - \Delta y'/2 < y' < y'_j + \Delta y'/2\}, где <math>\Delta y, \Delta y'$ определяют толщину сечения по данной фазовой координате; *b* — форма сечения $\mathbf{g}_0(y_5, y'_5)$.

Рис. 4. a — то же, что и на рис. 3, a, в случае прожектора. b — форма сечения $g_1(y_5, y'_5)$.

каждый их которых с помощью магнитной квадрупольной зондоформирующей системы с параметрами (7) преобразуется в плоскости мишени для случая микрозонда (\mathbf{g}_0) в квадратное пятно с $d_0 = 1\,\mu$ m, а для случая прожектора (\mathbf{g}_1) — в квадратное угловое пятно с $d_1 = 0.01$ mrad. При этом число частиц $n = 10^6$ распределено в фазовом объеме равномерно случайным образом.

Форма фазовых объемов g_0 и g_1 имеет сложный вид, что подтверждает вид их сечений, показанный на рис. 3 и 4 соответственно.

Величина фазового объема, или аксептанс зондоформирующей системы, в случае микрозонда составил $a_0 = \operatorname{vol}(\mathbf{g}_0) = 360 \,\mu \mathrm{m}^2 \mathrm{mrad}^2$, а в случае прожектора $a_1 = \operatorname{vol}(\mathbf{g}_1) = 3250 \,\mu \mathrm{m}^2 \mathrm{mrad}^2$. Для рис. 3 и 4 уместным будет более детальное пояснение относительно того, что они представляют. Здесь представлены 64 сечения каждого из фазовых объемов $\mathbf{g}_0(y_i, y'_j)$ (рис. 3, *a*) и $\mathbf{g}_1(y_i, y'_j)$ (рис. 4, *a*), где $i, j = 1, \ldots, 8$. В каждом из прямоугольников на плоскости yy' показана форма сечения xx'. Масштаб каждого прямоугольника одинаков (сделана выноска на рис. 3, *b* и 4, *b*), это позволяет судить о форме четырехмерных фазовых объемов \mathbf{g}_0 и \mathbf{g}_1 .

Формирование пучка на входе в зондоформирующую систему

В системах транспортировки пучков, где нелинейные эффекты, связанные с аберрациями, пренебрежимо малы, вид максимального проходного фазового объема имеет простую форму в виде эллипса или параллелограмма. Как было показано выше, вид максимального проходного фазового объема в зондоформирующих системах имеет сложную форму, в случае квадрупольных систем, когда движения в *x* и *y* направлениях взаимосвязаны, фазовый объем является четырехмерным. Поэтому создание оптической системы, которая бы сформировала пучок с фазовым объемом максимально согласованным с ЗФС, очень сложная задача.

Традиционные методы формирования пучка на входе в ЗФС основываются на применении системы коллиматоров или круглых апертур. Для однозначного задания фазового пространства пучка применяются как минимум два коллиматора (рис. 1). Первый коллиматор располагается в объектной плоскости P_0 , второй имеет произвольное расположение вдоль оптического тракта (может располагаться в межлинзовых промежутках) в плоскости P_A и выполняет функцию ограничения углового направления движения частиц.

Оптимальное коллимирование пучка с целью получения максимального тока в фиксированном пятне на мишени может быть описано следующим образом. Необходимо определить размеры коллиматоров и их взаимное расположение, в результате чего будет сформирован (вырезан) фазовый объем пучка, который будет иметь максимальную величину и будет вписан в максимальный проходимый фазовый объем ЗФС. Задача оптимального коллимирования пучка в зондоформирующих системах может быть формализована в виде

$$a_{\tau c}^{*} = \max_{r_{x}, r_{y}, R_{x}, R_{y}, z_{A}} (a_{\tau c}),$$
(8)

 $a_{\tau c} = \operatorname{vol}(\mathbf{g}_{\tau c}),$

$$\begin{aligned} \mathbf{g}_{rc} &= \{ (x_0, y_0, x'_0, y'_0) \mid |x_0| < r_x, \ |y_0| < r_y, \\ &| T_{\tau x}(x_0, y_0, x'_0, y'_0, \delta, z_t) \mid \leq d_{\tau}, \\ &| T_{\tau y}(x_0, y_0, x'_0, y'_0, \delta, z_t) \mid \leq d_{\tau}, \\ &\left(T_{0x}(x_0, y_0, x'_0, y'_0, \delta, z_a) \right)^2 \\ &+ \left(T_{0y}(x_0, y_0, x'_0, y'_0, \delta, z_a) \right)^2 \leq r_a^2, \\ &| T_{0x}(x_0, y_0, x'_0, y'_0, \delta, z_A) \mid \leq R_x, \\ &| T_{0y}(x_0, y_0, x'_0, y'_0, \delta, z_A) \mid \leq R_y, \quad |\delta| \leq \delta_{\max} \}, \end{aligned}$$

где z_A — координата расположения углового коллиматора; $a_{\tau c}^*$ — величина максимального фазового объема пучка $\mathbf{g}_{\tau c}$, сформированного при помощи двух прямоугольных коллиматоров (см. рис. 1), который будет трансформирован с помощью ЗФС в плоскости мишени в квадратное пятно с фазовым размером d_{τ} .

Для случая, когда $z_0 < z_A < z_1$, решение задачи (7) реализовано в численном коде MAXBEMIT, алгоритм которого изложен в работе [4]. Расчет оптимальных размеров коллиматоров для 3ФС с параметрами, представленными в (7), при $z_A = z_1$ для создания микрозонда с размерами пятна на мишени $d_0 = 1 \,\mu$ m дает результаты: $r_x = 11.5$, $r_y = 21$, $R_x = 43.5$, $R_y = 125.4 \,\mu$ m, что при $z_A - z_0 = 280$ cm соответствует коллимированному аксептансу $a_{0c}^* = 2.7 \,\mu$ m²mrad², а в случае прожектора с размерами фазового пятна на мишени $d_1 = 0.01$ mrad дает результаты: $r_x = 7.4$, $r_y = 7.4$, $R_x = 592$, $R_y = 436 \,\mu$ m, что соответствует коллимированному аксептансу $a_{1c}^* = 33.1 \,\mu$ m²mrad².

Проекции начального коллимированного фазового объема показаны на рис. 2 в виде ограничивающих контуров, имеющих форму параллелограмма. Стоит отметить, что в соответствии с (6) и (8) подход в определении максимального и коллимированного аксептанса для микрозонда и прожектора отличается типом используемых аберраций. Для микрозонда — это линейные аберрации $\langle x/x^i x'^j y^k y'^m \delta^n \rangle$, а для прожектора — угловые $\langle x'/x^i x'^j y^k y'^m \delta^n \rangle$. Важным является также то, что для микрозонда выполняется условие $\langle x/x' \rangle = \langle y/y' \rangle = 0$, а для прожектора — $\langle x'/x' \rangle = \langle y'/y' \rangle = 0$.

Сравнение величин полного аксептанса a_0 и a_1 с коллимированным a_{0c}^* и a_{1c}^* показывает, что последние меньше первых на два порядка. Это говорит о принципиальной невозможности удовлетворительного согласования нелинейной системы (ЗФС) с лиейной (системой коллиматоров). Построение зондоформирующих систем с более высокими коэффициентами уменьшения, в которых значительно возрастают коэффициенты аберраций, еще более ухудшает возможность согласования линейной системы формирования начального фазового объема (системы коллиматоров) с ЗФС. Применение корректоров аберраций есть не что иное, как стремление уменьшить степень нелинейности ЗФС и тем самым наилучшим образом согласовать линейную систему начального формирования фазового объема с зондоформирующей системой. Однако коррекция одних аберраций приводит к значительному росту других, поэтому необходимо принимать этот факт в расчет.

Заключение

Рассмотрена динамика фазовых множеств в зондоформирующих системах на основе представления решения уравнения движения заряженных частиц в электромагнитных полях оптических элементов в виде матричной функции преобразования фазовых координат частиц пучка. Формализованы задачи отыскания максимального и коллимированного аксептансов зондоформирующей системы в режимах поперечного и углового зондов.

Показано, что коллимированный аксептанс магнитной квадрупольной зондоформирующей системы в режимах поперечного и углового зонда на два порядка мешьше ее максимального аксептанса. Это связано с плохим согласованием линейной системы формирования исходного фазового множества (системы коллиматоров) с зондоформирующей системой, которая является нелинейной.

Список литературы

- [1] Дымников А.Д., Осетинский Г.М. // Физика элементарных частиц и атомного ядра. 1989. Т. 20. Вып. 3. С. 694.
- [2] Ryan C.G., Jamieson D.N. // Nucl. Instr. and Meth. B. 1999.
 Vol. 158. P. 97.
- [3] Shariff A., Auzelyte V., Elfman M. et al. // Nucl. Instr. and Meth. B. 2005. Vol. 231. P. 1.
- [4] Ponomarev A.G., Miroshnichenko V.I., Storizhko V.E. // Nucl. Instr. and Meth. A. 2003. Vol. 506. P. 20.
- [5] Абрамович С.Н., Завьялов Н.В., Звенигородский А.Г. н др. // ЖТФ. 2005. Т. 75. Вып. 2. С. 6.
- [6] Мордик С.Н., Пономарев А.Г. // ЖТФ. 2001. Т. 71. Вып. 4. С. 105.
- [7] Storizhko V.E., Ponomarev A.G., Rebrov V.A. et al. // Nucl. Instr. and Meth. B. 2007. Vol. 260. P. 49.

116