01;03;05;11 Теоретическое определение адгезионных свойств материалов для жидкометаллического бланкета термоядерного реактора

© И.В. Витковский,¹ А.Н. Конев,¹ В.С. Шоркин²

¹ Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова,

196641 Санкт-Петербург, Россия ² Орловский государственный технический университет, 302020 Орел, Россия e-mail: vitkoviv@sintez.niiefa.spb.su

(Поступило в Редакцию 31 марта 2008 г.)

Разработана методика расчета поверхностной энергии и энергии адгезии однокомпонентных и многокомпонентных конструкционных материалов. В основу методики положена модель второго порядка для сплошной упругой среды, основанная на предположении о парном потенциальном взаимодействии ее частиц.

Приведены результаты расчета поверхностной энергии однокомпонентных и многокомпонентных материалов, а также энергии адгезии многослойных систем материалов, перспективных для изготовления элементов жидкометаллических бланкетов термоядерных реакторов.

Для сплава V-nCr-mTi, являющегося основой "литий-ванадиевого" бланкета, проанализировано влияние соотношения компонентов на адгезионные характеристики в многослойной конструкции.

PACS: 02.70.-c, 68.35.-p

Введение

Проблема создания жидкометаллического бланкета термоядерного реактора, отвечающего всем необходимым требованиям, связана, в частности, с отсутствием технологии получения электроизоляционного (антикоррозионного) барьера на границе жидкий металл-конструкционный материал [1,2].

Как известно, в качестве конструкционного материала литиевого бланкета предлагается использовать сплавы V–(4–5)Cr–(4–5)Ti, V–5Cr–10Ti, а из электроизоляционных материалов наиболее приемлемыми являются нитрид алюминия (AlN), окись иттрия (Y_2O_3) или окись эрбия (Er_2O_3).

Для обеспечения приемлемой адгезии между конструкционными и электроизоляционными материалами наиболее подходящими являются молибден (Mo) или хром (Cr).

В литий-свинцовом бланкете одним из возможных конструкционных материалов является EUROFER 97, который со стороны теплоносителя предполагается защищать слоем оксида алюминия или карбидом вольфрама [3].

Отметим, что несмотря на немногочисленность возможных вариантов композиций из упомянутых материалов, они практически не исследовались с позиции формирования оптимального варианта многослойного электроизоляционного барьера.

Одной из причин, породивших такую ситуацию, является отсутствие полного набора данных по адгезионным свойствам материалов.

Настоящая работа посвящена разработке методики расчета и определению таких свойств для одно- и многокомпонентных материалов, с акцентом на матери-

алы, необходимые для изготовления проточных частей самоохлаждаемого бланкета термоядерного реактора.

1. Расчетная модель

В основе процессов формирования поверхностной энергии и энергии адгезии лежат электрические явления [4–6]. Однако существующие методы расчета поверхностной энергии и энергии адгезии, основанные на учете этого [6,7], не позволяют применять их для материалов сложного химического состава и структуры. Связана эта особенность с несогласованностью процессов изменения плотности распределения электрических зарядов разных знаков под влиянием внешних факторов [6], которая выражается в изменении межьядерных расстояний при деформации среды, а также с тем, что гипотетически вводимые упругие силы только моделируют реально действующие электрические силы.

В настоящей работе принято, что поверхностная энергия и энергия адгезии равны энергии упругих деформаций, возникающих при образовании свободной поверхности и вступлении тел в адгезионный контакт.

Методики расчета поверхностной энергии и энергии адгезии однокомпонентных материалов разработы в [8,9], они основаны на модели среды, предложенной в [10]. В этой модели используются классические коэффициенты Ламе: μ и λ , а также некие константы b и π_0 , характеризующие механические свойства среды. Однако упомянутая модель не учитывает потенциального взаимодействия элементарных частиц материала.

В работе [11] предложена более общая модель, основанная на предположении о парном, потенциальном взаимодействии элементарных частиц среды. При этом потенциал взаимодействия пропорционален объемам частиц, а коэффициент пропорциональности (далее потенциал Φ) зависит от расстояния между частицами $\alpha = |\boldsymbol{\alpha}|$; $\Phi = \Phi(\alpha)$. (Здесь $\boldsymbol{\alpha}$ — радиус-вектор одной частицы относительно другой.)

Указанное предположение позволило представить плотность энергии упругих деформаций *w*, возникающих при внешнем воздействии на среду в виде

$$w = \int_{0}^{\nabla^{m} \mathbf{u}} P^{(m)T} \cdot \ldots \cdot d(\nabla^{m} \mathbf{u}) = \sum_{m=1}^{\infty} P^{0(m)T} \cdot \ldots \cdot (\nabla^{m} \mathbf{u}) + \frac{1}{2} \sum_{m,n=1}^{\infty} (\nabla^{n} \mathbf{u})^{T} \cdot \ldots \cdot C^{(m,n)T} \cdot \ldots \cdot (\nabla^{m} \mathbf{u}), \quad (1)$$

которая является работой обобщенных внутренних сил на обобщенных перемещениях [11]. Здесь

$$P^{(m)} = \frac{\partial w}{\partial (\nabla^m \mathbf{u})} = P^{0(m)} + \sum_{n=1}^{\infty} C^{(m,n)T} \cdot \ldots \cdot (\nabla^n \mathbf{u}), \quad (2)$$

где

$$P^{0(m)} = (-1)^{m+1} \int \nabla \Phi(\alpha) \,\boldsymbol{\alpha}^m dV; \qquad (3)$$

$$C^{(m,n)} = \frac{(-1)^{m+n+1}}{n!\,m!} \int \boldsymbol{\alpha}^n \big(\nabla^2 \Phi(\alpha)\big) \boldsymbol{\alpha}^m dV; \qquad (4)$$

 $\nabla^m \mathbf{u}$ — градиент порядка *m* вектора перемещений **u** материальной частицы при деформации среды, являющийся обобщенным перемещением для обобщенной силы P^m ; ∇ — оператор Гамильтона; $P^{(m)}$ и $P^{0(m)}$ — тензоры напряжений и начальный напряжений соответственно; $C^{(m,n)}$ — тензоры, характеризующие механические свойства материала; верхний индекс «*T*» означает операцию транспонирования; символ «·» означает свертку (скалярное произведение); $\boldsymbol{a}^n, \boldsymbol{a}^m$ — внешние степени вектора \boldsymbol{a} ; dV — элементарный объем. При этом потенциал взаимодействия частиц среды $\Phi(\alpha)$ в выражениях (3) и (4) определяется либо на основании опытных данных, либо расчетным путем, например, на основании положений физики твердого тела [12].

Для определения конкретных значений $P^{0(m)}$ и $C^{(m,n)}$ вид функции потенциала взаимодействия частиц $\Phi(\alpha)$ примем в виде

$$\Phi(\alpha) = D(e^{-2\beta\alpha} - 2e^{-\beta\alpha}), \tag{5}$$

являющемся аналогом функции, описывающей потенциальную энергию взаимодействия атомов, потенциалом Морзе [13]

$$\varphi(s) = \varepsilon \left(e^{-2\beta_0(s-1)} - 2e^{-\beta_0(s-1)} \right). \tag{6}$$

Здесь D — параметр, определяющий энергию взаимодействия частиц; β_0, β — коэффициенты пропорциональности; s — расстояние между взаимодействующими атомами; l — среднее межатомное расстояние; ε — энергия взаимодействия атомов в равновесном состоянии (при s = l).

Нетрудно видеть, что в предположении $\Phi(\alpha) \sim \varphi(s)$ выполняется равенство $\beta = \beta_0$, что, по нашему мнению, может использоваться в практических расчетах.

Допуская, что обобщенная внутренняя сила $P^{(m)}$ определятся только тензорами $P^{0(2)}$, $C^{(1,1)}$ и $C^{(2,2)}$, так как:

 остальные слагаемые не учитываются, потому что входящие в них градиенты перемещений порядка *m* > 2 пренебрежимо малы;

— внутренняя сила $P^0(2)$ совершает работу на обобщенном перемещении $\nabla^2 \mathbf{u}$, характеризующем неравномерность деформации, что свойственно приграничным слоям материала;

— $C^{(1,1)}$ характеризует классические механические свойства среды;

— $C^{(2,2)}$ характеризует способность материала противодействовать развитию неравномерности деформации, и, кроме того, полагая, что возникающие при адгезионном контакте процессы являются одномерными, зависящими только от координаты x_l , отсчитываемой вдоль нормали в глубину тела от его границы, выражение (1) преобразуется к удобному для практического применения виду:

$$w = \pi_0 \left(\frac{d^2 u_1}{dx_1^2}\right) + \frac{1}{2} (2\mu + \lambda) \left(\frac{du_1}{dx_1}\right)^2 + \frac{1}{2} (2\mu + \lambda) b^2 \left(\frac{d^2 u_1}{dx_1^2}\right)^2.$$
(7)

Здесь

$$\pi_0 = P_{111}^{0(2)} = -\frac{\pi}{2} \int_0^\infty \frac{d\Phi}{d\alpha} \, \alpha^4 d\alpha = \frac{2\mu}{\beta}; \tag{8}$$

$$b^{2} = \frac{C_{11111}^{(2,2)}}{C_{1111}^{(1,1)}} = s(\beta)l^{2};$$
(9)

 $C_{1111}^{(1,1)}$, $C_{111111}^{(2,2)}$ — проекции тензоров $C^{(1,1)}$ и $C^{(2,2)}$ на направление оси Ox_1 , определяемые выражениями:

$$C_{1111}^{(1,1)} = -\frac{4\pi}{5} \int \frac{d^2 \Phi}{d\alpha^2} \alpha^4 d\alpha;$$

$$C_{111111}^{(2,2)} = -\frac{15\pi}{56} \int_{0}^{\infty} \frac{d^2 \Phi}{d\alpha^2} \alpha^6 d\alpha;$$
 (10)

$$s(\beta) = \frac{1}{12} \frac{\sum_{p=1}^{\infty} C_p(\beta) p^4}{\sum_{p=1}^{\infty} C_p(\beta) p^2},$$
(11)

где

$$C_p(\beta) = \frac{d^2\varphi}{ds^2}\Big|_{s=pl}; \quad p \in Z.$$
 (12)

Журнал технической физики, 2009, том 79, вып. 2

Параметр β определяется как решение уравнения

$$\beta = \frac{45}{4} \frac{1}{l\sqrt{s(\beta)}}.\tag{13}$$

Заметим, что при построении соотношений (9), (11) использованы также выражения, полученные в работе [11], а в качестве l предлагается использовать величину

$$l = \frac{1}{\sqrt[3]{n}},\tag{14}$$

где *n* — число атомов вещества в единице объема.

Этот выбор объясняется необходимостью применения предлагаемых теоретических рассуждений в практических расчетах характеристик сложных по составу материалов.

2. Расчет поверхностной энергии тел из однокомпонентных материалов

Аналогично [9] предварительно считаем, что тела, для которых вычисляется поверхностная энергия, являются сплошными, полубесконечными, занимающими область $0 \le x_1 \le +\infty; -\infty \le x_2, x_3 \le +\infty$. Поверхностная энергия для таких тел определяется выражением, предложенным в [8]:

$$W_p^0 = \int_0^\infty w(x_1) dx_1 = \frac{3\pi_0^2}{2b(2\mu + \lambda)}.$$
 (15)

В интеграле (15) верхний предел принят равным бесконечности, хотя расчет показывает [8], что плотность изменения внутренней потенциальной энергии $w(x_1)$, вызванного наличием свободной границы, практически равна нулю уже на расстоянии $x_1 = b$ от свободной границы.

В работе [14] отмечено, что вблизи свободной поверхности, в случае, если не нарушается ее целостность, развиваются превышающие предел прочности, растягивающие материалы напряжения:

$$\sigma_2(x_1) = P_{22}^{(1)} = \lambda \frac{du_1}{dx_1} = \frac{\pi_0}{b(2\mu + \lambda)} e^{-\frac{x_1}{b}}.$$
 (16)

Напряжения быстро убывают по мере удаления от граничной поверхности. Их наличие приводит к появлению сети микротрещин глубиной

$$h = b \ln\left(\frac{16\nu}{5(1-\nu^2)}\right),$$
 (17)

определяемой с применением равенства

$$\frac{\pi_0}{b(2\mu+\lambda)} e^{-\frac{x_1}{b}} = \sigma_{\max}.$$
 (18)

Здесь $\sigma_{\rm max}$ — теоретическое значение предела прочности, имеющего порядок $\sigma_{\rm max} \approx \frac{E}{5}$. Если оказывается, что

его левая часть меньше правой при любых значениях глубины, то принимается, что глубина равна нулю. Раскол поверхностного слоя по такой микротрещине приводит к сосредоточению на ее берегах поверхностной энергии с той же плотностью W_p^0 , что и плотность распределения поверхностной энергии у свободной границы.

Предполагается, что поперечное сечение микротрещины — клин с углом раствора, равным 2α . Этот угол определяется из предположения о том, что упругая энергия, сосредоточенная на единице длины в области с сечением, совпадающим с сечением микротрещицы, полностью распределяется на боковых сторонах микротрещицы, и может быть вычислен на основании формулы

$$\sin \alpha = \frac{1}{3} \left[3 - \frac{1}{2} e^{-\frac{2\hbar}{b}} - e^{-\frac{\hbar}{b}} - \frac{1}{2} \cdot \frac{1 - e^{-\frac{2\hbar}{b}}}{\left(\frac{2\hbar}{b}\right)} - \frac{1 - e^{-\frac{\hbar}{b}}}{\left(\frac{\hbar}{b}\right)} \right]. \tag{19}$$

Край микротрещины свободен от напряжений. Напряжения, растягивающие материал вдоль граничной поверхности, перпендикулярный соседним микротрещинам, по мере удаления от них возрастают от нуля до значения, имеющего порядок предела прочности и не превышающего его. Значит, расстояние между ближайшими микротрещинами: $h_s \approx 2b$. Поверхность, концентрирующая возле себя энергию, увеличивается в γ раз:

$$\gamma = 2\left(\frac{h}{b\cos\alpha}\right) + 1.$$
 (20)

Таким образом, энергия, приведенная к единице площади боковой поверхности, вычисляется по формуле

$$W_p = \gamma W_p^0 = \frac{3\gamma \pi_0^2}{2b(2\mu + \lambda)}.$$
 (21)

Результаты расчета величины W_p по формуле (21) с использованием выражений (8)–(12) для ряда материалов представлены в табл. 1. Здесь и далее EUROFER 97 обозначен как EF 97. Там же представлены результаты экспериментов из [15,16] и результаты расчетов, полученные по выражению из [8]:

$$W_p = 8E \cdot 10^{-12} \left[\frac{\mathrm{J}}{\mathrm{m}^2}\right]. \tag{22}$$

Здесь связь между параметрами Ламе: λ, μ — с одной стороны, и модулем Юнга *E* и коэффициентом Пуассона ν — с другой, определяется зависимостями [17]:

$$\mu = \frac{E}{2(1+\nu)}, \quad \lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}.$$
 (23)

Сопоставление данных по поверхностной энергии, вычисленных разными способами, с ее значениями, имеющимися в справочной литературе, свидетельствует о том, что эти значения соизмеримы: кроме того, заметна их корреляция.

Журнал технической физики, 2009, том 79, вып. 2

	-	-					
N₂	Материал	Характери	истики матер	W_p , J/m ²			
		$E \cdot 10^{-11}$, Pa	ν	$n \cdot 10^{-28} \cdot 1/m^3$	расчетна	[11 12]	
				<i>n</i> · 10 , 1/m	(22)	(21)	[11,12]
1	V	1.70	0.36	7.22	1.36	1.2	2.52
2	Cr	2.87	0.21	8.33	2.3	2.34	4.72
3	Ti	1.03	0.2	5.66	0.82	0.97	1.7
4	Mo	3.3	0.31	6.42	2.64	2.39	2.2
5	Nb	1.25	0.39	5.56	1.00	0.9	2.1
6	Ni	2.2	0.35	9.14	1.76	1.46	1.86
7	Pb	0.016	0.45	3.3	0.13	0.084	0.59
8	W	3.75	0.3	6.3	3	2.67	2.9
9	Та	1.9	0.35	5.55	1.52	1.49	2.68
10	Al	0.7	0.33	6.01	0.56	0.53	1.14
11	Be	3	0.03	12.1	2.40	3.32	1
12	Os	5.57	0.28	7.14	4.60	3.85	
13	Ir	5.55	0.28	7.06	4.44	3.73	
14	Со	2.06	0.32	8.97	1.65	1.36	1.97
15	Au	0.8	0.4	5.9	0.64	0.54	1.14
16	Cu	1.2	0.38	8.45	0.96	0.77	1.01
17	Fe	2	0.28	8.5	1.6	1.26	2.2
18	AlN	3.08	0.25	9.58	2.46	2.09	
19	Y_2O_3	1.32	0.27	6.41	1.06	0.97	
20	Er_2O_3	2.5	0.25	6.75	2	1.9	
21	SiC	5	0.45	9.55	4	1.83	
22	Al_2O_3	3	0.21	11.41	2.40	2.18	
23	EF 97	1.6	0.31	8.2	1.28	1.07	

Таблица 1. Поверхностная энергия и энергия адгезии

3. Расчет адгезионных характеристик

Расчет адгезионных характеристик многокомпонентных материалов (сплавов и соединений) предлагается проводить на основании соотношений, полученных в [8] для однокомпонентных материалов. При этом коэффициенты Ламе и средние межатомные расстояния многокомпонентных материалов могут быть вычислены с учетом следующих допущений:

материал является однородным и изотропным;

— занятый материалом объем V равен сумме объемов его компонент V_n ;

— плотность материала ρ равна сумме произведений плотностей его компонент ρ_n на их массовые одли k_n ;

— энергия упругих деформаций сплава dW = w dV, заключенная в его элементарном объеме dV, равна сумме энергий $dW_n = w_n dV_n = w_n q_n dV$ составляющих его компонент, содержащихся в объеме dV_n , где $q_n = k_n \frac{\rho_n}{\rho}$.

Тогда в соответствии с [18] коэффициенты Ламе λ и μ для сплава определяются выражениями

$$\mu = \sum_{n=1}^{N} q_n \mu_n; \quad \lambda = \sum_{n=1}^{N} q_n \lambda_n, \quad (24)$$

где N — количество компонент сплава.

Для химических соединений коэффициенты Ламе и средние межатомные расстояния могут быть определены по справочным данными.

При отсутствии справочных данных коэффициенты Ламе следует определять экспериментально, а межатомные расстояния могут быть определены как средневзвешенные величины межатомных расстояний, входящих в состав вещества элементов.

В табл. 2 представлены данные расчета площади относительно контакта α (левая нижняя область) и энергии адгезии *F* (правая верхняя область) различных сочетаний одно- и многокомпонентных материалов.

Нетрудно видеть, что по адгезионным свойствам оксид иттрия заметно уступает рассматриваемым далее нитриду алюминия и оксиду эрбия. Что касается данных для EUROFER 97, то они также свидетельствуют о том, что для улучшения адгезионных характеристик между ним и Al₂O₃ желателен промежуточный слой из молибдена или хрома.

Для определения приемлемого с точки зрения адгезионных характеристик соотношения компонент в сплаве V–nCr–mTi — возможного конструкционного материала проточной части литиевого бланкета термоядерного реактора — проведены расчеты зависимостей энергии адгезии и относительной площади контакта от содержания хрома и титана в сплаве V–nCr–mTi.

Зависимости энергии адгезии и площади относительного контакта для сочетаний V-nCr-4Ti с молибденом, хромом, оксидом эрбия и нитридом алюминия от про-

N₂	F , J/m ² α	1	2	3	4	5	6	7	8	9	10	11
1	VCrTi	2.47 1	3.18	2.85	2.19	2.82	2.72	3.07	2.3	1.59	2.67	2.77
2	Мо	0.83	4.78 1	4.47	3.06	4.45	4.29	3.72	3.06	2.22	3.51	4.39
3	Cr	0.72	0.93	4.69 1	2.69	4.30	4.06	3.38	2.72	2.07	3.12	4.52
3	Y_2O_3	0.99	0.88	0.74	1.94 1	2.68	2.57	2.78	2.03	1.3	2.43	2.61
5	AlN	0.79	0.99	0.96	0.83	4.18 1	3.98	3.36	2.7	1.95	3.12	4.2
6	Er ₂ O ₃	0.82	1	0.94	0.86	1	3.81 1	3.27	2.59	1.84	3.02	3.96
7	SiC	1	0.84	0.74	0.99	0.81	0.83	3.67 1	2.9	2.14	3.26	3.3
9	EF 97	1	0.84	0.72	1	0.8	0.83	1	2.14 1	1.42	2.51	2.64
9	Al	0.86	0.66	0.60	0.82	0.64	0.65	0.87	0.85	1.07 1	1.72	1.79
10	Ni	0.99	0.88	0.76	1	0.84	0.87	0.99	0.99	0.82	2.91 1	3.05
11	Al ₂ O ₃	0.74	0.95	1	0.76	0.98	0.96	0.76	0.74	0.61	0.78	4.37 1
	-							-				

Таблица 2. Энергия адгезии F и относительная площадь контакта α для различных пар материалов

центного содержания хрома в сплаве представлены на рис. 1, 2. Очевидно заметное влияние содержания хрома на адгезионные свойства различных комбинаций материалов. Увеличение содержания хрома в сплаве V–*n*Cr–4Ti от 0 до 14% приводит к практически линейному росту энергии адгезии и площади относительного контакта до 10%.

Что касается влияния содержания титана в сплаве V-4Cr-*m*Ti на те же характеристики, то полученные нами расчетные данные (графики не приводятся) сви-

детельствуют о том, что рост содержания титана от 0 до 14% в сплаве V-4Cr-*m*Ti приводит к незначительному снижению энергии адгезии и площади относительного контакта.

Сравнение адгезионных характеристик сплавов V– 4Cr–4Ti и V–5Cr–10Ti показывает, что по этим параметрам сплавы являются достаточно близкими, а значения энергии адгезии и площади относительного контакта с рядом веществ, представленные в табл. 3, практически совпадают.

Рис. 1. Зависимость энергии адгезии между различными материалами и сплавом V–nCr–4Ti от содержания в нем хрома: I - (V-nCr–4Ti)–Mo; 2 - (V-nCr–4Ti)–Cr; 3 - (V-nCr–4Ti)–AlN; 4 - (V-nCr–4Ti)–Er₂O₃.

Рис. 2. Зависимость площади относительного контакта между различными материалами и сплавом V–nCr–4Ti от содержания в нем хрома: I - (V-nCr–4Ti)–Mo; 2 - (V-nCr–4Ti)–Cr; 3 - (V-nCr–4Ti)–AlN; 4 - (V-nCr–4Ti)–Er₂O₃.

	Вещество										
Сплав	Cr	Мо	AlN	Y_2O_3	Er_2O_3	Os	Ir	Al ₂ O ₃	SiC		
_					F, J/m ²						
V–4Cr–4Ti V–5Cr–10Ti	2.852 2.851	3.179 3.182	2.823 2.823	2.192 2.186	2.721 2.722	3.943 3.945	3.870 3.872	2.767 2.766	3.071 3.062		
	α										
	Cr	Mo	AlN	Y_2O_3	$\mathrm{Er}_{2}\mathrm{O}_{3}$	Os	Ir	Al_2O_3	SiC		
V-4Cr-4Ti V-5Cr-10Ti	0.719 0.721	0.832 0.836	0.794 0.797	0.991 0.993	0.818 0.822	0.687 0.670	0.693 0.696	0.737 0.740	1		

Таблица 3. Сравнение адгезионных характеристик сплавов V-4Cr-4Ti и V-5Cr-10Ti

Заключение

Полученные соотношения позволяют рассчитывать адгезионные характеристики для многокомпонентных материалов.

Проведенные расчеты подтверждают сделанные ранее выводы [8] о том, что для улучшения качества адгезионного контакта между конструкционным материалом и электроизоляционным барьером из нитрида алюминия в литий-ванадиевом бланкете термоядерного реактора необходимо формировать промежуточный слой из молибдена или хрома. Кроме того, можно прийти к заключению, что с точки зрения прочности адгезионного контакта оксид эрбия является вполне приемлемым материалом для формирования электроизоляционного барьера.

Расчеты, приведенные для литий-свинцового бланкета термоядерного реактора, где в качестве конструкционного материала планируется использовать сталь EUROFER 97, а в качестве антикоррозионного (электроизоляционного) барьера оксид алюминия, показывают, что и в этом случае промежуточный слой из хрома или молибдена улучшает качество адгезионного контакта.

Список литературы

- Kirillov I.R. et al. Proc. 1st Int. Workshop on Liquid Metal Blanket Experimental Activities. CEA Headquaters. Paris, France, 1997.
- [2] Konys J. et al. // J. Nucl. Mater. 2007. Vol. 367–370. P. 1144– 1149.
- [3] Pint B.A., Moser J.L., Tortorelli P.F. // J. Nucl. Mater. 2007. Vol. 367–370. P. 1150–1154.
- [4] Дерягин Б.В., Кротова Н.А., Смилга В.Л. Адгезия твердых тел. М.: Наука, 1973. 280 с.
- [5] Ландау Л.Д., Лифшиц В.М. Статистическая физика. М.: Наука, 1976. 477 с.
- [6] Партенский М.Б. // УФН. 1979. Т. 128. Вып. 1. С. 69–106.
- [7] Вакилов А.Н., Мамонова М.В., Прудников В.В. // ФТТ. 1997. Т. 39. Вып. 6. С. 964–967.
- [8] Vitkovsky I.V. et al. // Plasma Devices and Operations. 2003. Vol. 11 (2). P. 81–87.

- [9] Витковский И.В. и др. // ЖТФ. 2007. Т. 77. Вып. 6. С. 28-33.
- [10] Шоркин В.С. // Изв. ТулГУ. Механика. 1995. Т. 1. Вып. 2. С. 169–179.
- [11] Шоркин В.С. // Мат. Междунар. науч. симп. по проблемам механики деформируемых тел, посвященного 95-летию со дня рождения А.А. Ильюшина (Москва, 19–20 января 2006) / Под ред. И.А. Кийко, Р.А. Васина, Г.Л. Бровко. М.: Ленанд, 2006. С. 271–282.
- [12] *Киттель Ч.* Введение в физику твердого тела. М.: Наука, 1978. 792 с.
- [13] Кривцов А.М., Кривцова Н.В. // Дальневост. матем. журн. ДВО РАН. 2002. Т. З. № 2. С. 254–276.
- [14] Богомольный В.М. // Физика прочности. М.: Московский государственный университет сервиса, 2005. 308 с.
- [15] Андреев Т.В. и др. Свойства элементов / Под ред. Г.В. Самсонова. Ч. 1. Физические свойства. М.: Металлургия, 1976. 599 с.
- [16] Бабичев А.П. и др. Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [17] Ильюшин А.А. Механика сплошной среды. М.: МГУ, 1990. 312 с.
- [18] Шермергор Т.Д. Теория упругости микронеоднородных сред. М.: Наука, 1977. 400 с.

16