Краткие сообщения

07;12

Интерференционный контроль асферических компонентов объектива для нанолитографии

© Н.Б. Вознесенский,¹ Е.В. Гаврилов,¹ А.П. Жевлаков,² В.К. Кирилловский,¹ П.В. Орлов²

¹ Санкт-Петербургский государственный университет информационных технологий, механики и оптики, 197101 Санкт-Петербург, Россия

² Государственный оптический институт им. С.И. Вавилова,

199034 Санкт-Петербург, Россия

(Поступило в Редакцию 30 мая 2006 г.)

Развиты методики и схемы контроля формы EUV-зеркал на основе дифракционного интерферометра с компьютерной обработкой интерферограмм, обеспечивающие погрешность измерений менее 0.001 длины волны в видимой области спектра.

PACS: 85.85.+j

Введение

Перспективы создания промышленного оборудования, предназначенного для печати топологии интегральных схем (ИС) с критическим размером элементов рисунка 10-30 nm и обеспечивающего производительность до 100 плат (с ИС) в час диаметром 300 mm, в настоящее время во многом связаны с переходом в диапазон экстремально коротких (EUV) длин волн 10-14 nm. В данной области спектра оптически прозрачные материалы отсутствуют, поэтому для построения оптического тракта в нанолитографической установке могут использоваться лишь зеркальные, в основном асферические, элементы, количество которых может быть более десяти. При этом выбор длины волны $\lambda = 13.5 \, \text{nm}$, на которой обудет осуществляться экспонирование резиста в разрабатываемых степперах/сканерах, обусловлен вполне отработанной технологией Mo/Si брэгговских покрытий, обладающих досточно высоким (почти 70%) коэффициентом отражения.

Согласно критерию Марешаля, для получения дифракционного ограниченного изображения в репродукционном объективе среднеквадратическое отклонение (СКО) волнового фронта от идеального не должно превышать 0.07 λ , или 1 nm, для $\lambda = 13.5$ nm. Если считать, что в многокомпонентной системе погрешности распределяются равномерно, то в репродукционном объективе, состоящем из 4–8 зеркал, зеркала должны выполняться с качеством формы поверхности на уровне до $\lambda/1000$ для $\lambda = 0.633 \,\mu$ m.

Создание оптических элементов, особенно асферических, с такой беспрецедентно высокой точностью требует уникальных средств контроля формы рабочих поверхностей. В данной работе развита и практически освоена методика интерференционного контроля асферических зеркал, отвечающая указанным требованиям точности.

Анализ требований к средствам контроля качества нанооптики

В разработанной оптической системе экспериментального нанолитографа [1] порядок точности формы оптических компонентов, входящих в схему репродукционного объектива шварцшильдовского типа с числовой апертурой NA = 0.36, — не хуже 0.03λ СКО на $\lambda = 13.5$ nm, что эквивалентно 0.0006λ СКО для $\lambda = 633$ nm. Особенность зеркал, составляющих подобный объектив, заключается в относительно большом градиенте асферизации на отражающей поверхности. Сложность контроля качества таких поверхностей приводит к необходимости поиска новых приемов расшифровки интерферограмм с чрезвычайно высокой концентрацией интерференционных полос, локализованных в небольшой зоне на контролируемой поверхности.

Исходя из требований технологий формообразования и финишной доводки асферической поверхности зеркал нанообъекта, ионная полировка выполняется на базе предварительно изготовленной (например, по технологии притира) базовой асферической поверхности.

Согласно расчетным требованиям на четырехзеркальный объектив с NA = 0.485 [2] среднеквадратическая деформация волнового фронта в плоскости изображения не должна превышать $\Delta W_m \leq 0.04$. Соответственно порядок величины максимально допустимой деформации волнового фронта составляет $W_{\text{max}} = 0.16\lambda$. В случае четырехзеркальной схемы деформацию волнового фронта, вносимую одним из зеркал, определим как $W_{\text{max}} = 0.04\lambda$. Имея в виду, что деформация волны при отражении равна удвоенной ошибке зеркала, максимально допустимой

ошибкой формы рабочей поверхности следует считать $\Delta N = 0.02\lambda$. Таким образом, при $\lambda = 13.5$ nm получаем $\Delta N \approx 0.02 \cdot 13 \approx 0.2$ nm.

Поскольку хроматизм в зеркальной системе отсутствует, контроль можно осуществлять в видимом диапазоне. Требуемая точность интерферометра для контроля поверхности зеркала в долях длины волны при $\lambda = 633$ nm (He–Ne-лазер) должна быть, по крайней мере, $\Delta W_{LS} = 0.0001\lambda$ и может быть достигнута, например, применением фазового метода расшифровки.

Схемные решения традиционных интерферометров основаны на формировании опорного волнового фронта путем использования образцовых оптических поверхностей. В то же время применяемые методы обработки интерферограмм, построенные на принципе вычитания референтного волнового фронта из результирующего, не позволяют получить погрешность контроля менее $\lambda/20 - \lambda/30$, так как помимо очевидных источников ошибок — нестабильности источника излучения, механических смещений, турбулентности воздуха — существуют ошибки образцовой поверхности. Традиционными методами она не может быть изготовлена точнее, чем $\lambda/20 - \lambda/30$. Кроме того, образцовая поверхность обычно аттестуется в процессе изготовления интерферометра, а в процессе измерения эта поверхность может претерпевать неконтролируемые деформации, вызванные, например, действием термических, динамических и гравитационных факторов и соизмеримые с ее точностью.

Дифракционный интерферометр

В качестве альтернативы предлагается для контроля объектива и его элементов использовать дифракционный интерферометр [3,4], в котором отсутствуют ошибки, связанные с деформацией референтного волнового фронта образцовой оптической поверхностью, так как отсутствует сама образцовая поверхность. Референтный волновой фронт здесь формируется путем дифракции лазерного пучка, сфокусированного на точном отверстии, диаметр которого соизмерим с длиной волны излучения. Прибор отличают простота и компактность в конструктивном исполнении, простота в эксплуатации.

Для обоснования возможности использования волнового фронта, дифрагированного на малом отверстии, в качестве образцового фронта важно знать основные факторы, определяющие возможные искажения, а также понимать механизм их влияния на амплитуду и фазу дифрагированной волны [5]. Моделируемое угловое распределение интенсивности (рис. 1) имеет максимум в центре при гауссовом законе распределения, не достигающем нулевого значения в пределах телесного угла $\pm 90^{\circ}$.

Неравномерность в распределении интенсивности в данном приборе не является серьезной помехой, поскольку подобное практически наблюдается во всех

Рис. 1. Дальнепольное распределение интенсивности света, дифрагированного на отверстии диаметром 140 nm.

типах интерферометров, где используется лазерное излучение. Такое распределение может привести лишь к неравномерности освещенности интерферограммы. Причем, если использовать 2/3 ширины эталонного пучка, то неравномерность, как известно, составит $\pm 25\%$, что при регистрации и вводе интерферограммы в компьютер, а также ее дальнейшей обработке не вызывает негативных последствий.

Погрешность волнового фронта, образованного дифракцией на малом отверстии, весьма мал, так как эталонный волновой фронт — это поверхность постоянной фазы излучения, используемого уже в дальней зоне дифракции. Эта поверхность имеет почти идеальную сферическую форму. Отклонение волнового фронта от сферы в зависимости от расстояния определяется по формуле, полученной в [6], с учетом теории Дебая и справедливой на расстояниях от экрана, превышающих размер отверстия не менее чем на три порядка,

$$\Delta w = d^2 / (\lambda s), \tag{1}$$

где d — диаметр диафрагмы, λ — рабочая длина волны, s — расстояние от диафрагмы (фокусное расстояние регистрирующей оптики).

Так, при d = 1, $\lambda = 0.633 \,\mu$ m, s = 12 mm максимальная погрешность эталонного волнового фронта равна 0.00013, а среднеквадратическая погрешность соответственно 0.00004. Соотношение (1) не содержит угол, под которым наблюдается отверстие, поскольку эта формула, естествено, справедлива в полном угле нулевого порядка дифракции, определяемого формулой

$$\sin\theta = \lambda/d. \tag{2}$$

При дальнейшем увеличении расстояния от диафрагмы ошибка отступления от сферичности становится еще

	Этап обработки			
Способ	Исходная ближайшая сфера	Предварительная асферизация	Финишная доводка	
Используемый интерферометр	РDI, Физо	РDI, Физо	PDI	
Используемый метод контроля	Теневой	Контроль расчетных отклонений в схеме	С применением коррекционного объектива	

Таблица 1. Средства контроля в процессе изготовления асферики

меньше, и следовательно, в пределах угла дифракции, по крайней мере $\pm 18^{\circ}$, имеем высококачественный сферический волновой фронт. Следует заметить, что вблизи угловых краев нулевого порядка дифракции фаза поля быстро меняется на 180° , поэтому уверенное использование дифрагированного волнового фронта возможно в пределах $\pm 40^{\circ}$ от нулевого порядка.

Влияние угла наклона плоскости диафрагмы сказывается в эллиптичности углового распределения интенсивности из-за сужения проекции контура отверстия на плоскость, перпендикулярную оси дифрагированного пучка. Такой эффект должен находиться в полном согласии с теорией дифракции Фраунгофера, которая фактически описывает поле в дальней зоне дифракции.

Поскольку наблюдается хорошее согласие для описания дальней зоны распределения интенсивности поля в векторной и скалярной теориях, то, очевидно, следует ожидать и других совпадений, в частности, практически полного постоянства распределения фазы в нулевом порядке дифракции [7].

Изветно, что в лазерных интерферометрах реальная структура интерференционной картины существенным образом зависит от их схемного решения. В интерферометрах типа Тваймана или Физо регистрируемые картины характеризуются различной степенью зашумленности, приводящей к искажению структуры интерферограммы, вплоть до дробления интерференционных полос. В последнем случае средства компьютерного опо-

Рис. 2. Диаграмма взаимосвязи схемного решения интерферометра (1 — Физо, 2 — Майкельсон, 3 — дифракционный) и показателя опознавания интерференционных полос.

знавания полосы и измерения ее координат дают отказ в работе, и опознавание полос возможно только визуально. Указанные явления сопровождаются снижением надежности и повышением погрешностей измерений. В этом случае практически исключается проведение контроля оптики на пороге чувствительности метода с полным использованием его точностных возможностей. В дифракционном интерферометре (PDI) проблема зашумленности и дробления интерференционной картины не возникает ввиду отсутствия причин, т. е. элементов и аберраций, порождающих соответствующие искажения волнового фронта.

Исследование процесса познания полос, принадлежащих интерферограммам различного качества, полученным при помощи различных типов интерферометров, выполнялось в программе "ЗЕБРА-Матоптикс". Показатель опознавания полос можно характеризовать соотношением

$$KW = NT/NG,$$
 (3)

где NT — число опознанных точек на интерферограмме, NG — общее число точек познавания на интерференционных полосах.

Сравнение с этой точки зрения различных интерферометров, например Физо, Майкельсона и дифракционного, можно проиллюстрировать соответствующей диаграммой (рис. 2).

Контроль асферического зеркала нанолитографического объектива

Для изготовления высокоточной асферической поверхности необходим соответствующий контроль детали как в процессе обработки, так и в процессе аттестации. Процесс изготовления и контроля асферической поверхности можно представить в следующей последовательности (табл. 1).

Формирование заданной асферичности осуществляется на этапе предварительной обработки с использованием схемы контроля. Для постоянного контроля поверхности производится расчет ожидаемых интерферограмм в зависимости от параметров асферизации (рис. 3).

При достаточно глубокой асферизации для компенсации аберраций необходимо использовать коррекционный

Рис. 3. Сравнение расчетной (a) и реальной интерферограмм (b).

Рис. 4. Финальная интерферограмма (a) и карта волнового фронта (b).

объектив [8]. Очевидно, что контролировать этот объектив можно с точностью классических интерферометров, т.е. $\lambda/20$, а практически на уровне $\geq \lambda/10$. При этом возникает задача следующего характера: как при использовании корректора достигнуть требуемой точности формы поверхности зеркала? Решение состоит в аттестации поверхностей коррекционного объектива. Вогнутые поверхности контролируются непосредственно дифракционным интерферометром, а выпуклые — при помощи интерферометра и специальных насадок. Если конструкция дифракционного интерферометра не позволяет проконтролировать деталь, например, вследствие каких-либо конструктивных особенностей, то ее можно проконтролировать на интерферометре типа Физо, с предварительно аттестованным эталоном на дифракционном интерферометре, обладающем более высокой точностью.

9 Журнал технической физики, 2007, том 77, вып. 2

Как видно из спецификации зеркала с центральным экранированием (табл. 2), отступление от ближайшей сферы составляет $17 \,\mu$ m, что и определяет специфичность средств контроля. Решить задачу контроля зеркал с помощью классических, анаберрационных схем в данном случае не представляется возможным в силу чрезвычайной сложности их построения. В результате анализа альтернативных, компенсационных схем был рассчитан и изготовлен однолинзовый корректор, имеющий две сферические поверхности.

Контроль асферической поверхности выполнялся по автоколлимационной компенсационной схеме. Точечный источник света, полученный в результате фокусировки лазерного излучения, располагался в центре кривизны сферической части зеркальной поверхности. Линзовый корректор компенсировал сферическую аберрацию 3-го порядка асферической части зеркальной поверхно-

Таблица 2. 🤇	Спецификация	главного	зеркала	нанолитогр	афа
--------------	--------------	----------	---------	------------	-----

Спецификация	Зеркало		
Материал	Ситалл СО 115М		
Форма	Уравнение 4-го порядка		
Внешний диаметр, mm	300		
Диаметр отверстия, mm	84		
Толщина, mm	65		
Каноническая константа	-1.1079		
Отступление от ближайшей	17		
сферы, µт			

сти в том же центре кривизны. Таким образом, удалось решить проблему установки корректора относительно зеркала с центральным экранированием.

На изготовленном зеркале была получена концентрация 85% энергии в кружке рассеяния и среднеквадратичная деформация волнового фронта < 0.01 λ . На рис. 4 приведена финальная интерферограмма и карта волнового фронта, вогнутого асферического зеркала экспериментального нанолитографа.

Заключение

1. В результате проведенного анализа дифракционного интерферометра установлено, что его технические характеристики удовлетворяют требованиям контроля качества формы EUV асферических зеркал с точностью не хуже 0.001λ.

2. Обосновано применение методики опознавания интерференционных полос при контроле поверхностей с большим градиентом асферизации в схеме с дифракционным интерферометром.

3. Развита методика контроля подобных асферических зеркал на основе дифракционного интерферометра с использованием корректора волнового фронта.

4. Приведены примеры априорного моделирования интерферограмм при контроле качества реальных асферических поверхностей.

5. Изготовлено зеркало с асферикой высокого порядка с качеством формы 0.01λ для экспериментального нанолитографа.

Работа выполнена в рамках гранта № 0991 МНТЦ.

Список литературы

- [1] Andreev A.A., Limpouch J., Voznesensky N.B. et al. // Proc. SPIE. Vol. 5196. P. 128–136.
- [2] Voznesensky N.B., Zhevlakov A.P. // Proc. SPIE. Vol. 5582.
 P. 136–144.
- [3] Линник В.П. // Тр. ГОИ. Л., 1934. Т. Х. Вып. 95.
- [4] Иванова Т.А., Кирилловский В.К. Проектирование и контроль оптики микроскопов. Л.: Машиностроение, 1984. 228 с.

- [5] Ли К. Исследование неоднородности волнового фронта, образованного в дифракционном интерферометре. Автореферат канд. дисс. СПбГУ ИТМО, 2004.
- [6] Voznesensky N.B. // Proc. SPIE. Vol. 3791. P. 147–157.
- [7] Voznesensky N.B. // Opt. Memory and Neural Networks. 2000.
 Vol. 9. N 3. P. 175–183.
- [8] Пуряев Д.Т. Методы контроля оптических асферических поверхностей. М.: Машиностроение, 1976. 262 с.