03;12 Пролонгированная микробная устойчивость воды, обработанной импульсными электрическими разрядами

© В.А. Коликов,¹ В.Е. Курочкин,² Л.К. Панина,³ А.Ф. Рутберг,¹ Ф.Г. Рутберг,¹ В.Н. Снетов,¹ А.Ю. Стогов¹

¹ Институт электрофизики и электроэнергетики РАН,
191186 Санкт-Петербург, Россия
e-mail: rutberg@iperas.spb.ru
² Институт аналитического приборостроения РАН,
198103 Санкт-Петербург, Россия
e-mail: kuroch@ianin.spb.su
³ Институт физиологии им. А.А. Ухтомского Санкт-Петербургского государственного университета,
199034 Санкт-Петербург, Россия
e-mail: lkpanina@narod.ru

(Поступило в Редакцию 26 июня 2006 г.)

Представлены результаты исследования основных характеристик импульсных электрических разрядов в воде, таких как разрядный ток, падение напряжения на разрядном промежутке, температура столба разряда, удельная проводимость плазмы разряда, а также возникающих в процессе электрического разряда факторов: волн сжатия, ультрафиолетового излучения. Рассмотрены физико-химические свойства воды, обработанной с помощью импульсных электрических разрядов, во взаимосвязи с ее воздействием на микроорганизмы, дано объяснение механизма возникновения пролонгированной микробной устойчивости воды — способности воды в течение многих месяцев после обработки импульсными электрическими разрядами сохранять поражающую способность в отношении практически всех известных патогенных микроорганизмов и оппортунистических человеку грибных культур.

PACS: 52.80.Wg, 77.22.-d

Введение

Исследования поражающего действия электрического поля и различного рода электрических разрядов на находящиеся в воде микроорганизмы проводятся в течение более тридцати лет [1–9], однако по настоящее время некоторые принципиальные нерешенные вопросы в этой области, например, выяснение механизмов возникновения пролонгированной микробной устойчивости воды (ПМУВ) — способности воды в течение многих месяцев после обработки импульсными электрическими разрядами (ИЭР) сохранять поражающую способность в отношении практически всех известных патогенных микроорганизмов и оппортунистических человеку грибных культур — вызывают интерес исследователей к этой проблеме.

Результаты исследований последних десятилетий в области медицины указывают на то, что резкий рост онкологических и сердечно-сосудистых заболеваний является следствием обеззараживания воды хлорированием [10]. Обнаружено, что в питьевой воде, обеззараженной хлорированием, присутствуют устойчивые частицы (макрорадикалы), которые в течение длительного времени поддерживают протекание свободнорадикальных цепных реакций [11]. Установлено, что данные микрорадикалы представляют собой то патогенное начало, которое провоцирует возникновение и развитие этих и иных тяжелых заболеваний [12,13]. Эти обстоятельства побуждают к поиску альтернативных, более безопасных для человека, методов обеззараживания воды. ИЭР в воде уже сейчас могут быть использованы для обеззараживания стоков больниц и промышленных предприятий, а при наличии экспериментальных данных об отсутствии их негативного воздействия на организм человека предполагается их использование в медицине, фармацевтической и пищевой промышленности [14].

Общая бактерицидность, создаваемая ИЭР в воде, обусловлена двумя видами факторов, действующими:

 в момент разряда: волны сжатия, ультрафиолетовое излучение и гидратированные электроны;

 преимущественно после разрядного импульса: активные радикалы типа ОН, перекись водорода и продукты эрозии материала электродов.

Поскольку время существования гидратированных электронов составляет ~ 0.5 ms, а радикалов и перекиси водорода не более нескольких суток, то рассматривать их в качестве факторов, вызывающих ПМУВ, которая, как было сказано, сохраняется в течение нескольких месяцев, нет никаких оснований. Следовательно, исключив вышеназванные факторы, можно предположить, что причиной возникновения ПМУВ являются продукты эрозии материала электродов.

Экспериментальная часть

Блок-схема установки для обеззараживания воды представлена на рис. 1. Электроразрядная обработка воды осуществляется в разрядной камере (1), изготовленной из диэлектрического материала, с помощью генератора электрических импульсов (2). Установка рассчитана

Рис. 1. Блок-схема установки.

на непрерывную автономную работу в течение времени, обусловленного запасом расходуемого электродного материала — проволоки в катушке (5), — т.е. до нескольких месяцев. Непрерывность работы установки обеспечивается системой контроля и управления (3) и устройствами подачи (4) электродного материала (проволоки), которые автоматически поддерживают необходимое межэлектродное расстояние при изменении проводимости обрабатываемой воды (W) при увеличении межэлектродного промежутка, обусловленного эрозией электродов.

Результаты исследований взаимосвязи параметров ИЭР с их собственным обеззараживающим действием, а также физико-химическими и бактерицидными свойствами обработанной воды указывают на то, что оптимальными с точки зрения практической реализации в установках для обеззараживания воды с производительностью от 1 до 151/min являются ИЭР длительностью $1-20\,\mu s$ с энергией в импульсе $\sim 1 \, J$, со скоростью нарастания тока 10⁷-10⁹ A/s и частотой следования импульсов 100-500 Hz. Предпочтительным типом электродной системы для установок, предназначенных для длительной и непрерывной эксплуатации, является "двухострийная" схема при межэлектродном промежутке < 10 mm, диаметре водопропускного канала разрядной камеры 10-15 mm и диаметре электродов $\sim 1\,\mathrm{mm}.$

Источник питания установки — генератор электрических импульсов (рис. 2), позволяющий обрабатывать водные растоворы и дисперсии с удельным сопротивлением не ниже 500 $\Omega \cdot$ m. Генератор импульсов работает следующим образом: напряжение сети (220 V, 50 Hz) через автотрансформаторы T_1 и T_2 (220/600 V) подается на выпрямитель $V_{d1}-V_{d4}$ и фильтр C_1 , L_1 . Поскольку емкость конденсатора $C_1 \gg C_2$, а в цепь зарядки конденсатора C_2 включен дроссель L_2 , то при включении тиристора V_{d5} конденсатор C_2 заряжается до напряжения, превышающего напряжение на конденсаторе C_1 . После включения тиристора V_{d6} конденсатор C_2 разряжается на первичную обмотку высоковольтного импульсного трансформатора T_3 , со вторичной обмотки которого повышенное напряжение прикладывается к разрядному промежутку, вызывая его пробой и образование канала разряда.

Результаты и их обсуждение

Типичные осциллограммы напряжения и тока разрядного импульса, получаемого с помощью одного из генераторов импульсов, представлены на рис. 3. Значения предпробойного напряжения и падения напряжения на дуге относятся в среднем как 100:1, поэтому для измерения падения напряжения на дуге применялась схема, ограничивающая напряжение на низковольтном плече делителя напряжения. На рис. 3, *а* представлены осциллограммы тока и напряжения, полученные без ограничения напряжения (1-10 A/div, U - 10 kV/div,время — 5μ s/div), а на рис. 3, *b* — с ограничением напряжения (1-10 A/div, U - 400 kV/div, время — 5μ s/div).

Рис. 3.

Рис. 4.

Моменту пробоя межэлектродного промежутка предшествует предпробойная стадия, в течение которой происходит рост напряжения на разрядном промежутке до значения, близкого к напряжению холостого хода (65 kV) и следующая за ним временная задержка $(1-5\mu s)$, величина которой определяется как физикохимическими свойствами обрабатываемой воды, так и структурой поверхности электродов. В течение предпробойной стадии ток нарастает до 4 А, что соответствует в данном случае сопротивлению водяного промежутка 16 kΩ. С момента пробоя и начала формирования канала разряда за время $\sim 10\,\mu s$ ток нарастает до максимума ~ 60 А, при этом форма импульса тока близка к синусоидальной, падение напряжения на промежутке экспоненциально убывает с $\sim 1 \, \mathrm{kV}$ до 80 V (при средней величине 300 V), что соответствует среднему за процесс сопротивлению канала разряда ~ 8 Ω. Электрическая энергия, выделившаяся за время импульса, составляет ~ 0.25 J, пиковая мощность разряда $\sim 10^4$ VA.

Фотографии канала разряда длиной 13 mm, полученные с помощью высокоскоростной съемочной камеры ЖЛВ-2, через 1.7 и 5.1 μ s после начала пробоя представлены на рис. 4. Используя полученные фотографии канала разряда и ВАХ, можно оценить значение электропроводности плазмы разряда для момента времени вблизи максимума тока. При диаметре канала разряда ~ 1.5 mm и сопротивлении канала разряда ~ 8 Ω удельная электпропроводность составляет ~ 700 S/m.

Одним из факторов поражающего действия самого разряда на бактерии являются волны сжатия, возникающие на стадии расширения канала разряда. Измерение импульсного давления на стенке разрядной камеры и теневая фоторегистрация процесса расширения канала разряда с помощью высокоскоростной цифровой съемочной камеры, выполненные для разрядов с одинаковой энергией в импульсе (~ 0.4 J), но различающихся длительностью, т.е. мощностью, показали, что возрастание мощности разряда приводит к пропорциональному

увеличению амплитуды импульсного давления. Так, для разряда длительностью $\tau = 20 \,\mu$ s, $dI/dt = 2 \cdot 10^6$ A/s амплитуда волны сжатия составляет ~ 0.5 MPa (рис. 5, *a*), а при $\tau = 1 \,\mu$ s, $dI/dt = 2 \cdot 10^9$ A/s — ~ 4 MPa (рис. 5, *b*).

Исследование спектральных характеристик разряда в воде проводилось для определения температуры канала разряда. Регистрация спектров осуществлялась с помощью дифракционного цифрового спектрографа на электродах из сплава серебра с медью, электротехнической меди и низкоуглеродной стали при амплитуде тока ~ 60 A, среднем падении напряжения на дуге ~ 300 V, длительности импульса ~ 20 µs.

На рис. 6 представлен спектр излучения разряда между электродами, изготовленными из электротехнической меди.

Температура канала разряда, определенная на основании полученной спектрограммы методом сравнения относительных интенсивностей излучения в линиях, составляет $\sim 10^4$ К. При данной температуре канал раз-

ряда является мощным источником ультрафиолетового излучения со значительной долей излучаемой энергии в диапазоне длин волн 200–300 nm. Излучение в этом участке спектра оказывает эффективное поражающее действие на микробы [15], а поглощенное водой вызывает реакцию фотолиза — генерацию в воде перекиси водорода, атомарного кислорода, озона и активных радикалов OH, которые также оказывают поражающее действие на бактерии [16–18].

Эрозия электродов и наночастицы

Как предполагалось в [19], возникновение ПМУВ обусловлено присутствием в обработанной воде продуктов эрозии материала электродов. Для подтверждения или опровержения данного предположения были проведены углубленные исследования физических и химических свойств обработанной воды во взаимосвязи с ее бактерицидным действием в отношении широкого круга микроорганизмов, включая споры микроскопических грибов.

В начальной стадии исследований для обработки воды использовались электроды, изготовленные из различных металлов и их сплавов. Одним из результатов проведенных работ является диаграмма величин удельной эрозии использованных материалов (рис. 7). Значение удельной эрозии η определялось при частоте следования разрядных импульсов 50 Hz, исследуемым электродом являлся цилиндрический анод диаметром 10 mm.

После того как была установлена взаимосвязь между типом металла электродов и степенью бактерицидности обработанной воды, исследования проводились с использованием трех металлов: серебра, меди и железа (или их сплавов, с преимущественным содержанием указанных металлов). Эта взаимосвязь основана на различной степени токсичности ионов металлов, поглощаемых микроорганизмами, которые согласно работе [20], расположены следующим образом: Ag > Cu > Cd, Zn, Pb > Mn, Fe > Mg, Ca.

Первоочередная задача в цикле исследования физикохимических свойств обработанной с помощью ИЭР воды состояла в экспериментальном подтверждении того, что в результате эрозии материала электродов в воду

Рис. 7. Удельная эрозия материала электродов: 1 - W + Cu; $2 - Cr_3C_2 + Cu$; 3 - Ag + Cu; 4 - Fe; 5 - Mo + W + Cu; 6 - W + Ni + Fe; 7 - Cu; 8 - W + Ni + Cu.

Рис. 9.

поступают как свободные ионы, так и частицы металла электродов. Для этой цели использовались методы диализа, мембранной фильтрации и масс-спектрометрии с индуктивно связанной плазмой (MS-ICP).

Далее при помощи анализатора размеров субмикронных частиц "Coulter N4" были получены функции распределения частиц металла электродов по размерам (D)

при вложенной удельной энергии 5 (кривая 1) и 10 J/ml (кривая 2) (рис. 8). Из графика видно, что частицы имеют размер от \sim 5 до 100 nm, а максимум функции распределения приходится на частицы размером около 10 nm (в дальнейшем наночастицы), при этом доля наночастиц возрастает с увеличением уровня вложенной энергии.

При помощи электронного микроскопа были сделаны фотоснимки наночастиц серебра и меди, которые позволили определить форму наночастиц и структуру образующихся кластеров (рис. 9, a и b, масштаб $2 \cdot 10^5 : 1$).

Исследования воды, обработанной электрическими разрядами между медными электродами, методами диализа, эксклюзивный жидкостной хроматографии, электронного парамагнитного резонанса и спектроскопии в ультрафиолетовой и видимой областях спектра, позволили установить, что материалом наночастиц являются оксиды Cu₂O и CuO, находящиеся в динамическом концентрационном равновесии с одно- и двузарядными ионами меди Cu⁺ и Cu²⁺, что присуще коллоидным растворам [21]. В обработанной деионизированной воде при величине вложенной энергии 5 J/ml и pH = 5.8-6.3 отношение массы ионов меди к массе наночастиц составляет 1:5. Было установлено также, что подкисление обработанной воды соляной кислотой (HCl) до pH = 2.5 приводит к полному растворению наночастиц и переходу их в ионную форму.

Зависимости массовых концентраций (M_{st}) наночастиц серебра (кривая I), меди (кривая 2) и железа (кривая 3) в обработанной воде от величины вложенной в разряд удельной энергии (рис. 10) были получены с помощью хроматографического метода (с учетом калибровки по CuCl при pH = 2.5), использовалось отношение массы ионов к массе наночастиц.

Методом высокоэффективного капилярного электрофореза было установлено, что наночастицы оксидов меди обладают положительным электрическим зарядом.

Бактерицидность воды, обработанной ИЭР

Зависимость обеззараживающей способности воды в отношении бактерий E. coli, обработанной с помощью серебряных (кривая 1), медных (кривая 2) и железных (кривая 3) электродов, определяемая как $\lg N_k / N_0$ (где N₀ — начальная концентрация бактерий в воде, N_k конечная концентрация жизнеспособных бактерий), от удельной вложенной в разряд энергии при времени экспозиции 24 h представлена на рис. 11. Как видно из графика, эффективность обеззараживания пропорциональна вложенной электрической энергии: тем выше, чем более токсичен ион металла электродов по отношению к микроорганизмам. Характер представленной зависимости сохраняется также в отношении бактерий Klebsiella pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhimurium, Serratia marsescens, Citrobacter freundii, Bacillus subtilis и спор микроскопических грибов Candida albicans, Ulocladium chartarum, Phaeococcomyces chersonesos.

На рис. 12, *а*, *b* представлены зависимости отношения конечной концентрации N жизнеспособных бактерий Е. coli к начальной N_0 , равной 10^6 ml^{-1} , полученные на установках с одной и четырьмя разрядными камерами, соединенными последовательно по движению зараженной бактериями воды. Как видно из графиков, отношение N/N_0 при сравниваемой величине суммарной вложенной энергии 2.5 J/ml уменьшается с $3 \cdot 10^{-3} \text{ ml}^{-1}$ при числе разрядных камер, равном единице, до 10^{-4} ml^{-1} при числе разрядных камер, равном четырем, что соответствует трехкратному увеличению эффективности поражения бактерий.

Поскольку массовая концентрация наночастиц (рис. 10) и обеззараживающая способность обработанной воды пропорциональны удельной вложенной в разряд энергии (рис. 11), можно утверждать, что между бактерицидностью и массовой концентрацией наночастиц в воде существует прямая зависимость.

Представленные выше данные позволяют рассматривать обработанную воду как некий бактерицидный агент, при добавлении которого в зараженную микробами воду происходит их обеззараживание. В этой

Рис. 11.

8

10

12

6

E, J/ml

-8

0

2

4

связи требовалось определить зависимость обеззараживающей способности обработанной воды при ее добавлении в подлежащую обеззараживанию воду, от степени разбавления. График такой зависимости, где конечная концентрация (C_F) бактерий Е. coli является функцией степени разбавления обработанной воды (d) исходной, при уровне вложенной энергии 10 J/ml, начальной концентрации бактерий 8 · 10³ ml⁻¹ и времени экспозиции 24 h, представлен на рис. 13.

Зависимости отношения конечной N_k и начальной N_0 концентраций спор U. chartarum, помещенных в воду до начала ее обработки с помощью титановых (кривая 1), железных (кривая 2) и серебряных (кривая 3) электродов и при последующем их нахождении в обработанной воде, от времени экспозиции, при уровне вложенной в разряд энергии 10 J/ml и начальной концентрации спор 10^3 ml^{-1} , представлены на рис. 14. Из графика видно, что зависимость имеет экспоненциальный характер, и в зависимости от рода металла за время от 15 min до 4 h гибнет до 100% спор.

Зависимости отношения конечной N_k и начальной N_0 концентраций бактерий E. coli в воде, обработанной с помощью медных электродов, при уровне вложенной энергии 10 J/ml и начальных концентрациях бактерий $4 \cdot 10^3$ (кривая 1) и $5 \cdot 10^6$ ml⁻¹ (кривая 2), представлены

на рис. 15. Из графика видно, что зависимости также имеют экспоненциальный характер, а за время 5 min в зависимости от уровня начальной концентрации гибнет от 90 до 100% бактерий.

Механизм пролонгированной микробной устойчивости воды

Для выяснения роли наночастиц в ПМУВ были продолжены опыты по определению степени ингибирования роста микроскопических грибов U. chartarum, начатые в [22,23], в двух модификациях одной и той же обработанной ИЭР воды: содержащей после удаления наночастиц только ионы; содержащей ионы и наночастицы. При обработке воды использовались электроды из серебра, меди и железа, величина удельной вложенной энергии равнялась 1.5, 3, 6, 8 и 12 J/ml.

Зависимости разностей конечных концентраций N_i жизнеспособных микроорганизмов после инкубации в течение 10 суток в воде, содержащей только ионы и концентраций жизнеспособных микроорганизмов N_{i+n}, инкубированных в воде, содержащей ионы и наночастицы, при начальной концентрации микроорганизмов, равной 10^3 ml^{-1} , при последующем посеве суспензий на агаризованную среду Чапека, представлены на рис. 16 (кривая 1 — Fe, 2 — Cu, 3 — Ag). Из графика следует, что более эффективное обеззараживание происходит, когда в воде помимо ионов присутствуют наночастицы, причем это в наибольшей степени проявляется у железа как у металла с наименьшей степенью токсичности ионов. Здесь в наибольшей степени проявляется действие собственно наночастиц. Кроме того, это различие уменьшается по мере возрастания уровня вложенной энергии, т.е. с возрастанием концентрации ионов.

Как было отмечено в работе [24], механизм поражающего воздействия наночастиц на бактерии включает в себя в том числе проникновение наночастиц внутрь клетки. С помощью электронной микроскопии нами было установлено, что, по крайней мере в первые часы пребывания бактерий в обработанной воде, происходит налипание наночастиц и их скоплений — кластеров — к поверхности бактерий, при этом нет никаких оснований предполагать, что наночастицы, тем более кластеры, проникают внутрь бактерий (рис. 17).

Рис. 16. Ингибирование роста микроскопических грибов U. chartarum.

Рис. 17. Наночастицы Си на стенке бактерии Е. coli (масштаб $10^5:1$).

Наиболее вероятно, что наночастицы и кластеры, являясь источниками ионов, создают вокруг бактерии область постоянно поддерживаемой концентрации, что и обеспечивает эффективное поражение бактерии.

Полученные зависимости, связывающие ПМУВ с параметрами ИЭР и металлом электродов, дают основу для создания подобных водных структур с заданными свойствами. Фактически получаемая при обработке электрическими разрядами вода представляет собой структуру с "интеллектуальными" динамическими свойствми, в которой наночастицы обеспечивают и поддерживают поражающее действие ионов металла на микроорганизмы в режиме с обратной связью.

Заключение

Во время импульсных электрических разрядов в воде под действием волн сжатия, ультрафиолетового излучения, перекиси водорода, озона, атомарного кислорода, активных радикалов ОН и гидратированных электронов происходит гибель находящихся в ней бактерий.

Импульсные электрические разряды вызывают эрозию материала электродов, за счет которой в воде образуются оксидные частицы металла электродов. Максимум функции распределения частиц по размерам приходится на 10 nm (наночастицы). Наночастицы, растворяясь в воде, эмитируют ионы. Между наночастицами и ионами в течение длительного времени поддерживается концентрационное равновесие.

При одинаковой концентрации ионов бактерицидность воды, содержащей ионы и наночастицы выше, чем у воды, содержащей только ионы. Наивысшей бактерицидностью обладает вода, обработанная с помощью серебряных электродов. Таким образом, наиболее вероятным механизмом пролонгированной микробной устойчивости воды является поражающее действие ионов на бактерии. Долгоживущими источниками ионов являются наночастицы, образующиеся в процессе эрозии электродов, при этом "потенциал" микробной устойчивости воды определяется начальной концентрацией наночастиц.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проекты № 05-02-16033 и 05-08-01125.

Список литературы

- Edebo L., Selin I. // J. of General Microbiology. 1968. Vol. 50. P. 253–259.
- [2] Жук Е.Г. // ЖМЭИ. 1971. Т. 48. № 1. С. 99–103.
- [3] Бретош Р.А., Руденко Л.А., Урусов А.Ф. Электронная обработка материалов. 1971. С. 79–81.
- [4] Кульский Л.А., Савлук О.С., Дейнега Е.Ю. Влияние электрического поля на процессы обеззараживания воды. Киев: Наук. думка, 1980. 125 с.
- [5] Goriachev V.L., Bratsev A.N., Feduikovich V.N., Rutberg Ph.G. et al. USA Patent Number 05464513, patent date 1995.11.07.
- [6] Schoenbach K.H., Peterkin F.E., Kldew R.W., and Beebe S.J. // IEEE Transactions on Plasma Science. 1997. Vol. 25. N 2. P. 284–292.
- [7] Горячев В.Л., Рутберг Ф.Г., Федюкович В.Н. // Изв. РАН. Энергетика. 1998. № 1. С. 40–55.
- [8] Efremov N.M., Adamiak B.Yu., Blochin V.I. et al. // IEEE Transact. on Plasma Sci. 2000. Vol. 28. N 1. P. 224–229.
- [9] Abou-Ghazala A., Katsuki S., Schoenbach K.H. et al. // 28th Int. Conf. on Plasma Sci. and 13th Int. Pulsed Power Conf. Las Vegas, 2001.
- [10] Воейков В.Л., Асфарамов Р.Р., Розенталь В.М. // "Экополис 2000: Экология и устойчивое развитие города". Мат. III Междунар. конф. М.: Изд-во РАМН, 2000. С. 226–230.
- [11] Zoeteman B.C., Hrubec J., de Greef E., Kool H.J. // Environ Health Perspect. 1982. Vol. 46. P. 197–205.
- [12] Gottlieb M.S., Carr J.K., Morris D.T. // Int. J. Epidemiology. 1981. Vol. 10. P. 117–125.
- [13] Price J.M. Coronaries, Cholesterols, Chlorine. Banhadlog Hall, Tyliwch, Landridloes: Pyramid Publications Ltd., 1984. P. 32–33.
- [14] Roodenburg B., Morren J., de Haan S.W. et al. // Europ. Pulsed Power Symp., 2002.
- [15] Летавет А.А., Тейлор Д.Х. Основы космической биологии и медицины. Т. 2. Кн. 2. М.: Наука, 1975. С. 58–77.
- [16] Sokolov V. and Stein G. // J. Chem. Phys. 1966. Vol. 44. N 5. P. 1546–1551.
- [17] Анпилов А.М., Бархударов Э.М., Копьев В.А. и др. // Прикладная физика. № 5. С. 74–80.
- [18] Горячев В.Л., Рутберг Ф.Г., Уфимцев А.А. // Письма в ЖТФ. 1998. Т. 24. Вып. 3. С. 91–95.
- [19] Коликов В.А., Курочкин В.Е., Панина Л.К., Рутберг Ф.Г. // ДАН. 2005. Т. 403. № 4. С. 561–563.
- [20] Siegel H. et al. Metal ions in biological systems. Concepts on metal ion toxicity. Vol. 20. New York & Basel: Marcel Dekker, 1986.
- [21] Лайтинен Г.А. Химический анализ. М.: Химия, 1966. 656 с.

- [22] Богомолова Е.В., Горячев В.Л., Коликов В.А. и др. // Пробл. мед. микол. 2003. Т. 5. № 2. С. 75.
- [23] Богомолова Е.В., Горячев В.Л., Коликов В.А. и др. // Микол. и фитопатол. 2003. Т. 37. Вып. 5. С. 19–25.
- [24] Sondi I. and Sondi B. // J. Colloid Interface Sci. 2004. N 275. P. 177–182.