# 10;12 Прецизионный электромагнит для масс-спектрометра

© Н.Н. Аруев, Е.Л. Байдаков, Б.А. Мамырин

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: aruev.mass@mail.ioffe.ru

(Поступило в Редакцию 8 июня 2006 г.)

Разработан, изготовлен и исследован прецизионный электромагнит с диапазоном изменения индукции от 0.05 до 0.5 Т для магнитного резонансного масс-спектрометра с расчетной разрешающей способностью порядка  $10^6$ . Неоднородность магнитного поля  $\Delta B/B_0$  на круговой орбите диаметром 400 mm, по которой движется ионный пучок, не превышает  $\pm 1 \cdot 10^{-5}$  от поля  $B_0$  в центре магнитного зазора. Нестабильность магнитного поля в любой точке орбиты в течение нескольких минут, достаточных для регистрации масс-спектров, меньше  $10^{-6}$ .

PACS: 07.75.+h, 07.55.Db

## Введение

Одним из основных элементов строящегося магнитного резонансного масс-спектрометра (MPMC) с рачетной разрешающей способностью  $\sim 10^6$ , который предполагается использовать для точного измерения масс атомов стабильных и долгоживущих изотопов, а также ряда электромагнитных физических констант, является прецизионный электромагнит с диапазоном изменения индукции магнитного поля 0.05-0.5 T.

Принцип действия МРМС был подробно рассмотрен в ряде работе [1,2]. Напомним, что траектория движения ионов в этом приборе представляет собой плоскую спираль с увеличивающимся радиусом. При движении от источника до детектора исследуемые ионы совершают два оборота в однородном магнитном поле, дважды проходя трехэлектродный модулятор (рис. 1). Рабочей орбитой прибора является окружность с радиусом r<sub>1</sub>, по которой двигаются ионы между первым и вторым прохождением модулятора. Боковые электроды модулятора заземлены, а на центральный подается высокочастотное синусоидальное напряжение частотой  $f \approx n f_c$ , где  $f_c = q B_0 / M$  — циклотронная частота ионов с массой М и зарядом q в однородном магнитном поле  $B_0$ , направленном перпендикулярно плоскости движеня ионов. Коэффициент кратности *n*, называемый номером гармоники, равен ближайшему целому числу к отношению  $f/f_c$ . При заданной разрешающей способности MPMC  $R = M/\Delta M = f/\Delta f \approx 10^6$ , где  $\Delta M$  и  $\Delta f$  — ширина линии масс-спектра в единицах массы и частоты соответственно, требования к стабильности частоты, амплитуды и фазы модулирующего напряжения являются чрезвычайно высокими и жесткими. Точно так же необходимо обеспечить высокую однородность и стабильность магнитного поля на рабочей орбите движения ионов. Однако это не означает, что для достижения разрешающей способности ~ 10<sup>6</sup> значение неоднородностей магнитного поля на рабочей орбите  $\Delta B/B_0$  должно быть  $\approx 10^{-6}$ . Возможность работы прибора на высоких гармониках циклотронной частоты  $n \gg 1$  снижают требования к однородности магнитного поля, в строящемся приборе n = 200.

Неоднородности магнитного поля влияют на разрешающую способность и чувствительтность массспектрометров несколькими путями:

 увеличивают геометрические размеры ионного пучка;

 искажают изображение выходной щели источника в плоскости выходной щели анализатора;

3) изменяют период циклотронного движения ионов  $T_c$  по сравнению с  $T_0$  в однородном магнитном поле  $B_0$ .

Эти три составляющие в данном случае можно считать независимыми друг от друга, и их влияние на параметры движения ионов в приборе и на аналитические характеристики MPMC суммируется.



**Рис. 1.** Схема МРМС. *1* — источник ионов; *2* — модулятор; *3* — коллектор ионов; *4* — отражатель ионов.

Теоретические оценки влияния неоднородностей магнитного поля на уширение пучка и искажение изображения для МРМС являются чрезвычайно сложными, и нахождение аналитического или матричного решения, как, например, в случае магнитного статического прибора [3] или радиочастотного масс-спектрометра по схеме L.G. Smith [4], вряд ли возможно. Численное моделирование работы МРМС [5] и соответствующие оценки показывают, что для достижения разрешающей способности MPMC  $\sim 10^6$  на полувысоте линии массспектра достаточно, чтобы вертикальная составляющая неоднородности магнитного поля на рабочей орбите  $\Delta B_z/B_0$  была на уровне ~ 10<sup>-5</sup>. Косвенным подтверждением этой оценки может служить тот факт, что на макете МРМС [2] нами была достигнута разрешающая способность 3.5 · 10<sup>5</sup> при уровне неоднородности магнитного поля на рабочей орбите  $\Delta B_z/B_0 \approx 10^{-4}$  при  $B_0 \approx 0.12$  Т и n = 100-110.

Что касается влияния неоднородностей магнитного поля на период циклотронного движения ионов на рабочей орбите МРМС, то способ измерения всех трех составляющих неоднородности магнитного поля  $\Delta B_z$ ,  $\Delta B_{\rho}$  и  $\Delta B_{\phi}$  был детально представлен в работе [6]. Там же приведена методика расчета изменения циклотронного периода  $\Delta T_c$  ионов за счет всех составляющих неоднородности магнитного поля  $D_0$ .

### Устройство электромагнита

Исходя из требования получения максимально возможной однородности магнитного поля на круговой рабочей орбите диаметром ~ 400 mm был рассчитан, сконструирован и изготовлен прецизионный электромагнит с диапазоном изменения индукции магнитного поля 0.05-0.5 Т. В соответствии с принципом работы МРМС вакуумная камера масс-анализатора располагается в зазоре между полюсными наконечниками магнита и определяет высоту зазора. При высоте каметры ~ 50 высота зазора была выбрана равной 53 mm. Этот размер, в свою очередь, повлиял на размер полюсных наконечников электромагнита. Как показал анализ работ по созданию магнитнов с высокой однородностью магнитного поля  $(\Delta B/B = k \cdot 10^{-5})$  в большом объеме [7–9], рабочая орбита должна отстоять от края полюсного наконечника не менее, чем на 1.5 ширины межполюсного зазора, чтобы исключить влияние краевых эффектов на однородность поля на орбите. Так как наши требования к однородности выше, чем в указанных работах, был выбран диаметр полюсного наконечника 600 mm. Таким образом, рабочая орбита отстоит от края полюсного наконечника на 1.9 ширины межполюсного зазора.

В то же время при таком диаметре полюсных наконечников их края, ближайшие к вертикальным стойкам ярама, располагаются на расстоянии  $\sim 3$  ширин зазора,



Рис. 2. Схематическое изображение прецизионного магнита; 1 — ярмо; 2 — магнитные полюса; 3 — полюсные наконечники; 4 — катушки питания; 5 — катушки развертки и стабилизации магнитного поля; 6 — болты крепления полюсных наконечников.

и это препятствует оттягиванию магнитного поля в ярмо (рис. 2).

Ш-образное ярмо электромагнита отлито из армкожелеза, полюса грибовидной формы изготовлены из железа, полученного при двойном электрошлаковом переплаве. Полюсные наконечники сделаны из железа двойного электрошлакового переплава с последующей ковкой и отжигом при температуре порядка 950°C в атмосфере водорода в течение 4 h для получения максимально однородной структуры металла, а следовательно, и однородности магнитного поля.

Максимальное значение индукции магнита составляет  $\sim 0.5$  T, а величина магнитной индукции насыщения  $B^*$  для мягких сортов железа  $\sim 1$  T [8], это позволило применить грибовидную форму полюсов, при которой их сечение плавно увеличивается от  $\sim 1400$  cm<sup>2</sup> в месте стыка с ярмом до  $\sim 2800$  cm<sup>2</sup> в местах сопряжения с полюсными наконечниками, получить при относительно небольшой массе магнита ( $\sim 4000$  kg) однородное магнитное поле в большом объеме магнитного зазора. По этой же причине полюсным наконечникам была придана простая цилиндрическая форма с радиусом закругления краев порядка 2 mm, а не десятков миллиметров или

закругления по логарифмической кривой, как в работах [7,8,10].

Большое внимание при конструировании было уделено способу крепления магнитных полюсов к ярму и полюсных наконечников к полюсам. Каждый из полюсов крепится к ярму семью болтами из низкоуглеродистой мягкой стали, причем один болт располагается в центре полюса на оси симметрии ярма, а шесть расположены на окружности диаметром 360 mm через 60°. Три из шести болтов (через один), а также центральный притягивают полюс к ярму, а остальные три отжимают. Болты крепления верхнего и нижнего полюсов смещены друг относительно друга на 30°. При конструировании магнита полагалось, что болты крепления полюсов будут служить своеобразными шиммами со сложным механизмом действия.

Во-первых, материал болтов обладает магнитными свойствами, отличными от материала полюсов. Вовторых, при закручивании или выкручивании болтов происходит локальное перераспределение магнитного потока из-за изменения площади соприкосновения материала болтов с материалом полюсов. В-третьих, при регулировке болтов может изменяться контакт полюсов с ярмом. И, в-четвертых, при этих процессах не исключены прогибы, смещения и другие виды механических напряжений в полюсных наконечниках, которые, вероятно, могут влиять на однородность магнитного поля в зазоре. В процессе юстировки магнита и регулировки однородности магнитного поля на рабочей орбите авторы путем закручивания или выкручивания болтов могли дозированно, предсказуемо и достаточно тонко изменять величину индукции магнитного поля в определенных зонах (по крайней мере, ее вертикальную составляющую  $\Delta B_z$ ) на уровне 10<sup>-6</sup> от поля  $B_0$  в центре зазора.

Крепление полюсных наконечников к полюсам осуществлено 24 винтами М5 из мягкого железа, расположенными по краю полюсов на окружности диаметром 570 mm. Влияние этих винтов на однородность поля на рабочей орбите исчезающе мало и поэтому практически не исследовалось.

При изготовлении и юстировке электромагнита самое пристальное внимание уделялось чистоте обработки поверхностей полюсных наконечников, параллельности плоскостей, образующих магнитный зазор, а также соосности установки полюсных наконечников. Как следует из [11], величина неоднородности магнитного поля зависит от непараллельности магнитного зазора следующим образом:

$$(B - B_0)/B_0 = -c(d - d_0)/d_0,$$

где  $B_0$  и B — индукция в геометрическом центре зазора и исследуемой точке рабочей области магнита,  $d_0$  и d — ширина зазора в центре и исследуемой точке, c — эмпирический коэффициент,  $0.66 \le c \le 0.75$ . При установленных ширине магнитного зазора  $d_0 \sim 53$  mm и требуемой однородности магнитного поля на орбите  $\Delta B/B \sim 10^{-6}$  это означает, что параллельность полюсных наконечников должна быть выдержана с погрешностью  $0.07-0.08\,\mu$ m, что на порядок превосходит реально достижимую точность оптических измерений. Поэтому установка полюсных наконечников производилась с помощью трех мерных кварцевых столбиков высотой 53 mm, погрешность изготовления которых составляла  $\leq 1\,\mu$ m.

Требование к параллельности плоскостей, образующих магнитный зазор, автоматически определяет требование к чистоте обработки поверхностей полюсных наконечников. Они были обработаны с оптической точностью, и их отклонение от плоскости не превышали  $\pm 1\,\mu$ m.

Несоосность выставления (сдвиг) полюсных наконечников может повлечь за собой увеличение неоднородности поля на рабочей орбите. В работе [12] на основе экспериментальных данных было получено эмпирическое соотношение, которое гласит, что относительное смещение  $\kappa = \Delta x/D$  (где  $\Delta x$  — линейное смещение, а D — диаметр полюсных наконечников) на  $10^{-4}$  приводит к дополнительной неоднородности магнитного поля в зазоре на  $10^{-6}$ . Отсюда следует, что в нашем магните несоосность полюсников не должна превышать 0.06 mm. Очевидно, что погрешности изготовления (диаметры) полюсных наконечников также не должны превышать эту величину. В действительности погрешность изготовления полюсных наконечников составила 0.05, а соосность их установки лежит в пределах 0.05-0.1 mm.

Магнитное поле в зазоре образуется за счет протекания стабилизированного постоянного электрического тока через 7 включенные параллельно катушки, закрепленные с помощью каркасов по 2 на верхнем и нижнем полюсах. Общее сопротивление катушек питания —  $3 \Omega$ . На полюсах магнита также закреплены 2 пары катушек обратной связи и развертки магнитного поля. Опорное сопротивление схемы питания магнита выполнено из параллельно включенных манганиновых спиралей общим сопротивление 0.1  $\Omega$ . Катушки питания и опорное сопротивление охлаждаются водой. С помощью



переменного сопротивления в блоке управления можно устанавливать с высокой точностью любое значение опорного напряжения в диапазоне 0–3 V и изменять индукцию в пределах 0.05–0.5 Т. Кривая намагничивания приведена на рис. 3.

В зазоре электромагнита размещается датчик ядерной стабилизации магнитного поля, содержащий 4 ампулы со слабым раствором медного купороса в воде. Три ампулы диаметром 10 mm используются для стабилизации поля на частотах: 7.23 (что соответствует индукции 0.172 T), 12.58 (0.295), 15.32 MHz (0.359 T) и ампула диаметром 15 mm для частоты 2.34 MHz (0.055 T). Опорные значения частот ядерного магнитного резонанса (ЯМР) стабилизации выбраны так, чтобы равномерно охватывать весь диапазон изменения индукции.

#### Результаты исследований

Исследования неоднородности индукции магнитного поля на рабочей орбите движения ионов диаметром 400 mm проводились с помощью 2 датчиков ЯМР, установленных на специальном координатном устройстве. Первый опорный датчик является неподвижным и располагается в геометрическом центре магнитного зазора, а второй перемещается по рабочей орбите и может фиксироваться в 24 точках окружности. Измеряя частоты сигналов ЯМР от двух датчиков, мы определяем значения магнитной индукции В<sub>i</sub> в соответствующей точке на орбите и поля В<sub>0</sub> в геометрическом центре зазора. Проведя эту процедуру в 24 точках орбиты, получим так называемую карту магнитного поля. Метод ЯМР позволяет измерять только модуль вектора поля |В|, не давая информации о его направлении (составляющих вектора  $B_z$ ,  $B_\rho$  и  $B_{\phi}$ ). Методика измерения составляющих вектора поля В была нами разработана ранее [6], но на данном этапе исследований не применялась.

На рис. 4 приведены карты магнитного поля. Кривые 1-4 соответствуют распределению поля на орбите в процессе юстировки магнита, 5 и 6 сняты в другие дни. Как видно из рисунка, характер кривых сохраняется всегда. Амплитуды разбросов  $B_{i \max} - B_{i \min}$ на картах поля, снятых в разные дни, составляют от 200 до 400 Hz при  $B_0 = 14.412 \cdot 10^6$  Hz, т.е.  $\Delta B/B_0 = \pm (7 \cdot 10^{-6} - 1.5) \cdot 10^{-5}$ . В течение одного дня уровень магнитного поля в любой точке орбиты изменяется не более чем на  $\pm 2 \cdot 10^{-6}$ , что, вероятно, связано с дрейфом температуры в помещении или с температурой охлаждающей воды. Нестабильность поля в любой точке орбиты в течение нескольких минут, достаточных для записи масс-спектров, существенно меньше  $1 \cdot 10^{-6}$ .

При включении электромагнита в разные дни уровень поля может отличаться на  $\pm 1 \cdot 10^{-5}$  (см. рис. 4), что, вероятно, обусловлено гистерезисом магнитного поля в материалах ярма и полюсных наконечников и, по всей видимости, зависит от процедуры включения и выключе-



Рис. 4. Магнитное поле на орбите (N — точки орбиты). Частота ЯМР f = 14411000 Hz. Средняя частота  $\langle f \rangle$  Hz: I = 14411785, 2 = 14411671, 3 = 14411774, 4 = 14411794, 5 = 14412089, 6 = 14412064; размах  $\Delta f$ , Hz: I = 661, 2 = 519, 3 = 388, 4 = 278, 5 = 220, 6 = 334;  $\Delta f / \langle f \rangle$ :  $I = 4.6E \cdot 10^{-5}$ ,  $2 = 3.6E \cdot 10^{-5}$ ,  $3 = 2.7E \cdot 10^{-5}$ ,  $4 = 1.9E \cdot 10^{-5}$ ,  $5 = 1.5E \cdot 10^{-5}$ ,  $6 = 2.3E \cdot 10^{-5}$ .

ния электромагнита. Эти эффекты требуют дальнейшего тщательного изучения.

Для оценки градиентов индукции  $\Delta B_z$  и  $\Delta B_\rho$  мы использовали датчик ЯМР со стеклянной ампулой с внешним диаметром ~ 6 mm, наполненной водным раствором CuSO<sub>4</sub>. Измерения проводились в разных точках на орбите движения ионов. В каждой из точек производилось пять серий измерений: в самой точке орбиты и при смещении центра ампулы на 2.0–2.5 mm вверх, вниз, к центру и от центра зазора. Измерения показали, что при вертикальных смещениях датчика изменения частот ЯМР лежат в пределах от 0 до ±40 Hz, т.е.  $\Delta B_z/B_0 = 0 - \pm 1 \cdot 10^{-6}$  mm<sup>-1</sup>. Радиальные градиенты индукции в измеренных точках орбиты оказались несколько больше и достигали ±60 Hz, т.е.  $\Delta B_\rho/B_0 = 0 - \pm 1.7 \cdot 10^{-6}$  mm<sup>-1</sup>.

# Заключение

Таким образом, сконструирован, построен и исследован прецизионный электромагнит с диаметром полюсных наконечников 600 mm и шириной межполюсного зазора 53 mm для магнитного резонансного массспектрометра, обладающий стабильным и однородным магнитным полем в большом объеме магнитного зазора. Пути дальнейшего повышения однородности магнитного поля на рабочей орбите движения ионов известны, но они будут иметь смысл только после исследований, связанных с гистерезисом магнитного поля, и нахождения оптимальных режимов включения и выключения электромагнита.

Авторы признательны одному из разработчиков, бывшему сотруднику Института аналитического приборостроения РАН Ю.Л. Клейману за помощь при настройке и юстировке прецизионного электромагнита.

# Список литературы

- [1] *Мамырин Б.А., Французов А.А. //* ПТЭ. 1962. № 3. С. 114– 119.
- [2] Мамырин Б.А., Алексеенко С.А., Аруев Н.Н. // ЖЭТФ. 1981. Т. 80. № 6. С. 2125–2131.
- [3] Yagi K. // Nucl. Instr. and Methods. 1966. Vol. 36. P. 88-92.
- [4] Cock A., Le Gac R., De Saint Simon M. et al. // Nucl. Instr. and Methods. 1988. Vol. A271. P. 512–517.
- [5] Аруев Н.Н., Байдаков Е.Л. // ЖТФ. 1999. Т. 69. Вып. 4. С. 89–96.
- [6] Алексеенко С.А., Аруев Н.Н., Мамырин Б.А. // Метрология. 1974. № 4. С. 54-62.
- [7] Kumagai H. // Nucl. Instr. and Methods. 1960. Vol. 6. N 2.
  P. 213–216.
- [8] Huber A., Primas H. // Nucl. Instr. and Methods. 1965. Vol. 33. N 1. P. 125–130.
- [9] Ehrhardt K. // Messugen and einem Modellmagneten zur Reproduzierbarkeit von Feldem Feldhohen and Materialuntersuchhungen im Hinblick auf ihre Magnetisierbarkeit. Kernforschungsanlage. Julich GmbH. Institut für Kernphysic. 1977. 37 p.
- [10] Braams C.M. // Nucl. Instr. and Methods. 1964. Vol. 26. N 1. P. 83–89.
- [11] *Tsuno K.* // Jpn. J. of Appl. Phys. 1977. Vol. 17. N 2. P. 283–289.
- [12] Tsuno K. // Jpn. J. of Appl. Phys. 1978. Vol. 17. N 5. P. 837–841.