04;07 Объемное рентгеновское излучение быстрых электронов при высоковольтном наносекундном пробое плотных газов

© А.Н. Ткачев, С.И. Яковленко

Институт общей физики им. А.М. Прохорова РАН, 119991 Москва, Россия e-mail: syakov@kapella.gpi.ru

(Поступило в Редакцию 22 марта 2006 г.)

Проведено моделирование спектров рентгеновского излучения быстрых электронов, инжектированных в газ, находящийся в электрическом поле. В случае слабых полей результаты моделирования спектра энергии, излучаемой электроном, хорошо согласуются с теорией Крамерса. В достаточно сильном поле рентгеновский спектр существенно изменяется по сравнению с известными спектрами рентгеновских трубок с массивными катодами. При этом значительно увеличивается излучаемая энергия. Для заданного разрядного промежутка с ростом напряжения имеет место максимум числа испущенных фотонов, но излучаемая энергия не падает, а насыщается.

PACS: 52.80.-s

При высоковольтном наносекундном пробое плотных газов в 1967–1969 гг. было зарегистрировано рентгеновское излучение [1–3] (литературу см. в обзоре [4]). В недавних работах подытоженных в [5,6] удалось получить мощные (в сотни ампер) субнаносекундные электронные пучки в плотных газах. Механизм формирования таких пучков наиболее полно изложен в [5–9]; пучки убегающих электронов дают жесткое рентгеновское излучение в области порядка 100 keV.

Согласно [5–9], в механизме формирования мощных субнаносекундных пучков в плотных газах существенную роль играет фоновая ионизация, обеспечиваемая быстрыми электронами, ускоряемыми за счет концентрации электрического поля на неоднородностях катода и плазменных образованиях, возникающих на этих неоднородностях. За быстрыми электронами распространяется волна размножения электронов фона. Когда она подходит близко к аноду, выполняется нелокальный критерий убегания электронов и происходит генерация пучка убегающих электронов [5–9].

Наличие быстрых электронов в объеме подтверждается тем, что при наносекундном рязряде в газе атмосферного давления наблюдается мягкое рентгеновское излучение (< 10 keV) из объема [10,11]. Есть основание считать, что это объемное рентгеновское излучение обусловлено торможением при лобовых столкновениях с атомами газа быстрых электронов, инжектируемых с катода. Роль лобовых столкновений продемонстрирована в [11,12].

В настоящей работе проведено моделирование мягких рентгеновских спектров, излучаемых при движении от катода к аноду быстрых электронов, инжектированных с катода. Речь идет об электронах, имеющих энергию большую энергии возбуждения *К*-оболочки атомов газа. Отметим, что, ввиду того что скорость быстрых электронов превышает скорость распространения лавины и стримера, вопросы, связанные с лавинно-стримерным переходом здесь не рассматриваются. Моделирование движения группы быстрых электронов, не взаимодействующих между собой, было проведено, так же как в работе [12], на основе одной из модификаций метода частиц (подробнее см. [13]). Электроны рождались в начале координат. На малых временны́х шагах решались уравнения движения всех рассматриваемых электронов, и разыгрвались упругие и неупругие столкновения с атомами. Так же как в [12], движение электронов между столкновениями рассматривалось на основе релятивистской механики с учетом силы торможения в приближении Бете. Однако ниже представлены результаты для нерелятивистских энергий. В отличие от [12] рассматривался слой газа конечной толщины *d*. Время наблюдения за электроном t = 1 пs, моделировалось движение n = 5000.

Ввиду того что акты излучения фотона очень редки по сравнению с актами рассеяния, вводилась вероятность излучения "условного" фотона, превышающая вероятность излучения реального фотона в K раз. Акты излучения "условного" фотона не учитывались в динамике движения электрона, они использовались лишь для вычисления спектра тормозного излучения. Полученное таким путем число фотонов делилось в конце расчета на K.

Вероятность излучения "условного" фотона определялась выражением $P_K = 1 - \exp(-dl(N\sigma_K)K)$, где dl путь, пройденный электроном за временной интервал dt; σ_K — крамерсовское свечение излучения фотона. Для него использовалось выражение

$$\sigma_{K}(\varepsilon_{e}) = \frac{16\pi}{3\sqrt{3}} \alpha Z^{2} r_{0}^{2} \left(\frac{1}{\beta^{2}(\varepsilon_{e})} - 1\right) \xrightarrow{\varepsilon_{e} \ll m_{e}c^{2}} \frac{8\pi}{3\sqrt{3}} \frac{e^{6}Z^{3}}{\hbar m_{e}c^{3}\varepsilon_{e}},$$

где ε_e — кинетическая энергия налетающего электрона; Z — заряд ядра атома; $\alpha = e^2/(\hbar c) \approx 1/137$; $r_0 = e^2/(m_e c^2)$. Спектр виртуальных фотонов (т.е. их распределение по энергии ε) полагался пропорциональным $1/\varepsilon$.

Рис. 1. Энергетический спектр тормозного излучения электрона в азоте в отсутствие внешнего поля: $\varepsilon_0 = 10$ keV, $N = 2 \cdot 2.510^{19}$ cm⁻³, d = 1 cm, E = 0. a — распределение по длине волны; b — по энергии фотона. Пунктир соответствует выражению (1); $\lambda_{\text{max}} = (3/2)2\pi\hbar c/\varepsilon_0 \approx 0.19$ nm.

Puc. 2. Энергетический спектр тормозного излучения электрона в азоте в сильном поле: $\varepsilon_0 = 10$ keV, $N = 2 \cdot 2.510^{19}$ cm⁻³, d = 1 cm, E = 50 kV/cm. a — распределение по длине волны; b — по энергии фотона. Пунктир соответствует выражению $9 \cdot 10^{-8} (1/\text{eV}) (\varepsilon - 0.4\varepsilon_0); \lambda_0 = 2\pi \hbar c / \varepsilon_0 \approx 0.124$ nm.

Как известно, спектр энергии $I_{\varepsilon}(\varepsilon)$, излучаемой электроном при торможении в массивной мишени, согласно теории Крамерса определяется следующим выражением [14]:

$$I_{\varepsilon}(\varepsilon) = \int_{\varepsilon_0}^{\varepsilon} \sigma_K(\varepsilon_e) N \frac{dx}{d\varepsilon_e} d\varepsilon_e$$
$$= \int_{\varepsilon_0}^{\varepsilon} \frac{\sigma_K(\varepsilon_e)}{-F(\varepsilon_e)} d\varepsilon_e = C_{\varepsilon} Z(\varepsilon_0 - \varepsilon), \qquad (1)$$

$$C_{arepsilon} pprox rac{4}{3\sqrt{3e/2}\ln(arepsilon/E_1)} rac{e^2}{\hbar m_e c^3} pprox 10^{-8} rac{1}{\mathrm{eV}}$$

Здесь $F_{fr}(\varepsilon_e) = N(2\pi e^4 Z/\varepsilon_e)\sqrt{e/2}\ln(\varepsilon_e/E_1)$ — сила трения в нерелятивистском случае ($e \approx 2.72$); N плотность атомов нейтрального газа; E_1 — средняя энергия неупругих потерь; ε_0 — начальная энергия электрона. Для распределения по длинам волн $\lambda(\varepsilon) = 2\pi \hbar c/\varepsilon$ имеем $I_{\lambda}(\lambda) = I_{\varepsilon}(\varepsilon(\lambda)) 2\pi \hbar c/\lambda^2$.

Как видно из рис. 1, результаты моделирования в отсутствие поля хорошо согласуются с теорией (1).

В сильном поле спектр деформируется. Появляется излучение в области $\lambda < \lambda_0 = 2\pi \hbar c / \varepsilon_0$ (рис. 2). Однако в области энергий $\varepsilon < \varepsilon_0$ спектр сохраняет линейную зависимость типа (1). С повышением напряженности поля повышается общее количество испущенной электроном энергии E_{ph} и средняя энергия испущенных фотонов ε_{ph} . Общее число испущенных фотонов N_{ph} , начиная с некоторого значения поля, начинает падать, однако средняя энергия испущенных фотонов не падает, а насыщается (рис. 3).

Рис. 3. Зависимость от напряженности поля числа фотонов N_{ph} (сплошная кривая) энергии E_{ph} (пунктир) испущенной фотоном при пролете газового слоя азота, а также средней энергии испущенных фотонов ε_{ph} . Штрихпунктир — аппроксимация $4.7 \cdot 10^{-3}E + 0.5$. $E_{cr}(\varepsilon_0) \approx 27$ kV/cm. Толщина слоя азота d = 1 cm, время наблюдения за электроном t = 1 ns.

Можно было бы попытаться обобщить теорию Крамерса, введя напряженность поля в выражение (1):

$$I_{\varepsilon}(\varepsilon, E) = \int_{\varepsilon_0}^{\varepsilon} \frac{\sigma_K(\varepsilon_e)N}{eE - F(\varepsilon_e)} d\varepsilon$$
$$= C_{\varepsilon} ZZC_E \ln\left(\frac{1 - E\varepsilon/ZC_E}{1 - E\varepsilon_0/ZC_E}\right), \quad (2)$$

$$C_{\varepsilon} \approx 2\pi \sqrt{e/2} \ln(\varepsilon/E_1) e^3 N \approx 4 \cdot 10^7 \frac{V}{\mathrm{cm}} \cdot \mathrm{eV}.$$

Однако результаты моделирования показывают, что такое обобщение не дает правильного результата для больших полей. Для слабых же полей оно не представляет интереса. Дело в том, что, как показано в [11,12], характер движения электронов существенно осложняется из-за лобовых столкновений. Согласно упрощенному подходу, электрон должен непрерывно набирать энергию при превышении полем критического значения $E_{cr}(\varepsilon_e) = F(\varepsilon_e)/e$. Однако на самом деле даже при существенном превышении критического значения напряженности $E > E_{cr}(\varepsilon_e)$ поля ускоряется лишь некоторая доля электронов. Остальные в результате упругих столкновений разворачиваются и теряют энергию за счет торможения полем. В отсутствие же поля лобовые столкновения слабо влияют на спектр массивной мишени, поскольку интегрирование в (1) производится вдоль траектории электрона.

Отметим также, что существенное влияние поля на характеристики рентгеновского спектра происходит при $E \approx 2E_{cr}(\varepsilon_0)$.

Итак, моделирование показывает, что в достаточно сильном поле рентгеновский спектр тормозного излучения электрона в плотном газе существенно изменяется по сравнению с известными спектрами рентгеновских трубок с массивными катодами. При этом значительно увеличивается излучаемая энергия.

Работа поддержана МНТЦ, проект № 2706.

Список литературы

- Станкевич Ю.Л., Калинин В.Г. // ДАН СССР. 1967. Т. 177. № 1. С. 72.
- [2] Noggle R.C., Krider E.P., Wayland J.R. // J. Appl. Phys. 1968. Vol. 39. P. 4746.
- [3] Тарасова Л.В., Худякова Л.Н. // ЖТФ. 1969. Т. 39. Вып. 8. С. 1530.
- [4] Бабич Л.П., Лойко Т.В., Цукерман В.А. // УФН. 1990.
 Т. 160. № 7. С. 49.
- [5] Тарасенко В.Ф., Яковленко С.И. // УФН. 2004. Т. 174. № 9. С. 953.
- [6] Tarasenko V.F., Yakovlenko S.I. // Physica scripta. 2005. Vol. 72. V 1. P. 41.
- [7] Tkachev A.N., Yakovlenko S.I. // CEJP. 2004. Vol. 2. N 4. P. 579–635 (www.cesj.com/physics.html).

- [8] Tarasenko V.F., Yakovlenko S.I. // Plasma devices and operations. 2005. Vol. 13. N 4. P. 231–279.
- [9] Газовые и плазменные лазеры / Под ред. С.И. Яковленко. М.: Наука, 2005. 820 с.
- [10] Репин П.Б., Репьев А.Г. // ЖТФ. 2004. Т. 74. Вып. 7. С. 33.
- [11] Костыря И.Д., Тарасенко В.Ф., Ткачев А.Н., Яковленко С.И. // ЖТФ. 2006. Т. 76. Вып. 3. С. 64.
- [12] Ткачев А.Н., Яковленко С.И. // ЖТФ. 2006. Т. 76. Вып. 5. С. 42.
- [13] Tkachev A.N., Yakovlenko S.I. // Laser physics. 2002. Vol. 12.
 N 7. P. 1022–1028.
- [14] Блохин М.А. Физика рентгеновских лучей. М.: ГИТТЛ, 1957. 518 с.