01;02;03 Математический анализ движения ионов в газе в знакопеременном периодическом несимметричном по полярности электрическом поле

© И.А. Буряков

Конструкторско-технологический институт геофизического и экологического приборостроения СО РАН, 630090 Новосибирск, Россия e-mail: buryakov@uiggm.nsc.ru

(Поступило в Редакцию 5 октября 2005 г.)

Проведен математический анализ движения ионов в газе в знакопеременном периодическом несимметричном по полярности электрическом поле, основанный на решении уравнения непрерывности. Найдены решения уравнения переноса, описывающие распределение ионов в газе в планарной и цилиндрической полостях. Приведены оценки эффекта фокусировки ионов, возникающего в пространственно неоднородном поле. Результаты этого анализа могут быть использованы при проектировании спектрометров приращения ионной подвижности — устройств, предназначенных для обнаружения микропримесей взрывчатых, наркотических и других опасных веществ.

PACS: 05.20.Dd, 51.10.+y

Введение

Для повышения эффективности технической реализации ионизационных газоанализаторов, достижения рекордных аналитических характеристик необходимо глубокое понимание физических процессов, происходящих в этих устройствах, основанных на явлениях переноса, ион-молекулярных и ион-ионных взаимодействиях. Математическое описание указанных процессов в простейших случаях сводится к решению уравнения переноса заряженных частиц, т. е. анализу пространственновременной эволюции диффузионно расплывающегося и вступающего в химические реакции облака ионов во время дрейфа его через плость, заполненную газом, под действием электрического поля.

К таким ионизационных устройствам относятся спектрометры приращения ионной подвижности (СПИП), в которых резделение смеси ионов разных типов производят в знакопеременном периодическом несимметричном по полярности электрическом поле, используя зависимости коэффициентов ионной подвижности (K) от величины напряженности электрического поля E [1]. Разделение ионов можно производить как в однородном [2], так и пространственно неоднородном электрических полях [3]. В последнем случае, в зависимости от знака заряда ионов и знака приращения коэффициента подвижности (α), возникает пространственная фокусировка либо дефокусировка ионов.

Наиболее простыми примерами полей с пространственным градиентом являются поля между: а) двумя коаксиальными цилиндрическими электродами

$$E_{\rm cyl} = U/r \ln(r_2/r_1); \tag{1}$$

б) двумя концентрическими сферическими электродами $E_{\rm sp} = Ur_1r_2/r^2(r_2 - r_1)$, где U — прикладываемое напряжение, r — радиальная координата, r_1 , r_2 — радиусы внутреннего и внешнего электрода соответственно. Ограничения и требования, предъявляемые к знакопеременному периодическому несимметричному по полярности электрическому полю:

а) амплитуда напряженности электрического поля при атмосферном давлении $E_{\min} < E < E_{\max}$, $E_{\min} = 1.5 \cdot 10^3 \text{ V/cm}$ — критерий "слабого" поля, когда зависимостью K(E) можно пренебречь [4], $E_{\max} = 31.6 \cdot 10^3 \text{ V/cm}$ — пробивная напряженность электрического поля в сухом воздухе;

б) период поля $P \approx 1 \cdot 10^{-5} \, \text{s} \gg 1 \cdot 10^{-9} \, \text{s}$ — время между соударениями молекул газа при нормальных условиях.

В данной работе на примере отрицательных ионов 2,4-динитротолуола (ДНТ), 2,4,6-тринитротолуола (ТНТ) и положительных ионов N,N-диметиланилина (ДМА), N,N-диэтиланилина (ДЭА), дифениламина (ДФА), образующихся при β -ионизации в воздухе, проведен математический анализ движения ионов в газе в знакопеременном периодическом несимметричном по полярности электрическом поле для полостей, имеющих планарную или цилиндрическую геометрии.

Решение уравнения непрерывности для полостей с планарной и цилиндрической геометрией

При отсутствии источников и стоков заряженных частиц движение ионов в газе в произвольный момент времени описывается уравнением непрерывности

$$\left(\partial n(\mathbf{r},t)/\partial t\right) + \nabla \mathbf{J} = \mathbf{0},\tag{2}$$

 $n(\mathbf{r},t)$ — плотность ионов, \mathbf{r} — радиус-вектор, t — время. При действии электрического поля общий поток ионов **J** определяется комбинацией дрейфового и диффузионного потоков [4]

$$\mathbf{J} = V(\mathbf{r})n(\mathbf{r},t) - D\nabla n(\mathbf{r},t), \qquad (3)$$

 $V(\mathbf{r})$ — скорость дрейфа ионов, D — коэффициент диффузии. Подставив (3) в (2) и разделив переменные

$$n(\mathbf{r},t) = n_0(\mathbf{r}) T(t), \qquad (4)$$

получим уравнение для функции T(t), решение которого имеет вид

$$T(t) = \exp^{-t/\tau},\tag{5}$$

 τ — постоянная времени затухания (среднее время жизни ионов). Важно отметить, что в действительности функция T(t) зависит от координаты **r**, и при разделении переменных вместо (4) следовало был писать сумму произведений для функции координат и времени, но для качественного анализа предложенный выше подход является более наглядным. Поиск решения в упрощенном виде (4) приводит к уравнению переноса ионов, не зависящему от времени

$$\nabla (D\nabla n_0(\mathbf{r}) - V(\mathbf{r})n_0(\mathbf{r})) + n_0(\mathbf{r})/\tau = 0.$$
(6)

Решение уравнения (6) для $n_0(\mathbf{r})$ представляет собой задачу на собственные значения. Характер решения зависит от геометрии полости, вмещающей газ и ионы, и соответствующих граничных условий.

Введем некоторые ограничения, существенно упрощающие решение уравнения переноса:

а) плотность ионов пренебрежимо мала по сравнению
 с плотностью частиц газа, поэтому можно пренебречь
 влиянием поля пространственного заряда;

б) искажения электрического поля, возникающие на краях электродов, формирующих полость, не учитываются;

 в) плотность ионов на стенке полости обращается в нуль;

г) скорость движения газа, вмещающего ионы, равна нулю.

Действие знакопеременного периодического несимметричного по полярности электрического поля $E_d(t) = E_d \times f(t)$ (E_d — амплитуда поля, f(t) — форма поля), описываемого условиями [1]

$$\frac{1}{P} \int_{t}^{t+P} f^{2n+1}(t) dt \begin{cases} = 0, & n = 0 \\ \equiv \langle f^{2n+1} \rangle \neq 0, & n \ge 1 \end{cases}$$
(7)

(P -период поля, $n \ge 0 -$ целое число), вызывает дрейф ионов вдоль силовых линий поля с характерной средней скоростью $\langle V_i \rangle$, пропорциональной приращению коэффициента подвижности $\alpha_i = (K_i(E) - K_i(0))/K_i(0)$ данного *i*-го типа ионов. Этот дрейф компенсируется постоянным электрическим полем E_{ci} . Условие компенсации $\langle V_i \rangle = 0$ [5]:

$$E_{ci} = \alpha_i E_d \langle f^3 \rangle$$
 или $U_i = \alpha_i U_d \langle f^3 \rangle$, (8)

 U_{ci} — напряжение компенсации *i*-й компоненты, U_d — амплитуда знакопеременного напряжения, вырабатываемые соответствующими генераторами.

Для полости с планарной геометрией условие (8) выполняется для любой координаты x, лежащей внутри полости. Для цилиндрической полости напряженность электрического поля является функцией радиуса E(r). Поэтому если воздействовать суперпозицией полей $E_c + E_d f(t)$, при которой $\langle V_i \rangle = 0$, например при $r_0 = (r_1 + r_2)/2$, то под действием такого поля ионы с координатами $r \neq r_0$ приобретают скорость, направленную к r_0 (при $\alpha > 0$) [6]

$$V(r) = c_0(r_0 - r)/r, \quad c_0 = K U_c/r_0 \ln(r_2/r_1).$$

Наличие скорости V(r) приводит к фокусировке ионов вблизи r_0 .

Поскольку период *P* — конечная величина, действие знакопеременного поля приводит к уменьшению эффективного зазора между электродами. Ионы, совершающие колебания и приблизившиеся к электродам на расстояние, равное

$$l = \frac{1}{2} \int_{0}^{P} |K E_d(t)| dt, \qquad (9)$$

гибнут. Эффективный зазор равен

$$g = d - l. \tag{10}$$

Для планарной (одномерной) геометрии задача расчета плотности ионов сводится к решению уравнения

$$D_L \frac{\partial^2 n_0(x)}{\partial x^2} - \langle V \rangle \frac{\partial n_0(x)}{\partial x} + \frac{n_0(x)}{\tau} = 0.$$
(11)

Введя граничные условия $n_0(x) = 0$ при $x = \pm g/2$ и ограничившись основной диффузионной модой [4], имеем (при $\langle V_i \rangle = 0$)

$$n_0(x, \tau) = A_1 \cos(\pi x/g), \quad \tau = g^2/\pi^2 D_L,$$
 (12)

 A_1 — постоянная интегрирования. Коэффициент диффузии \overline{D}_L , введенный в выражение (12), является значением продольного коэффициента диффузии, усредненного по периоду знакопеременного несимметричного по полярности поля.

Для полости с цилиндрической геометрией из-за отсутствия зависимости функции n_0 от азимутального угла задача расчета плотности ионов сводится к решению уравенния по радиальной координате (r)

$$\frac{1}{r}\frac{d}{dr}\left(r\left(D_L\frac{dn_0(r)}{dr} - \frac{c_0(r_0 - r)}{r}n_0(r)\right)\right) + \frac{n_0(r)}{\tau} = 0.$$
(13)

Чтобы упростить вид решения, можно ввести новую переменную $p = r - r_0$, тогда при условии $r_0 \gg p$ (13) будет иметь вид

$$\frac{d^2 n_0(p)}{dp^2} + \frac{c_0}{r_0 D_L} p \, \frac{d n_0(p)}{dp} + \left(\frac{c_0}{r_0 D_L} + \frac{1}{\tau D_L}\right) n_0(p) = 0.$$
(14)

После соответствующих преобразований уравнение (14) можно свести к вырожденному гипергеометрическому уравнению [7,8]

$$\xi y_{zz}'' + (b-z) y_z' - ay = 0, \tag{15}$$

где $a = (1 + r_0/(c_0\tau))/2$, b = 1/2, $z = kp^2$ — новая переменная, $k = -c_0/2r_0D_L$. Общим решением этого уравнения является выражение

$$y = C_1 F(a, b, z) + C_2 z^{1/2} F(a - b + 1, 2 - b, z), \quad (16)$$

F(a, b, z) — ряд Куммера, C_1, C_2 — постоянные интегрирования. Поскольку *z* может принимать отрицательные значения, то коэффициент $C_2 = 0$, так как плотность частиц не может быть комплексной величиной. Общее решение можно записать в виде знакопеременного ряда

$$n_{0}(r,\tau) = C_{1} \left(1 + \sum_{k=1}^{\infty} (-1)^{k} \frac{1}{k!} (c)_{k} \left(\frac{(r-r_{0})^{2}}{2\overline{D}_{L}} \right)^{k} \right),$$

$$(c)_{k} = \left(\frac{c_{0}}{r_{0}} + \frac{1}{\tau} \right) \left(\frac{c_{0}}{r_{0}} + \frac{1}{3\tau} \right) \dots \left(\frac{c_{0}}{r_{0}} + \frac{1}{(2k-1)\tau} \right).$$

$$(17)$$

Значение постоянной среднего времени жизни ионов τ определяется из граничных условий $n_0(r) = 0$ при $r_{l1,2} = r_1 + l$, $r_2 - l$.

Решения уравнения непрерывности (2) для полостей с цилиндрической и планарной геометриями в приближении (4) имеют вид

$$n(r, t) = n_0(r, \tau) \exp^{-t/\tau}; \ n(x, t) = n_0(x, \tau) \exp^{-t/\tau}.$$
 (18)

Расчет стационарного распределения плотности ионов *n*₀

В таблице указаны предполагаемые типы ионов, образующихся при β -ионизации паров исследуемых веществ в воздухе при атмосферном давлении, отношение их массы к заряду m/z, взятые из соответствующих литературных источников, даны значения приведенных коэффициентов подвижности ионов $K_0(0)$ в поле малой напряженности, коэффициентов подвижности при температуре T = 297 K, вычисленные с помощью уравнения $K(0) = K_0(0) \times 297/273$, коэффициентов диффузии

Типы ионов, отношение их массы к заряду m/z, приведенные коэффициенты подвижности ионов $K_0(0)$, коэффициенты подвижности K(0) и коэффициенты диффузии D при температуре T = 297 К

Вещество	m/z, at.u	$rac{K_0,}{\mathrm{cm}^2/(\mathrm{V}\cdot\mathrm{s})}$	K(0), $cm^2/(V \cdot s)$	D, cm ² /s
ДНТ	(M-H) ⁻ , 181 [9]	1.67	1.85	0.043
THT	$(M-H)^{-}, 226 [9]$	1.54	1.7	0.039
ДМА	$(M+H)^+$, 122 [10]	1.81	2	0.051
ДЭА	$(M+H)^+$, 150 [10]	1.68	1.88	0.048
ДФА	$(M+H)^+$, 170 [10]	1.54	1.7	0.039

Рис. 1. Распределение ионов ДНТ в цилиндрической $n_0(r)$ и планарной $n_0(x)$ полостях при различных E_d .

в поле малой напряженности при T = 297 K, которые определялись из соотношения Энштейна D = kTK(0)/e, k — постоянная Больцмана, e — заряд иона, T — температура. Эти значения использовались в дальнейших расчетах.

Расчеты стационарного распределения плотности ионов n_0 для полостей с цилиндрической и планарной геометриями проводились на примере ионов 2,4-динитротолуола (ДНТ) с использованием зависимости $\alpha(E/N)$ (N — плотность газа) [5]. Величина усредненного коэффициента диффузии \overline{D}_L находилась с помощью методики, изложенной в [11], τ — с учетом условия нормировки

$$\int_{r_1}^{r_2} n_0(r, \tau) \, dr = 1. \tag{19}$$

Геометрические размеры полостей: цилиндрическая — $r_1 = 0.7$, $r_2 = 0.9$, r_1, r_2 — радиусы внутреннего и внешнего цилиндров; планарная — расстояние между электродами d = 0.2 ст.

На рис. 1 показаны распределения ионов ДНТ при различных E_d в цилиндрической $n_0(r)$ (сплошные линии: $I - 6.3 \cdot 10^3$, $2 - 10 \cdot 10^3$, $3 - 22.3 \cdot 10^3$ V/cm) и планарной $n_0(x)$ (пунктир: $4 - 6.3 \cdot 10^3$, $5 - 22.3 \cdot 10^3$ V/cm) полостях. Вертикальными линиями вблизи оси x указаны значения $r_{l1,2} = r_1 + l$, $r_2 - l$ и g/2, -g/2. Для планарной полости распределение $n_0(x)$ имеет косинусоидальную форму при любой E_d , для цилиндрической — с ростом E_d форма распределения $n_0(r)$ трансформируется от косинусоидальной к распределению, подобному распределению Гаусса, среднее квадратичное отклонение (СКО) σ_{n_0} уменьшается. Такая трансформация приводит к фокусировке ионов вблизи r_0 и уменьшению их потерь на электродах за счет рекомбинации. Эффект фокусировки ионов, находящихся в газе, под действием знакопеременного

Рис. 2. Распределение плотности ионов ДНТ для $E_d = 22.3 \cdot 10^3$ V/cm как функции радиуса r при: $I - r_0 = 0.815$, 2 - 0.8, 3 - 0.785 cm.

периодического несимметричного по полярности электрического поля $E_d f(t)$, напряженность которого имеет пространственный градиент, был впервые описан в [3] и более подробно рассмотрен в [12,13].

При "сильной" фокусировке, когда $r_{l1} - r_{l2} > 6\sigma_{n_0}$, изменение положения равновесия r_0 в некоторых пределах не вызывает падения максимума распределения $n_0(r)$. На рис. 2 представлены распределения плотности ионов ДНТ ($r_1 = 0.7$, $r_2 = 0.9$ cm, $E_d = 22.3 \cdot 10^3$ V/cm) как функции радиуса r при различных значениях $U_c = 11.35$, 11.65, 11.85 V и соответствующих им положений равновесия $r_0 = 0.815$, 0.8, 0.785 cm.

Оценка величины постоянной времени затухания *т*

При подстановке экспериментальных значений параметров, входящих в (17), знакопеременный ряд медленно сходится, поэтому чрезвычайно сложно представить

Рис. 3. Зависимости постоянной времени затухания от амплитуды напряженности $\tau(E_d)$.

выражение для τ в виде какой-либо обозримой алгебраической формулы. Для оценки величины постоянной времени затухания (среднего времени жизни ионов до столкновения со стенками полости, содержащей газ) τ для ионов исследуемых веществ использовался численный метод. На рис. 3 приведены зависимости постоянной времени затухания от амплитуды напряженности $\tau(E_d)$ для ионов: 1 -ДНТ, 2 -ДМА, 3 -ТНТ, 4 -ДФА, 5 -ДЭА в цилиндрической полости (для ДНТ при $r_1 = 0.7$, $r_2 = 0.9$ сm, для остальных ионов при $r_1 = 0.34$, $r_2 = 0.5$ сm) и 6 -ДНТ, ТНТ в планарной полости.

Как видно из рисунка, в цилиндрической полости при небольших значениях амплитуды знакопеременного поля E_d τ увеличивается с ростом E_d , достигая максимального значения при $E_d = 16 - 18 \cdot 10^3 \, \text{V/cm}.$ Дальнейшее увеличение поля приводит к падению величины т. В планарной полости с ростом амплитуды знакопеременного поля E_d величина τ уменьшается вследствие уменьшения g и увеличения \overline{D}_L (12). В численном выражении при малых Е_d постоянные времени затухания т в цилиндрической и планарной полостях близки по величине, например, для ионов: ДНТ $\tau_{\Pi HT} = 0.14$, 0.078 s; THT $\tau_{THT} = 0.08$, 0.077 s соответственно. При напряженности $E_d = 18 \cdot 10^3 \, \text{V/cm}$ в цилиндрической полости $au_{\text{ДHT}} = 400 \,\text{s}, au_{\text{THT}} = 2,$ в планарной — $\tau_{\text{ДHT}} \approx \tau_{\text{THT}} = 0.05 \,\text{s.}$ При значениях $E_d = 22.3 \cdot 10^3 \,\text{V/cm}$ в цилиндрической полости $au_{
m ZHT}=40, \ au_{
m THT}=0.08, \ {
m B}$ планарной — $au_{
m ZHT}pprox au_{
m THT}=$ = 0.04 s.

Сравнение результатов расчета с экспериментальными данными

Экспериментальные установки подробно описаны для цилиндрической полости в [11], для планарной в [14]. Функционирование экспериментальных установок основано на отборе газовой пробы, содержащей пары исследуемых веществ, ионизации этих паров, пространственном разделении образовавшихся ионов под действием знакопеременного периодического несимметричного по полярности электрического поля (7) и регистрации разделенных ионов. Ионизацию осуществляли в прогреваемой цилиндрической камере, на внутренней поверхности которой расположены *β*-источники ⁶³Ni или ³Н с активностью 0.01 и 0.34 Си соответственно. Пространственное разделение ионов производили в цилиндрической полости с геометрическими размерами (cm): (A) $r_1 = 0.7$, $r_2 = 0.9$, длина $h_c = 7$, объем полости $V_{\text{cyl}} = 7 \text{ cm}^3$; (b) $r_1 = 0.35$, $r_2 = 0.5$, $h_c = 7$, $V_{\text{cyl}} \cong 3 \text{ cm}^3$, или планарной: (B) длина $h_p = 2$, ширина w = 0.5, $d = 0.05 \,\mathrm{cm}, V_{pl} = 0.05 \,\mathrm{cm}^3$. Транспортировку ионов через камеру ионизации, цилиндрическую или планарную полости и систему регистрации осуществляли потоком очищенного сухого воздуха (концентрация паров воды $< 100 \, \rm ppm)$ с объемной скоростью $Q_{\rm tr}$. Система регистрации включала коллектор ионов и электрометр.

Рис. 4. Фрагменты спектров при $Q_{\rm tr} = 50 \, {\rm cm}^3/{\rm s}$.

Сигнал, регистрируемый с помощью данных установок, представляет собой зависимость ионного тока от напряжения компенсации $I(U_c)$. Каждый тип иона регистрируется как ионный пик. Значение U_{ci} , соответствующее максимуму пика, характеризует тип иона i (8), так как является функцией его индивидуальных параметров (масса, структура, потенциал взаимодействия). На рис. 4 показаны фрагменты спектров при $Q_{tr} = 50 \text{ cm}^3/\text{s}$, содержащие пики ионов ТНТ, при изменении амплитуды напряженности знакопеременного поля E_d : в цилиндрической полости (Б) (сплошные линии) от $1 - 6.3 \cdot 10^3$ до $2 - 22.3 \cdot 10^3$ с шагом $3.2 \cdot 10^3$ V/сm; в планарной (пунктирные) от $3 - 14 \cdot 10^3$ до $4 - 28 \cdot 10^3$ с шагом $3.5 \cdot 10^3$ V/cm.

Из рисунка видно, что как для цилиндрической, так и для планарной полости экспериментальные зависимости амплитуды пика I_a от E_d качественно соотносятся с поведением постоянной времени затухания τ (рис. 3). Для цилиндрической полости наблюдается сначала рост амплитуды пика с увеличением E_d вследствие увеличения τ , затем достижение максимума при $E_d = 12 - 16 \cdot 10^3$ V/ст и падение I_a при дальнейшем увеличении E_d . Для планарной полости с увеличением $E_d I_a$ уменьшается.

Амплитуда пиков зависит от времени нахождения ионов в полости, которое является функцией объемной скорости: $t_{cyl} = h_c \pi (r_2^2 - r_1^2)/Q_{tr}, t_{pl} = h_p w d/Q_{tr}$. На рис. 5 приведены фрагменты спектров ТНТ для цилиндрической полости (Б) при $E_d = 22.3 \cdot 10^3$ V/ст и $Q_{tr} = 66.7$, 50, 33.3 и 16.7 ст³/s, обозначенных как *1*, *2*, *3*, *4* соответственно.

Так как экспериментально очень сложно измерить значение входного потока ионов определенного типа I_{0i} , можно провести сравнение теоретических (интеграл ур. (18)) и экспериментальных данных в виде величин амплитуды выходных токов, нормированных на величину амплитуды тока при минимальном значении времени нахождения ионов в полости и, следовательно, максимальной величине ионного тока ($I_{a \max}$). Максимальная величина амплитуды ионного тока исследуемых веществ регистрировалась при $Q_{tr} = 66.7 \text{ cm}^3/\text{s}$. На рис. 6 представлены зависимости $I_a/I_{a \text{ max}}$ от времени нахождения ионов в полостях: а) цилиндрической t_{cyl} (I - ДНТ, 2 - ДМА, 3 - ТНТ, 4 - ДФА, 5 - ДЭА); b) планарной t_{pl} (THT), $E_d = 22.3 \cdot 10^3 \text{ V/cm}$. Точками показаны экспериментальные значения, жирными линиями — теоретические кривые.

Из рисунка следует, что для коаксиальной полости теоретические кривые демонстрируют существенно завышенные значения скорости падения выходного тока $I_a/I_{a \text{ max}}$ с увеличением времени нахождения ионов в полости t_{cyl} по сравнению с экспериментальными данными. Для планарной полости интегральное выражение [14]

$$I_a = I_0 \exp\left(-t_s (D_L \pi^2/g^2)\right) \tag{20}$$

хорошо описывает экспериментальные данные.

Существенным отличием экспериментов с коаксиальной и планарной полостями является время нахождения ионов в полости, $t_{cyl} \gg t_{pl}$ и, следовательно, линейных скоростей потока газа-носителя. Поэтому при использовании коаксиальной полости сущестенный вклад в потери могут вносить неравномерность скорости течения газа в кольцевом пространстве между двумя соосными цилиндрами [15], поперечная диффузия, неоднородности полей на краях электродов и наличие дополнительных конструктивных элементов, т.е. помимо рекомбинации

Рис. 5. Фрагменты спектров ТНТ.

Рис. 6. Зависимости I_a/I_a тах от времени нахождения ионов.

на электродах, потери ионов происходят между источником ионов и цилиндрической полостью, цилиндрической полостью и коллектором ионов.

Таким образом, математический анализ движения ионов в газе в знакопеременном периодическом несимметричном по полярности электрическом поле, основанный на решении уравнения непрерывности в τ -приближении, показал, что наличие пространственного градиента поля значительно увеличивает величину постоянной времени затухания (среднего времени жизни ионов). Найденные решения уравнения переноса, качественно согласующиеся с экспериментальными данными, описывают распределение ионов в газе в планарной и цилиндрической полостях как функции параметров электрического поля. Это может быть использовано при проектировании спектрометров приращения ионной подвижности.

Список литературы

- [1] А.с. СССР № 966 583, G 01 N 27/62 / Горшков М.П. 1980.
- Buryakov I.A., Krykov E.V., Nazarov E.G., Rasulev U.Kh. // Int. J. of Mass Spec. and Ion Processes. 1993. Vol. 128. P. 143–148.
- [3] Патент РФ № 1485808, МКИ G 01 N 27/62 / Буряков И.А., Крылов Е.В., Солдатов В.П. 1987.
- [4] Mason E.A., McDaniel E.W. Transport Properties of Ions in Gas. Mew York: John & Sons, 1988. 560 p.
- [5] Buryakov I.A. // Talanta. 2003. Vol. 61. N 3. P. 369-375.
- [6] Buryakov I.A. // Int. J. for Ion Mobility Spectrometry. 2001.
 Vol. 4. N 2. P. 112–116.
- [7] Зайцев В.Ф., Полянин А.Д. Справочник по обыкновенным дифференциальным уравнениям. М., 2001. 576 с.
- [8] Камке Э. Справочник по обыкновенным дифференциальным уравнениям / Пер. с нем. С.В. Фомина. М., 1976. 576 с. (Kamke E. Differential Gleichungen. Leipzig, 1959).
- [9] Spangler G.E., Lawless P.A. // Anal. Chem. 1978. Vol. 50. N 7. P. 884–892.
- [10] Karpas Z. // Anal. Chem. 1989. Vol. 61. P. 684-689.
- [11] Buryakov I.A. // Techn. Phys. 2004. Vol. 49. N 8. P. 967-972.
- [12] Guevremont R., Purves R.W. // Rev. of Sci. Instr. 1999.
 Vol. 70. N 2. P. 1370–1383.
- [13] Krylov E.V. // Int. J. of Mass Spectr. 2003. Vol. 225. P. 39-51.
- [14] Буряков И.А., Крылов Е.В., Солдатов В.П. // Химический анализ объектов окружающей среды / Под ред. В.В. Малахова. Новосибирск, 1991. С. 113–127.
- [15] Shvartsburg A.A., Keqi Tang, Smith R.D. // J. Am. Soc. Mass Spectrom. 2005. Vol. 16. P. 1447–1455.