Генерация и релаксация реактивных напряжений в сплаве Cu-AI-Ni с эффектом памяти формы

© С.А. Пульнев, В.И. Николаев, Г.А. Малыгин, С.Л. Кузьмин, В.В. Шпейзман, С.П. Никаноров

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: malygin.ga@mail.ioffe.ru

(Поступило в Редакцию 12 января 2006 г.)

05:12

Определена экспериментально величина реактивных напряжений в монокристаллах сплава Cu–Al–Ni с эффектом памяти формы при нагреве защемленных образцов с постоянной скоростью в интервале температур 293–800 К. Найдено, что до 600 К величина напряжений увеличивается с ростом температуры. При более высоких температурах в результате распада β фазы напряжения начинают снижаться и обращаются в нуль при 800 К. С помощью теории размытых мартенситных переходов сделан расчет величины реактивных напряжений, в том числе и в условиях снижающейся объемной доли β фазы в образцах при температурах выше 600 К.

PACS: 81.30.Kf

Сплавы Cu-Al-Ni обладают эффектом памяти формы и являются перспективными материалами для применения их в качестве силовых приводов и исполнительных элементов в микроэлектромеханических системах и робототехнических устройствах. По сравнению с другими известными сплавами с эффектом памяти формы, такими как TiNi и Cu-Zn-Al, максимальная температура эффективного применения которых не превышает 100°C, сплавы Cu-Al-Ni проявляют свои функциональные свойства в более широком температурном диапазоне, до 200°C включительно [1,2], что является их несомненным преимуществом.

При использовании сплава с эффектом памяти формы в качестве рабочего элемента привода или силового устройства представляет интерес изучение усилий и реактивных напряжений, возникающих в условиях стесненного по деформации эффекта памяти формы. В настоящей работе приведены результаты опытов по генерации реактивных напряжений в монокристаллических образцах сплава Cu-13.4 wt.% Al-4.5 wt.% Ni при изменении температуры в диапазоне от комнатной до 500°C. Проведен теоретический расчет этих напряжений с учетом распада аустенита при температурах выше 300°C.

Методика и результаты эксперимента

Монокристаллы сплава Cu−Al−Ni были выращены способом Степанова в виде прутков диаметром 3 mm с ориентацией оси вдоль направления [100] кристалла. Образцы с длиной рабочей части 100 mm и резьбовой нарезкой на концах отжигались при температуре 1120 K и закаливались в воде, при комнатной температуре они находились в мартенситном состоянии. Закаленный образец помещался в захваты испытательной машины Instron 1342 и подвергался растяжению при температуре 293 K с целью получения максимально возможной остаточной деформации ≈ 9%, задающей ему эффект

памяти формы. После этого образец закреплялся в неподвижных захватах машины и нагревался со скоростью 5 K/min. Вследствие эффекта памяти формы образец в процессе нагрева стремился восстановить свою первоначальную длину, в результате чего в нем возникали растягивающие реактивные напряжения σ , величина которых фиксировалась как функция повышающейся температуры T.

На рис. 1 показана температурная зависимость реактивного напряжения, полученная при нагреве исследуемого монокристалла сплава Cu-Al-Ni. Видно, что начиная с температуры примерно 350-360 K (точка A) и до 600 K (точка B) реактивное напряжение в образце непрерывно возрастает, а после 600 K начинает снижаться и при 800 K (точка C) становится равным нулю. Тем-

Рис. 1. Температурная зависимость реактивных напряжений, генерируемых монокристаллом сплава Cu-13.5 wt.% Al-4.5 wt.% Ni при его нагревании с постоянной скоростью в защемленном состоянии.

пература 350–370 К характерна для начала обратного мартенситного превращения в сплавах Cu–Al–Ni эвтектоидного состава [3], к которому принадлежит и исследуемый сплав. В отсутствие напряжения обратный переход и восстановление β -фазы с объемно-центрированной кубической решеткой занимает интервал 20–40 К [3]. При стесненной деформации и генерации реактивных напряжений переход растягивается до 600 К, как видно из рис. 1. О наличии некоторого количества мартенсита при температуре, соответствующей максимуму кривой $\sigma(T)$ на рис. 1, свидетельствует то, что разгрузка образца при указанной температуре приводит к полному восстановлению первоначальной, до предварительной деформации, длины образца.

Столь широкой по температуре диапазон превращения мартенсита в виде β' - или γ' -фаз, имеющих соответственно моноклинную или орторомбическую решетку, в аустенит *β*-фазы связан с влиянием реактивного напряжения на критическую (характеристическую) температуру перехода Т_с, которая, согласно соотношению Клаузиуса-Клапейрона, линейно увеличивается с ростом напряжения. Другая особенность температурной зависимости реактивных напряжений на рис. 1 — это их снижение при температуре выше 600 и полное исчезновение при 800 К. Как установлено в работах [4,5], методом дифракции нейтронов, в сплавах Cu-Al-Ni, близких по составу к эвтектоидным, при 600 К начинается распад твердого раствора с образованием выделений γ_1 -фазы (интерметаллида Ni_xAl_y), а при температуре выше 710 К — выделений *а*-фазы (интерметаллида Cu₉Al₄), в результате чего при 800 К β -фаза почти полностью исчезает. Скачки реактивного напряжения на кривой $\sigma(T)$ (рис. 1) чуть ниже точки *B* вызваны, по-видимому, сложным процессом динамического взаимодействия продуктов мартенситно-аустенитного перехода с формирующимися частицами у1-фазы.

Расчет реактивных напряжений

Эффект памяти формы и генерация реактивных напряжений при нагреве исследуемого сплава связаны с распадом β' - или γ' -мартенсита и образованием аустенита β -фазы, протекающих как фазовый переход первого рода. Расчет реактивных напряжений в сплаве может быть произведен с помощью феноменологической термодинамической теории такого рода фазовых превращений — теории размытых мартенситных переходов [6,7].

Согласно теории при структурном переходе фазовое равновесие и относительные объемные доли мартенсита φ_M и аустенита φ_A в сплаве при температуре *T* и напряжении σ определяются соотношениями [7]:

$$arphi_M = \left[1 + \exp\left(rac{\Delta U}{kT}
ight)
ight]^{-1}, \quad arphi_A = \left[1 + \exp\left(-rac{\Delta U}{kT}
ight)
ight]^{-1},
onumber \ (1,a)$$

где $\varphi_M + \varphi_A = 1$, $\Delta U = \omega \Delta u$, ω — элементарный объем превращения (объем зародышей новой фазы), Δu — изменение объемной плотности свободной энергии сплава

при переходе,

$$\Delta u = q \, \frac{T - T_{c0}}{T_{c0}} - \xi (m\sigma - \sigma_f), \qquad (1,b)$$

где q — теплота превращения, T_{c0} — критическая температура превращения в отсутствие напряжений σ и σ_f , ξ — деформация решетки при ее структурной перестройке, σ_f — напряжение трения при движении межфазных границ, определяющего величину температурного (силового) гистерезиса превращения $\Delta T_f = \pm (\xi \sigma_f/q) T_{c0}$, m — ориентационный фактор габитусной плоскости относительно растягивающего напряжения, k — постоянная Больцмана. При $\Delta u = 0$, т. е. при $\varphi_M = \varphi_A = 1/2$, из уравнения (1,b) следует соотношение Клаузиуса–Клапейрона для зависимости критической температуры перехода от напряжения

$$T_c = T_{c0} \left(1 + \frac{m\xi}{q} \, \sigma \right). \tag{2}$$

Кривые 1 на рис. 2, *a* и *b* отражают температурные зависимости объемных долей мартенсита и аустенита, согласно выражениям (1), при повышении температуры в отсутствие напряжения ($\sigma = 0$) и $q = 500 \text{ J} \cdot \text{mol}^{-1}$ [5]

Рис. 2. Зависимость от температуры согласно соотношениям (1)-(3) относительных объемных долей мартенсита (a)и аустенита (b) в условиях свободного (1) и стесненного по деформации (2) эффекта памяти формы.

 $(q = 65 \text{ MPa}), T_{c0} = 360 \text{ K}, \omega q/kT_{c0} = 30, \Delta T_f = 18 \text{ K}.$ Видно, что при указанных значениях параметров характерные температуры начала A_s и конца A_f мартенситно-аустенитного перехода равны соответственно 323 и 433 K.

Уравнение баланса упругой $\varepsilon_e = \sigma/K$, тепловой $\varepsilon_T = \alpha(T-T_0)$ и мартенситно-аустенитной $\varepsilon_A = \varepsilon_m \varphi_A(T, \sigma)$ деформаций образца в условиях постоянства его длины имеет вид

$$\frac{\sigma}{K} = -\alpha(T - T_0) + \varepsilon_m \left\{ 1 + \exp\left[-B\left(\frac{T - T_{c0} - \Delta T_f}{T_{c0}} - \frac{m\xi}{q}\sigma\right)\right] \right\}^{-1}.$$
(3)

Здесь K = E/(1 + EA/lK') — эффективный модуль упругости образец-машина, E — модуль упругости образца, l и A — его длина и поперечное сечение, K' = 134 МРа · m — жесткость машины, α коэффициент теплового расширения образца, $T_0 =$ = 293 К, $B = \omega q/kT_{c0}$, ε_m — предельная деформация аустенитно-мартенситной релаксации напряжений. Оценки показывают, что эффективный модуль $K \approx E$, а тепловым расширением образца в первом приближении можно пренебречь.

Напряжение σ входит в левую и правую части уравнения (3). Ввиду своей трансцендентности указанное уравнение решалось численно для каждого значения температуры. Кривая 1 на рис. З демонстрирует результат решения в безразмерных координатах $\sigma/E\varepsilon_m - T/T_{c0}$ при $m\xi = 0.085$ и приведенных выше значениях остальных параметров. Видно, что в соответствии с уравнением (2) напряжение линейно растет с температурой и достигает максимального значения $\sigma_m = K\varepsilon_m$ при $T > 1.67T_{c0} \approx 600$ К. Согласно (3), образец при этом переходит почти полностью в аустенитное состояние. Кривые (2) на рис. 2, *а* и *b* показывают соответствующие температурные зависимости объемных долей мартенсита и аустенита в образце в условиях генерации в

Рис. 3. Зависимость реактивных напряжений от температуры в координатах $\sigma/K\varepsilon_m - T/T_{c0}$ согласно уравнениям (3) и (6) в отсутствие (1) и при наличии (2) распада β -фазы.

нем реактивных напряжений. Видно, что по сравнению с зависимостями *1* переход мартенсит—аустенит в условиях стесненной деформации растягивается до температуры 600 К.

При стабильном состоянии β -фазы реактивные напряжения оставались бы постоянными при температуре выше 600 К. Но, как показано в [4], при высокой температуре β -фаза распадается на γ_1 и α -фазы, не обладающих свойством памяти формы. Чтобы установить, как с ростом температуры убывает относительная объемная доля β -фазы C_{β} , необходимо знать, как с ростом температуры увеличиваются соответственно объемные доли C_{γ} и C_{α} γ_1 - и α -фаз. При эвтектоидном распаде твердого раствора, контролируемом диффузионной кинетикой, объемные доли подчиняются кинетике типа Аврами [8].

$$C_{\gamma 1}(t) = 1 - \exp\left[-\left(\frac{t}{\tau_{\gamma 1}}\right)^{N_{\gamma 1}}\right], \quad \tau_{\gamma 1} = \tau_{\gamma 1}^{0} \exp\left(\frac{W_{\gamma 1}}{kT}\right),$$

$$(4,a)$$

$$C_{\alpha}(t) = 1 - \exp\left[-\left(\frac{t}{\tau_{\alpha}}\right)^{N_{\alpha}}\right], \quad \tau_{\alpha} = \tau_{\alpha}^{0} \exp\left(\frac{W_{\alpha}}{kT}\right), \quad (4,b)$$

где t — время; $\tau_{\gamma 1}$ и τ_{α} — эффективное время диффузионных перескоков примесных атомов при образовании выделений; $W_{\gamma 1}$, W_{α} и $\tau_{\gamma 1}^{0}$, τ_{α}^{0} — соответствующие им энергии активации и предэкспоненциальные множители; N — показатели степени. Согласно [4], при полном распаде β -раствора максимальные объемные доли γ_1 и α -фаз составляют соответственно 75 и 25%. Таким образом, кинетика изотермического распада β -фазы определяется выражением

$$C_{\beta}(t) = 1 - 0.75C_{\gamma 1}(t) - 0.25C_{\alpha}(t).$$
(5)

В [5] найдено, что образование γ_1 -выделений контролируется диффузией атомов Al с энергией активации $W_{\gamma 1} = 0.9$ eV. Можно предположить, что и образование преципитатов α -фазы контролируется той же энергией активации. Показатель степени N в выражениях (4) зависит от многих причин и может варьироваться в пределах 1/2-4 [8]. Лучшее соответствие кинетики (5) экспериментальным данным [4] получено при показателях степени $N_{\gamma 1} = 1$ и $N_{\alpha} = 2$, и предэкспоненциальных множителях $\tau_{\gamma 1}^0 = 3 \cdot 10^{-3}$ и $\tau_{\alpha}^0 = 10^{-3}$ s. При изменении температуры с постоянной скоростью \dot{T} время $t = (T - T_0)/\dot{T}$. Подставив его в (5), получим температурную зависимость $C_{\beta}(T)$ в условиях неизотермического распада β -фазы. Очевидно, что ее определяют в основном температурные зависимости диффузионных перемещений атомов Al.

Вследствие распада аустенита его объемная доля при температуре выше 600 К снижается в соответствии с кинетикой (5), $\bar{\varphi}_A(T, \sigma) = \varphi_A(T, \sigma)C_\beta(T)$. Подставив $\bar{\varphi}_A$ вместо φ_A в уравнение (3), получим уравнение для определения реактивных напряжений с учетом распада аустенита β -фазы

$$\frac{\sigma}{K\varepsilon_m} = \frac{C_\beta(T)}{1 + \exp\left[-B\left(\frac{T - T_{c0} - \Delta T_f}{T_{c0}} - \frac{m\xi}{q}\sigma\right)\right]}.$$
 (6)

Журнал технической физики, 2006, том 76, вып. 8

Кривая 2 на рис. 3 демонстрирует снижение реактивного напряжения согласно уравнению (6) по мере распада β -фазы в образце.

Обсуждение результатов

Сравнение экспериментальных (рис. 1) и теоретических, согласно уравнениям (3) и (6), зависимостей реактивных напряжений от температуры приведено на рис. 4. Пунктир при температуре выше 600 К соответствует величине напряжений $\sigma_m = K\varepsilon_m = 420$ MPa. Это означает, что деформация образца вследствие мартенситно-аустенитной релаксации реактивного напряжения не превышает $\varepsilon_m = \sigma_m/K \approx 0.85\%$ при $K \approx E_{[100]} = 50$ GPa [9].

Обращает на себя внимание, что на основном участке роста реактивного напряжения оно линейно увеличивается с температурой (рис. 1 и 4). Это обстоятельство становится понятным, если уравнение (3) записать в виде

$$\sigma = \frac{q}{m\xi} \left[\frac{T - T_{c0} - \Delta T_f}{T_{c0}} + \frac{1}{B} \ln \left(\frac{1 - \sigma/K\varepsilon_m}{\sigma/K\varepsilon_m} \right) \right].$$
(7)

Из этой записи видно, что в соответствии с соотношением Клаузиуса–Клапейрона (2) напряжение линейно растет с температурой с коэффициентом пропорциональности $d\sigma/dT = q/m\xi T_{c0} \approx 1.9$ МРа · K⁻¹. В [10] для сплава Cu–Al–Ni, близкого по составу исследованному в настоящей работе, найдено, что при $\gamma' \rightarrow \beta$ превращении $d\sigma/dT = 2.3$ МРа · K⁻¹. Отклонение от линейности, как на начальном участке нагрева, так и при приближении к максимому кривых на рис. 1 и 4, связано с логарифмическим членом в квадратной скобке в (7).

Таким образом, результаты экспериментального и теоретического исследования показывают, что достигаемые реактивные напряжения в монокристаллах Cu–Al–Ni с памятью формы высоки, вплоть до 600 K, и лишь затем в силу появляющейся структурной нестабильности начинают снижаться. Однако даже при 750 K они еще около 100 MPa, что достаточно для практического применения.

Работа выполнена в рамках проекта РФФИ № 05-08-50315-а.

Список литературы

- [1] *Delay L.* Phase Transformations / Ed. by P. Haasen. Weinheim, VCH, 1991. P. 123.
- [2] Picornell C., Pons J., Cesari E. // Scripta Mater. 2005. Vol. 54. N 10. P. 821–825.
- [3] Recarte V., Perez-Landazabal J., Rodrigez P.P. et al. // Acta Mater. 2004. Vol. 52. N 13. P. 3941–3948.
- [4] Perez-Landazabal J., Recarte V., Campo J. et al. // Physica. 2004. Vol. B350. N 1–3. P. e1007–e1009.
- [5] Recarte V., Perez-Landazabal J., Ibarra A. et al. // Mater. Sci. Eng. 2004. Vol. A378. N 1–2. P. 238–242.
- [6] Малыгин Г.А. // ЖТФ. 1996. Т. 66. Вып. 11. С. 112–123.
- [7] Малыгин Г.А. // УФН. 2001. Т. 171. № 2. С. 187–212.
- [8] Кристиан Дж. Физическое металловедение. Т. 2. М.: Мир, 1968. С. 227.
- [9] Sedlak P., Seiner H., Landa M. et al. // Acta Mater. 2005.
 Vol. 53. N 13. P. 3643–3661.
- [10] Picornell C., Pons J., Cesari E. // Mater. Sci. Eng. 2004. Vol. A378. N 1–2. P. 222–226.

Рис. 4. Зависимость величины реактивных напряжений от температуры, согласно уравнениям (3) и (6), в отсутствие (пунктир) и при наличии распада β -фазы. Экспериментальные точки — согласно приведенным на рис. 1 данным.