01;05 Блоховские линии в доменных границах антиферромагнетиков

© Г.Е. Ходенков

Институт электронных управляющих машин, Москва, Россия e-mail: angetine@mtu-net.ru

(Поступило в Редакцию 23 ноября 2005 г.)

Получены приближенные уравнения, описывающие субструктуру 180° доменных границ (ДГ) в антиферромагнетиках с сильной одноосной анизотропией. Определены структура и спектр блоховских линий, которые разделяют участки ДГ с противоположными направлениями вектора антиферромагнетизма.

PACS: 75.70.Kw, 75.50.Ee

В магнетиках блоховские линии (БЛ) разделяют поверхность доменных границ (ДГ) на субдомены и существенно влияют на свойства ДГ с доменов. Неоднократно предпринимались попытки построения памяти на основе БЛ в ферромагнетиках различных типов [1,2].

Наиболее полно БЛ, по-видимому, изучены в ферромагнетиках с сильной одноосной анизотропией [3], В пленках со слабой анизотропией их изучение началось ранее [4], сведения о состоянии этого вопроса можно найти в [5]. В кубических ферромагнетиках БЛ наблюдались как в случае отрицательной константы анизотропии (см. рис. 1 в [6]), так и положительной [7]. Теоретические модели БЛ в слабых ферромагнетиках были предложены в [8,9]. В иттриевом ортоферрите при больших скоростях ДГ экспериментально наблюдаются [10] локальные прогибы ДГ, обусловленные, по мнению авторов, смещением внутренних вихревых образований вдоль ДГ.

Хотя ДГ в антиферромагнетиках (АФМ) известны уже давно, субструктура АФМ ДГ, как представляется, изучена не так подробно, как в перечисленных выше случаях. Общий анализ АФМ дисклинаций и вихрей можно найти в [11]. В работе [12] найдены некоторые многомерные вихревые решения уравнений Андреева-Марченко [13] для одноосного АФМ. К сожалению, среди указанных в [12] решений отсутствует простейший элемент субструктуры ДГ — локализованная БЛ, аналогичная наблюдаемым в одноосных ферромагнетиках 180° БЛ [3]. Ниже исходя из уравнений [13] (см. также [11]) для описания субструктуры 180° ДГ в АФМ с сильной одноосной анизотропией построены редуцированные уравнения, аналогичные уравнениям Слончевского [3] для ферромагнетиков.

Предположим, что ось анизотропии АФМ коллинеарна 0*z*, а 180° ДГ расположены в плоскости *x*0*z*. Согласно [13], лангранжиан системы $L = L_0 + L_1$ выражается через единичный вектор АФМ l(**r**,**t**):

$$L_0/(4M_0^2\beta_1) = -\frac{1}{2} \left[(d\mathbf{l}/dy)^2 - l_z^2 \right], \qquad (1.1)$$

$$L_{1}/(4M_{0}^{2}\beta_{1}) = \dot{\mathbf{l}}^{2}/2 - \mathbf{l}[\dot{\mathbf{IH}}] - \frac{1}{2} \left[(\mathbf{IH})^{2} + (\nabla_{x,z}\mathbf{l})^{2} + \frac{\beta_{0}}{\beta_{1}} l_{y}^{2} \right]. \quad (1.2)$$

В (1) учитываются кинетические вклады ~ $\dot{\mathbf{i}}$, неоднородный обмен ~ $(\nabla \mathbf{l})^2$ (константа α), одноосная и ромбическая анизотропия ~ β_1 и ~ β_0 , внешнее магнитное поле **H**. Длины измеряются в единицах ширины ДГ $\Delta = (\alpha/\beta_1)^{1/2}$; время $t - 1/\omega_0$, где $\omega_0 \equiv 1/2\gamma M_0 (\alpha\beta_1)^{1/2}$ (M_0 — номинальная намагниченность подрешеток, γ — магнитомеханическое отношение, $a \sim 10^3$ — безразмерная константа АФМ взаимодействия), магнитные поля — $H_0 \equiv \omega_0/\gamma$.

Основное предположение настоящей работы состоит в том, что в качестве исходного используется инвариантный в базисной плоскостя AФM x0y лагранжиан L_0 , задающий 180° AФM ДГ. Параметризуя вектор AФM как $\mathbf{l} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, получим из L_0 :

$$\cos\theta_0 = -\text{th}[(y - q(x, z, t))/\Delta], \quad \varphi_0 = \psi(x, z, t). \quad (2)$$

Искомые уравнения для положения центра ДГ q(x, z, t) и азимутального угла $\psi(x, z, t)$ на поверхности ДГ определяются возмущением L_1 . Как показывает (1.2), такая постановка задачи справедлива, если частоты $\omega \ll \omega_0$, поля $H \ll H_0$. Характерные длины в плоскости ДГ превышают Δ и $\beta_1 \gg \beta_0$.

В указанной постановке задача аналогична задаче в выводе уравнений Слончевского для q(x, z, t) и $\psi(x, z, t)$ в сильноанизотропных ферромагнетиках (требование к фактору качества $Q \gg 1$ теперь выполняет условие $\beta_1/\beta_0 \gg 1$). Асимптотический вывод этих уравнений из уравнения Ландау-Лифшица путем разложиния по 1/Q был осуществлен в [14,15]. Здесь удобно воспользоваться лагранжевой формулировкой [15], где было показано, что искомые уравнения можно также получить, подставив исходные выражения в лагранжиан (т.е. в данном случае — (2) в (1.2)), проинтегрировав полученное выражение по dy в бесконечных пределах, а затем уже проварьировать по q и ψ . Учитывая аналогично вклад функции диссипации $R = \alpha_G M_0 \dot{\mathbf{i}}^2 / 2\gamma (\alpha_G - \omega_G - \omega_G M_0 \dot{\mathbf{i}}^2 / 2\gamma (\alpha_G - \omega_G - \omega_G M_0 - \omega_G M_$ константа затухания Гильберта), получаем эффективные уравнения

$$\ddot{q} + \sqrt{a/\beta_1} \alpha_G \dot{q} - \nabla_{x,z}^2 q$$
$$= \frac{\pi}{2} \frac{d}{dt} (H_x \sin \psi - H_y \cos \psi), \quad (3.1)$$

$$\ddot{\psi} + \sqrt{a/\beta_1} \alpha_G \dot{\psi} - \nabla_{x,z}^2 \psi + (\beta_0/\beta_1) \sin \psi \cos \psi + (H_x \cos \psi + H_y \sin \psi) (-H_x \sin \psi + H_y \cos \psi) = -\frac{\pi}{2} \dot{q} (H_x \cos \psi + H_y \sin \psi) + \dot{H}_z.$$
(3.2)

Пусть на оси 0х БЛ разделяет два субдомена с $\psi(x \to \mp \infty) = 0, \pi$. Это возможно, если $H_x^2 < H_c^2 \equiv \equiv \beta_0/\beta_1$ (при $H_x^2 > H_c^2 - \psi(\pm \infty) = \pm \pi/2$), где H_c поле переключения структуры, в $(\beta_0/\beta_1)^{1/2}$ раз меньшее $H_0 = 2M_0(a\beta_1)^{1/2}$. Тогда из (3.2), ограничиваясь здесь случаем $H_y = 0$, получим для БЛ

$$\cos \psi_0 = -\text{th}[(x - X)/\Lambda], \quad \Lambda = \Delta/(H_c^2 - H_x^2)^{1/2}.$$
 (4)

Если БЛ свободно движется $\psi(x - Vt)$ с постоянной скоростью V, то вид решения (4) сохраняется, но теперь

$$\frac{1}{\Lambda} \to \frac{1}{\Lambda_d} \equiv \left(\beta_0 / \beta_1 - H_x^2 - \left(\frac{\pi}{2}\right)^2 \frac{V^2 H_x^2}{1 - V^2}\right)^{1/2} (1 - V^2)^{-1/2}.$$
(5)

При $H_x^2 \ll \beta_0/\beta_1 < 1$, как показывает (5), предельная скорость V_0 БЛ близка к единице (в размерных единицах — $V_0 = \omega_0 \Delta$). Движение БЛ сопровождается возникновением ступеньки на профиле ДГ, высота которой зависит от скорости

$$\frac{q-q_0}{\Delta} = \frac{\pi V_0 V}{V_0^2 - V^2} \frac{H_x}{H_0} \Lambda_d \arctan\left(\frac{x-Vt}{\Delta \Lambda_d}\right), \quad (6)$$

где q_0 — const. Отметим еще, что в пределе $H_{x,y} = 0$ система (3) распадается на два независимых уравнения: линейное для q(x, t) и sin-Гордон с внешней накач-кой ~ $\dot{H}_z(t)$ для $\psi(x, t)$.

В заключение рассмотрим линейные колебания БЛ в присутствии постоянного слабого поля H_y . Для малых амплитуд δq и $\delta \psi$ получаем из (3)

$$(-\omega^2 + \omega_q^2)\delta q - \delta q'' = -i\frac{\pi}{2}\omega H_y \sin\psi_0\,\delta\psi,\qquad(7.1)$$

$$(-\omega^2 + \omega_{\psi}^2)\delta\psi + \hat{L}\delta\psi = i\frac{\pi}{2}\omega H_y\sin\psi_0\,\delta q - i\omega H_z, \quad (7.2)$$

$$\hat{L} = -\frac{d^2}{dx^2} + (\beta_0/\beta_1)\cos 2\psi_0.$$
(7.3)

Помимо собственной ω в (7) входят квазиупругие частоты ДГ и БЛ ω_q и ω_{ψ} . Спектр ДГ, как следует из (7), образуют две ветви изгибных колебаний ДГ $\omega^2 = \omega_q^2 + k^2$ и $\omega^2 = \omega_{\psi}^2 + \beta_0/\beta_1 + k^2$, локализованные вне БЛ.

Теория свободных колебаний БЛ в ферромагнетиках [16,17] исходит из того, что при $\omega < \omega_q < 1$ вблизи БЛ возникают сильно делокализованные прогибы ДГ. Согласно (7.1) аналогичная ситуация имеет место и для ДГ в АФМ, когда длина прогиба ДГ $\lambda = (\omega_q^2 - \omega^2)^{-1/2}$ превосходит ширину БЛ Л:

$$\delta q(x) = i \frac{\pi}{2} \omega H_y \lambda \exp[-|x|/\lambda] \delta X.$$
 (8)

Необходимо также иметь в виду, что нижняя собственная функция (СФ) $\delta \chi = \sin \psi_0$ оператора \hat{L} является в данном случае модой сдвига БЛ вдоль ДГ и поэтому $\hat{L}\delta\chi = 0$. Подставив (8) в (7.2) и воспользовавшись тем, что для сдвиговой моды согласно (4) $\delta\psi = -\delta X \sin\psi_0/\Lambda$, сохраним в разложении (7.2) по СФ только $\delta\chi$. В результате приходим к дисперсионному уравнению

$$(\omega_{\psi}^2 - \omega^2)(\omega_q^2 - \omega^2)^{1/2} = (\pi \omega H_y/2)^2 (\beta_1/\beta_0)^{1/2}.$$
 (9)

Единственное вещественное решение (9) лежит в области $\omega \leq \min(\omega_q, \omega_{\psi})$ и мало отличается от ω_q или ω_{ψ} при $H_y^2 \ll 1$. Предполагая, что квазиупругие частоты целиком обусловлены магнитоупругой энергией $w_{\rm me} \sim b^2/c$, где *c* и *b* — оценки модуля упругой жесткости и констант магнитоупругости, находим $\omega_q \sim \omega_{\psi} \sim \omega_0 (w_{\rm me}/\beta_1 M_0^2)^{1/2}$. Для типичных значений $M_0 \sim 10^2 \,{\rm Gs}, \beta_1 \sim 10, a \sim 10^3, \gamma \sim 10^7 ({\rm sOe})^{-1}, c \sim 10^{12}, b \sim 10^7 \,{\rm erg/cm}^3$ имеем $\omega_0 \sim 10^{11} \,{\rm c}^{-1}$ и $\omega_q \sim \omega_{\psi} \leq \omega_0/10$. Поле $H_z(t)$, входящее в (7.2), в случае $H_y = 0$ прогибов ДГ не вызывает, но приводит в движение БЛ. Скорость БЛ определяется, если разложить (7.2), как и выше, по СФ $\delta \chi$: $\dot{X} = -\pi \Lambda \dot{H}_z/(4\alpha_G a M_0)$. Для приведенных ранее значений параметров и $\Delta \sim 10^{-5} \,{\rm cm}, \beta_0 \sim 1$ для достижения $\dot{X} = 1 \,{\rm cm/s}$ даже при $\alpha_G \sim 10^{-4}$ требуется $\dot{H}_z \sim 10^6 \,{\rm Oe/s}$.

Список литературы

- [1] Schwee L., Irons H., Anderson W. // 1976. V. MAG-12, № 3. P. 608–613.
- [2] *Konishi S.* // IEEE Trans. Magn. 1983. V. MAG-19, № 5. P. 1838–1840.
- [3] Малоземов А., Слонзуски Дж. Доменные стенки в материалах с ЦМД. М.: Мир 1982. 382 с.
- [4] Huber E.E., Jr, Smith D.O., Goodenough J.B. // J. Appl. Phys. 1958. Vol. 29. N 1. P. 294–295.
- [5] Hubert A., Schaefer R. // Magnetic Domains. Berlin: Springer, 1998. 696 p.
- [6] *Хуберт А.* // Теория доменных стенок в упорядоченных средах. М.: Мир, 1977. 306 с.
- [7] Hartmann U., Mende H.H. // J. Appl. Phys. 1986. Vol. 59.
 N 12. P. 4123–4128.
- [8] Фарзтдинов М.М., Шамсутдинов М.А., Халфина А.А. // ФТТ. 1979. Т. 21. Вып. 5. С. 1522–1527.
- [9] Мелихов Ю.В., Переход О.А. // УФЖ. 1983. Т. 28. Вып. 5. С. 713–716.
- [10] Четкин М.В., Курбатова Ю.Н., Шапаева Т.Б., Борщеговский О.А. // Письма в ЖЭТФ. 2004. Т. 79. Вып. 9. С. 527–530.
- [11] Косевич А.А., Иванов Б.А., Ковалев А.С. // Нелинейные волны намагниченности. Динамические и топологические солитоны, Киев: Наукова дука, 1988. 190 с.
- [12] Джежеря Ю.И., Сорокин М.В., Бубук Е.А. // ЖЭТФ. 2005.
 Т. 127. Вып. 3. С. 633–642.
- [13] Андреев А.Ф., Марченко В.И. // УФН. 1980. Т. 130. Вып. 1. С. 39-63.
- [14] Маслов В.П., Четвериков В.М. // Теор. и мат. физика. 1984. Т. 60. Вып. 3. С. 447–460.
- [15] Ходенков Г.Е. // ФММ. 1994. Т. 78. Вып. 3. С. 33–37.
- [16] Никифоров А.В., Сонин Э.Б. // ЖЭТФ. 1986. Т. 90. Вып. 4. С. 309–317.
- [17] Звездин А.К., Попков А.Ф. // ЖЭТФ. 1986. Т. 91. Вып. 5. С. 1789–1798.

Журнал технической физики, 2006, том 76, вып. 7