05;12 Магнитные и магнитоупругие свойства аморфных ферромагнитных сплавов, обработанных электрическим током

© А.А. Гаврилюк, А.Л. Семенов, А.Ю. Моховиков, Д.В. Прудников, Д.А. Ширяев

Иркутский государственный университет, 664003 Иркутск, Россия e-mail: zubr@api.isu.ru

(Поступило в Редакцию 29 июля 2005 г.)

Исследованы зависимости магнитных и магнитоупругих параметров аморфных ферромагнитных сплавов $Fe_{64}Co_{21}B_{15}$ и $Fe_{81.5}B_{13.5}Si_3C_2$ в виде узких полосок различной длины от величины внешнего магнитного поля и плотности постоянного электрического тока обработки, проводимой на воздухе. Показано, что обработка на воздухе аморфных ферромагнитных сплавов различного состава постоянным электрическим током приводит к качественно различным зависимостям их магнитоупругих параметров от величины внешнего магнитного поля. На основании анализа поведения магнитных и магнитоупругих характеристик исследованных образцов в магнитном поле предложена модель неоднородного распределения намагниченности в аморфных ферромагнитых ферромагнитных постоянным электрическим током.

PACS: 75.50.Kj

В работе исследовано влияние обработки постоянным электрическим током на магнитные и магнитоупругие свойства аморфных ферромагнитных сплавов Fe₆₄Co₂₁B₁₅ и Fe_{81.5}B_{13.5}Si₃C₂. Образцы в виде полосок длиной 0.03 - 0.06 m, толщиной $2.5 \cdot 10^{-5} \text{ m}$ и шириной (1-1.2) · 10⁻³ m вырезались вдоль длины исходной ленты и обрабатывались на воздухе постоянным электрическим током, протекающим вдоль их длины. Плотность электрического тока обработки изменялась от $j = 2 \cdot 10^7 \,\text{A}/\text{m}^2$ до $j = 7.3 \cdot 10^7 \,\text{A}/\text{m}^2$ для сплава $Fe_{64}Co_{21}B_{15}$ и от $j = 3 \cdot 10^7 \, A/m^2$ до $j = 6.8 \cdot 10^7 \, A/m^2$ для сплава Fe_{81.5}B_{13.5}Si₃C₂. Время обработки образцов составляло две минуты. Целью проведения обработки являлось наведение в образцах одноосной анизотропии с осью легкого намагничивания, перпендикулярной длине полосок. Измерения ΔЕ-эффекта проводились методом резонанса-антирезонанса [1]. Постоянное Н и малое переменное магнитные поля прикладывались вдоль длины полосок. Кривые намагничивания и петли гистерезиса исследованных сплавов снимались баллистическим методом.

На рис. 1, *а* приведены зависимости ΔE -эффекта ($\Delta E/E_0 = (E_H - E_0)/E_0$, где E_0 — модуль упругости образца при $H \approx 0$, E_H — модуль упругости образца в магнитном поле H) от H для образцов Fe₆₄Co₂₁B₁₅ длиной 0.05 m, прошедших обработку при различных j. При малых значениях j ($j < 3.3 \cdot 10^7 \text{ A/m}^2$) в сплавах наблюдается положительный ΔE -эффект (увеличение значения E_H с ростом H). С ростом плотности электрического тока обработки j от $3.3 \cdot 10^7$ до $7.3 \cdot 10^7 \text{ A/m}^2$ в образцах возникает отрицательный ΔE -эффект (уменьшение величины E_H с ростом H). Наличие отрицательного ΔE -эффекта в аморфных металлических сплавах, как правило, свидетельствует о существовании в таких образцах одноосной анизотропии с осью легкого намагничивания, перпендикулярной их длине [2]. При

этом преобладющим механизмом намагничивания под действием постоянного магнитного поля, ориентированного перпендикулярно наведенной оси легкого намагничивания образцов является поворот намагниченности в направлении H. Величина плотности электрического тока j, при которой возникает отрицательный ΔE -эффект в образцах состава Fe₆₄Co₂₁B₁₅, не изменяется при уменьшении длины полосок (рис. 2, a).

На рис. 1, *b* приведены зависимости величины ΔE -эффекта от внешнего магнитного поля для образцов Fe_{81.5}B_{13.5}Si₃C₂ длиной 0.05 m, обработанных при различных значениях *j*. Как следует из рис. 1, *b*, в обработанных электрическим током образцах состава Fe_{81.5}B_{13.5}Si₃C₂, практически во всем интервале действующих постоянных магнитных полей *H* наблюдается только положительный ΔE -эффект.

При увеличении плотности электрического тока обработки j от $3 \cdot 10^7$ до $(5.0-5.6) \cdot 10^7 \text{ A}/\text{m}^2$ у образцов состава Fe_{81.5}B_{13.5}Si₃C₂ происходит монотонный рост ΔE -эффекта во всем исследованном диапазоне внешних магнитных полей. При дальнейшем увеличении *j* до $6.5 \cdot 10^7 \,\text{A}/\text{m}^2$ значение ΔE -эффекта уменьшается. Наличие в магнитострикционном ферромагнитном сплаве только положительного ΔE -эффекта, как правило, свидетельствует о том, что основным механизмом его намагничивания является смещение на 180° доменных границ [3]. Таким образом, на основании данных по измерению ДЕ-эффекта, в обработанных постоянным электрическим током образцах состава Fe_{81.5}B_{13.5}Si₃C₂, можно предположить, что преоблающим механизмом их намагничивания является процесс смещения доменных границ.

В сплаве $Fe_{81.5}B_{13.5}Si_3C_2$ величина ΔE -эффекта в максимальном магнитном поле измерения H = 550 A/m уменьшается с уменьшением длины образцов L (рис. 2, *b*). Вместе с тем, абсолютные значения ΔE -эф-

Рис. 1. Зависимости величины ΔE -эффекта от величины магнитного поля H: a — для сплава Fe₆₄Co₂₁B₁₅ $(I - j = 2 \cdot 10^7, 2 - 2.7 \cdot 10^7, 3 - 3.3 \cdot 10^7, 4 - 4.7 \cdot 10^7, 5 - 5.3 \cdot 10^7, 6 - 6.6 \cdot 10^7 \text{ A/m}^2); b$ — для сплава Fe_{81.5}B_{13.5}Si₃C₂ $(I - j = 4.3 \cdot 10^7, 2 - 4.6 \cdot 10^7, 3 - 4.9 \cdot 10^7, 4 - 5.2 \cdot 10^7, 5 - 5.5 \cdot 10^7 \text{ A/m}^2).$

фекта в сплаве $Fe_{81.5}B_{13.5}Si_3C_2$ значительно выше, чем в сплаве $Fe_{64}Co_{21}B_{15}.$

Для выяснения причин появления качественно различных зависимостей ΔE -эффекта от внешнего магнитного поля у исследованных образцов, обработанных при различных значениях плотности электрического тока j, были сняты петли гистерезиса.

На рис. З приведены петли гистерезиса образцов состава $Fe_{64}Co_{21}B_{15}$ длиной 0.05 m, обработанных при различных значениях *j*. Наибольшие изменения в ходе петель гистерезиса наблюдаются при $j > 6 \cdot 10^7 \text{ A}/\text{m}^2$, что может свидетельствовать о протекании в сплаве при таких значениях плотности электрического тока

процессов кристаллизации. Наибольшие изменения в ходе петель гистерезиса образцов состава $Fe_{81.5}B_{13.5}Si_3C_2$ происходят при $j > 5.6 \cdot 10^7 \text{ A}/\text{m}^2$ (рис. 4). У обоих исследованных сплавов наблюдаются достаточно высокие значения остаточной индукции B_r , которая снижается при уменьшении длины полосок (рис. 5).

На рис. 6, *a*, *b* приведены зависимости магнитной проницаемости μ от *H* для образцов, обработанных при различных значениях *j*. Максимальные значения μ наблюдаются для образцов состава Fe₆₄Co₂₁B₁₅ при плотности тока обработки $j = (4-4.7) \cdot 10^7$, а для образцов состава Fe_{81.5}B_{13.5}Si₃C₂ — при $j = (5.2-5.6) \cdot 10^7$ A/m². В образцах состава Fe₆₄Co₂₁B₁₅ величина *j*, при которой наблюдается максимальный отрицательный ΔE -эффект, меньше значений *j*, при которых наблюдаются максимальные значения μ (рис. 6, *a*). В то же время

Рис. 2. Зависимость величины ΔE -эффекта от длины образцов: ■ — 0.06, \blacklozenge — 0.05, \blacktriangle — 0.04, * — 0.03 m; *a* — для сплава Fe₆₄Co₂₁B₁₅ — при плотности тока *j* = 5.3 · 10⁷ A/m², *b* для сплава Fe_{81.5}B_{13.5}Si₃C₂ при плотности тока 5.6 · 10⁷ A/m².

Рис. 3. Петли гистерезиса сплава Fe₆₄Co₂₁B₁₅ для различных плотностей токов ($a - j = 4 \cdot 10^7$, $b - 5.6 \cdot 10^7$, $c - 6.4 \cdot 10^7$, $d - 7.2 \cdot 10^7$ A/m²).

максимальные значения магнитной проницаемости и ΔE -эффекта у образцов состава Fe_{81.5}B_{13.5}Si₃C₂ наблюдаются при одинаковых значениях плотности электрического тока обработки (рис. 6, b). Максимальные значения магнитной проницаемости уменьшаются с уменьшением длины исследованных образцов. Необходимо отметить, что наличие максимумов на зависимостях $\mu(H)$ у исследованных образцов свидетельствует о том, что значительную роль в процессах перестройки их доменной структуры играет смещение доменных границ. Таким образом, несмотря на качественно различные зависимости ΔE -эффекта от H у обработанных постоянным электрическим током сплавов Fe₆₄Co₂₁B₁₅ и Fe_{81.5}B_{13.5}Si₃C₂, у них наблюдаются близкие по характеру зависимости $\mu(H)$, а также относительно высокие значения остаточной индукции В_r, что также является свидетельством наличия вклада смещения доменных границ в процессе намагничивания образцов.

Полученные результаты могут быть объяснены, если предположить, что протекающий по образцам постоянный электрический ток наводит в приповерхностных областях толщиной *S* ось легкого намагничивания, перпендикулярную их длине. Так как магнитное поле от постоянного электрического тока ориентировано противоположным образом на нижней и верхней поверхностях образца, то и ориентация намагниченности на них будет иметь противоположные направления. При этом в серединной части полосок находится область толщиной d, в которой ось легкого намагничивания ориентирована вдоль длины образцов. Предполагаемое распределение оси легкого намагничивания по толщине образца представлено на рис. 7. Похожая магнитная структура ранее наблюдалась в магнитных пленках при их изготовлении во вращающемся магнитном поле [4,5]. Между приповерхностной и серединной областями существует область, в которой осуществляется переход намагниченности от перпендикулярного к параллельному по отношению к образцу направлению. Толщину такой переходной области t в первом приближении можно оценить, предполагая, что распределение намагниченности в ней аналогично распределению намагниченности в 90° доменной границе. Выражение для толщины 90° доменной границы б можно представить в следующем виде:

$$\delta = 0.5\pi (A/K)^{1/2},\tag{1}$$

где $A \approx (1-3) \cdot 10^{-11} \, \text{J/m}$ — константа обменного взаимодействия, K — константа анизотропии в переходной

Рис. 4. Петли гистерезиса сплава Fe_{81.5}B_{13.5}Si₃C₂ для различных плотностей токов ($a - j = 4 \cdot 10^7$, $b - 5.6 \cdot 10^7$, $c - 6.4 \cdot 10^7$, $d - 6.8 \cdot 10^7$ A/m²).

области образца, величина которой зависит от величины константы наведенной одноосной анизотропии на поверхности образца K_S и величины константы анизотропии, обусловленной действием внутренних напряжений в объеме образца K_d . Так как значения K_S и K_d в аморфных ферромагнитных сплавах на основе железа составляют примерно $50-100 \text{ J/m}^3$, то и величина Kизменяется в этом же интервале. С учетом этого толщина переходной области в образце $t \approx \delta$ составляет $(0.5-1.2) \cdot 10^{-6}$ m. Так как толщина исследованных образцов на порядок больше, чем толщина переходной области, при дальнейшем рассмотрении будем пренебрегать влиянием процессов перестройки доменной структуры в этой области на магнитные и магнитоупругие свойства образцов.

При приложении внешнего магнитного поля, ориентированного вдоль длины полосок, в их серединной области протекают, в основном, процессы смещения доменных границ. По всей видимости, именно такими процессами в серединной области образца обусловлено появление характерного максимума на зависимости $\mu(H)$ и относительно высокие значения остаточной магнитной индукции B_r исследованных сплавов. Процессы перестройки доменной структуры в приповерхностных областях исследованных образцов будут определять ход зависимости величины ΔE -эффекта от H.

Проведем анализ зависимости величины ΔE -эффекта от внешнего магнитного поля в образцах с магнитной структурой, представленной на рис. 7. При этом будем учитывать вклад в величину ΔE -эффекта только приповерхностной области образца, ось легкого намагничивания которой ориентирована перпендикулярно длине исследуемых полосок. Зависимость величины модуля упругости E_H от внешнего магнитного поля H в случае перестройки доменной структуры приповерхностной области посредством поворота намагниченности в направлении действия магнитного поля может быть представлена в виде [6,7]

$$E_{H} = E_{0} \left(2K - 3\lambda_{S}\sigma + NM_{S}^{2}\mu_{0} \right)^{3} / \left[\left(2K - 3\lambda_{S}\sigma + NM_{S}^{2}\mu_{0} \right)^{3} + 9\lambda_{S}^{2}M_{S}^{2}H^{2}\mu_{0}^{2}E_{0} \right], \quad (2)$$

где M_S — намагниченность насыщения образца, N — размагничивающий фактор приповерхностной области вдоль длины полоски, μ_0 — магнитная проницаемость вакуума, σ — величина внешних упругих напряжений,

приложенных вдоль длины образца, λ_S — константа магнитострикции. Как следует из выражения (2), с ростом внешнего магнитного поля должно происходить уменьшение величины E_H , т.е. наблюдаться отрицательный ΔE -эффект. Выражение для N может быть приближенно записано в виде [8]

$$N = (1/L) / [(1/L) + (1/s) + (1/b)],$$
(3)

где b — ширина приповерхностной области полоски. Выражение для абсолютной величины ΔE -эффекта может быть представлено в виде [7]

$$\Delta E/E_0 = \left(9\lambda_s^2 + M_s^2 H^2 \mu_0^2 E_0 / \left[\left(2K - 3\lambda_s \sigma + NM_s^2 \mu_0\right)^3 + 9\lambda_s^2 M_s^2 H^2 \mu_0^2 E_0 \right] \right).$$
(4)

Как следует из выражений (3) и (4), абсолютное значение отрицательного ΔE -эффекта снижается с уменьшением длины полосок *L*. Как следует из экспериментальных данных, модель вращения намагниченности в приповерхностной области позволяет адекватно описать ход зависимости величниы ΔE -эффекта от *H* только у сплава состава Fe₆₄Co₂₁B₁₅. У сплава состава Fe_{81.5}B_{13.5}Si₃C₂, прошедшего обработку электрическим током, отрицательного ΔE -эффекта не наблюдается, что может быть связано со следующими обстоятельствами.

Предположительно, в процессе обработки на воздухе постоянным электрическим током на поверхности этого сплава образуется слой соединения FeSiO, создающий значительные внутренние сжимающие напряжения и разрушающий наведенную одноосную анизотропию. В результате этого доменная структура поверхностного слоя будет иметь неоднородный характер, а основным механизмом ее перестройки под действием магнитного поля будет являться смещение не 180° домен-

Рис. 5. Зависимость значения остаточной индукции B_r от длины образцов для сплавов: • — Fe₆₄Co₂₁B₁₅; **П** — Fe_{81.5}B_{13.5}Si₃C₂.

Рис. 6. Зависимости магнитной проницаемости μ от величины магнитного поля *H*: *a* — сплав Fe₆₄Co₂₁B₁₅, *b* — сплав Fe_{81.5}B_{13.5}Si₃C₂; (*I*, *a* — *j* = 3.2 · 10⁷; *I*, *b* — 4 · 10⁷; *2* — 5.6 · 10⁷; *3* — 6.4 · 10⁷; *4*, *a* — 7.2 · 10⁷; *4*, *b* — 6.8 · 10⁷ A/m²).

ных границ, приводящее к появлению положительного ΔE -эффекта.

Следует отметить, что уменьшение величины остаточной индукции B_r и магнитной проницаемости с уменьшением длины исследованных образцов также можно объяснить ростом размагничивающего фактора серединной области. Создаваемые на торцах образца магнитные полюса создают поля рассеяния, препятствующие протеканию процессов смещения доменных границ и уменьшающие компоненту намагниченности вдоль длины образца.

Таким образом, на основании проведенных исследований могут быть сделаны следующие выводы.

Зависимость величины ΔE -эффекта от внешнего магнитного поля в магнитостриционных аморфных ферро-

Рис. 7. Предполагаемое распределение оси легкого намагничивания в исследуемых образцах, прошедших обработку электрическим током.

магнитных сплавах $Fe_{64}Co_{21}B_{15}$ и $Fe_{81.5}B_{13.5}Si_3C_2$, прошедших обработку постоянным электрическим током на воздухе имеет качественно различный характер, что может быть обусловлено различным составом исследованных образцов.

В исследованных образцах наблюдаются качественно подобные зависимости величины магнитной проницаемости от внешнего магнитного поля, а также относительно высокие значения остаточной магнитной индукции, что свидетельствует о значительном вкладе смещения доменных границ в процессе намагничивания аморфных ферромагнитных сплавов, прошедших обработку постоянным электрическим током.

Полученные результаты могут быть объяснены на основе представлений о неоднородном распределении намагниченности в исследованных сплавах. В приповерхностной области образца намагниченность ориентирована перпендикулярно длине исследованных сплавов, а в центральной области — параллельно длине образца. Уменьшение величины ΔE -эффекта при этом можно связать с ростом размагничивающего фактора исследованных образцов.

Работа выполнена при финансовой поддержке гранта Министерства образования и науки РФ по программе "Развитие научного потенциала высшей школы" (грант № 609).

Список литературы

- [1] Savage H.T., Clark A.E. // IEEE Trans. on Magn. 1975. V. 11. P. 1355.
- [2] Золотухин И.В., Калинин Ю.Е., Кондусов В.А. // Металлофизика. 1989. Т. 11. Вып. 4. С. 48–51.
- [3] Barandiaran J.M., Garsia-Arribas A., Gutierrez J. // JMMM. 1994. Vol. 193. P. 46–48.
- Журнал технической физики, 2006, том 76, вып. 6

- [4] Thompson D.A., Finzi L.A., Chang H. // J. of Appl. Phys. 1966.
 Vol. 37. P. 1271–1274.
- [5] Улымжиева Э.Ц., Прищепа А.Г. // Физика магнитных пленок. Красноярск, 1974. С. 13–16.
- [6] Livingston J.D. // Solid. State Phys. 1982. Vol. 70. N 8. P. 591–596.
- [7] Гаврилюк А.А., Семенов А.Л., Моховиков А.Ю. // Письма в ЖТФ. 2005. Т. 31. Вып. 6. С. 51–56.
- [8] Ким П.Д. Динамика доменных стенок в магнитных пленках. Красноярск, 1988. 246 с.