## Краткие сообщения

#### 01

# Моделирование фликкер-шума с помощью дробного интегро-дифференцирования

#### © С.Ш. Рехвиашвили

Кабардино-Балкарский государственный университет, Нальчик, Россия e-mail: rsergo@mail.ru

#### (Поступило в Редакцию 7 июня 2005 г.)

В работе найдена связь между спектральной плотностью мощности фликкер-шума и дробной производной Римана-Лиувилля. Показано, что системы со спектром фликкер-типа могут "вычислять" дробную производную от случайного стационарного процесса. Полученные результаты предложено использовать для моделирования фликкер-шума в электронных схемах. Метод реализован с помощью программы схемотехнического моделирования *PSpice*.

#### PACS: 05.40.Ca

Из теории и многочисленных экспериментов известно, что на высоких частотах шум большинства электронных приборов имеет равномерный спектр, соответствующий тепловому или дробному шуму. Однако при понижении частоты ниже некоторого значения f<sub>0</sub> (граничной частоты области белого шума) уровень шума значительно увеличивается. При этом частотная зависимость спектральной плотности мощности шума имеет вид  $1/f^{\gamma}$ , где  $\gamma$  — некоторая постоянная, близкая к единице. Граничная частота f<sub>0</sub> для различных приборов может изменяться в довольно широких пределах (от 1 до 100 MHz). В настоящее время принято считать, что причиной низкочастотного фликкер-шума являются различные "внутренние" физические факторы, которые определяют работу данного прибора и носят необратимый характер. Так, например, в биполярных полупроводниковых структурах низкочастотный шум обусловлен процессами генерации и рекомбинации носителей заряда. В МОП-структурах фликкер-шум существенно зависит от поведения носителей заряда вблизи границы раздела полупроводник-диэлектрик.

Имеются различные численные и аналитические математические модели для описания фликкер-шума. При этом есть все основания считать, что сам фликкер-шум является результатом различных диссипативных кинетических процессов, происходящих в системе [1]. Феноменологически наиболее адекватно эти процессы могут быть представлены в виде так называемого динамического (временного) фрактала [1,2]. В различных задачах для описания процессов, имеющих фрактальную структуру, используется специальный математический аппарат формализм дробного интегро-дифференцирования [3]. Это связано с тем, что фрактальные функции не дифференцируемы в обычном смысле. Таким образом, возникает вопрос о возможной связи между фликкер-шумом и дробной производной Римана–Лиувилля, которая является ключевым понятием дробного исчисления [3,4]. Еще одним основанием для детального исследования данного вопроса являются результаты, полученные в работе [5]. В данной работе с помощью численного моделирования обнаружена корреляция между решением системы уравнений Ланжевена, описывающих флуктуации вблизи фазового перехода, и дробным интегралом порядка 1/2.

В настоящей работе показано, что дробная производная тесно связана со спектром фликкер-шума. На практике этот факт предлагается использовать для моделирования низкочастотных шумов с помощью специальной схемы замещения, которая вычисляет дробную производную. Данный подход, кроме того, может позволить по-новому формулировать различные задачи, связанные с исследованием и моделированием низкочастотных шумов в электронных схемах.

Рассмотрим электрическую схему на рис. 1. К входу схемы подключен источник белого шума (1), состоящий из идеального источника тока  $I_0$  и резистора  $R_{in}$ . Спектральная плотность мощности шума (в данном случае теплового) определяется формулой Найквиста

$$S_{in} = 4k_B T R_{in}, \tag{1}$$

где  $k_B$  — постоянная Больцмана, T — шумовая температура. В схеме имеется электронный блок с импульсной характеристикой вида

$$g(t,\alpha) = \frac{A}{t_0^{1-\alpha}} \frac{1}{t^{\alpha}}, \qquad 0 < \alpha < 1, \tag{2}$$

где A,  $t_0$  и  $\alpha$  — параметры настройки блока (эти параметры связаны между собой соотношением  $g(t_0, \alpha) = A/t_0$ ), t — время. Отметим, что блок с импульсной характеристикой (2) обладает тем свойством,



Рис. 1. Схема дробного интегро-дифференциального преобразователя.

что при действии на его входе короткого  $\delta$ -образного импульса на выходе появляется сигнал, уменьшающийся со временем по степенному закону ( $\sim t^{-\alpha}$ ). Иными словами, блок обладает последствием и представляет собой систему с памятью. Напряжение в узле (2) определяется с помощью интеграла Дюамеля

$$U_g(t) = \int_0^t U_{in}(t')g(t-t',\alpha)dt = \frac{A}{t_0^{1-\alpha}}\int_0^t \frac{U_{in}(t')dt'}{(t-t')^{\alpha}}.$$
 (3)

Сигнал  $U_g(t)$  подается на дифференциатор (3), который состоит из конденсатора  $C_{out}$  и резистора  $R_{out}$ . Учитывая закон Кирхгофа для выходного тока и выражение (3), для выходного напряжения можно записать

$$U_{out}(t) = \tau \frac{dU_g(t)}{dt} = \frac{A\tau}{t_0^{1-\alpha}} \frac{d}{dt} \int_0^t \frac{U_{in}(t')}{(t-t')^{\alpha}} dt'$$
$$= \frac{A\tau\Gamma(1-\alpha)}{t_0^{1-\alpha}} D_{0t}^{\alpha} U_{in}(t), \quad \tau = R_{out}C_{out}, \quad (4)$$

где  $\Gamma(1-\alpha)$  — гамма-функция Эйлера,  $D_{0t}^{\alpha}$  — оператор дробного интегродифференцирования Римана– Лиувилля [3,4]. Из формулы (4) видно, что выходное напряжение определяется дробной производной порядка  $\alpha$ от входного сигнала. В связи с этим, схему на рис. 1, можно назвать дробным интегро-дифференциальным преобразователем.

Проанализируем спектральные свойства схемы. Комплексная частотная характеристика (КЧХ) блока с учетом импульсной характеристики (2) находится с помощью интеграла Фурье

$$k_g(\omega, \alpha) = \int_{-\infty}^{\infty} g(t, \alpha) \exp(-i\omega t) dt = \frac{A}{t_0^{1-\alpha}} \int_{-\infty}^{\infty} \frac{\exp(-i\omega t)}{t^{\alpha}} dt,$$
(5)

где  $\omega$  — частота. Производя интегрирование в (5), получаем

$$k_{g}(\Omega, \alpha) = -|k_{g}(\Omega, \alpha)| \exp(i\varphi_{g}(\alpha)),$$
$$k_{g}(\Omega, \alpha)| = \frac{2\pi A}{\Gamma(\alpha)\Omega^{1-\alpha}}, \quad \varphi_{g}(\alpha) = \pi \left(1 - \frac{\alpha}{2}\right), \quad (6)$$

где  $\Omega = t_0 \omega$  — безразмерная частота. Из выражения (6) можно видеть, что фаза не зависит от частоты. Однако она может уменьшаться от  $\pi$  до  $\pi/2$  при увеличении показателя  $\alpha$  от 0 до 1. Дифференциатор представляет собой фильтр верхних частот. Выражение для его КЧХ  $k_d(\omega)$  хорошо известно [6]. С учетом данного выражения и выражения (6) записывается КЧХ для всей схемы

$$k(\Omega, \alpha) = k_g(\Omega, \alpha) k_d(\Omega) = -|k(\Omega, \alpha)| \exp(i\varphi(\Omega)).$$
$$|k(\Omega, \alpha)| = \frac{2\pi A \Omega^{\alpha}}{\Gamma(\alpha) \sqrt{\Omega^2 + \left(\frac{t_0}{\tau}\right)^2}},$$
$$\varphi(\alpha, \Omega) = \pi \left(1 - \frac{\alpha}{2}\right) + \operatorname{arctg}\left(\frac{t_0}{\Omega\tau}\right). \tag{7}$$

На рис. 2 сплошными линиями показана рассчитанная амлитудно-частотная характеристика (АЧХ) интегродифференциального преобразователя при различных значениях  $\alpha$ . Для простоты в расчетах предполагалось, что A = 1 и  $t_0 = \tau$ . Из графика видно, что АЧХ преобразователя в области низких частот имеет характерный максимум, зависящий от  $\alpha$ . Его положение, найденное из условия экстремума АЧХ, дается следующей формулой:

$$\Omega_0 = \frac{t_0}{\tau} \sqrt{\frac{\alpha}{1-\alpha}}.$$
(8)

При увеличении частоты входного сигнала происходит уменьшение реактивного сопротивления дифференциатора. Поэтому по отношению к высокочастотным составляющим коэффициент передачи всей схемы будет определяться коэффициентом передачи блока с импульсной характеристикой (2). На рис. 2 этот факт иллюстрируют штриховые линии, которые определяют асимптотику на высоких частотах ( $\Omega \gg \Omega_0$ ).



**Рис. 2.** Амплитудно-частотные характеристики дробного интегро-дифференциального преобразователя (сплошные кривые) и блока с импульсной характеристикой  $g(t, \alpha)$  (штриховые кривые). Для кривых с номерами *1*, *2* и *3* параметр  $\alpha$  равен 0.7, 0.5 и 0.3 соответственно.

Журнал технической физики, 2006, том 76, вып. 6

Спектральная плотность на выходе схемы получается умножением входной спектральной плотности, определяемой формулой (1), на квадрат модуля функции передачи [7]. При  $\Omega \gg \Omega_0$  имеем

$$S_{out} = |k(\Omega, \alpha)^2| S_{in} = \left(\frac{8\pi A}{\gamma \Gamma\left(-\frac{\gamma}{2}\right)}\right)^2 \frac{k_B T R_{in}}{\Omega^{\gamma}}, \quad (9)$$

где  $\gamma = 2(1 - \alpha)$  — постоянная, лежащая в интервале от 0 до 2. Из формулы (9) следует, что дробный интегродифференциальный преобразователь с подключенным к нему источником белого шума на высоких частотах имеет спектральную характеристику фликкер-типа. Другими словами, рассматриваемая схема на частотах  $\Omega \gg \Omega_0$  преобразует истинный стационарный шум в шум 1/f-типа. Примечательным является также то, что наиболее характерная для фликкер-шума зависимость вида  $S_{out} \sim \Omega^{-1}$  имеет место, если порядок дробной производной  $\alpha$  равен 1/2. Эти свойства преобразователя указывают на возможность его применения для моделирования низкочастотных шумов в различных электронных системах.

Для практической реализации схемы дробного интегро-дифференциального преобразователя в работе проводилось схемотехническое моделирование с использованием интерпретатора *SPICE* [7]. Как и должно быть, аналитическое выражение (7) в точности воспроизводит результаты численного моделирования. Программа мо-делирования приведена в приложении.

#### SPICE-программа моделирования дробного интегро-дифференциального преобразователя

\*Fractional Derivative Transform .param a = 1e-3 alfa = 0.5i0 1 0 ac 10u egta 2 0 laplace  $\{v(1)\} = \{a/pwr(s,1-alfa)\}$ rin 1 0 50k rout 3 0 50k cout 2 3 2500u .step param alfa list 0.3 0.5 0.7 .ac dec 100 0.1 1meg .noise v(3,0)i0.print noise inoise .print ac v(3,0) vp(3,0).probe .end

Данное описание является универсальным в том смысле, что его можно транслировать во внутренний формат различных интерактивных программ схемотехнического моделирования (например, Electronics Workbench или MicroCap). Кроме того, его можно оформить в виде отдельного библиотечного компонента или макромодели. В программе блок с импульсной характеристикой (2) задается в виде источника напряжения, управляемого напряжением. Его передаточная функция задается с



**Рис. 3.** Аналоговая схема решения дифференциального уравнения дробного порядка. Блок с символом "*D*<sup>*α*</sup>" означает дробный интегро-дифференциальный преобразователь.

помощью преобразования Лапласа в *s*-области. Для получения требуемого вида АЧХ можно изменять ее наклон и положение максимума на оси частот путем варьирования параметров  $t_0$ ,  $\tau$  и  $\alpha$ , что позволяет использовать преобразователь при моделировании различных электронных устройств в качестве независимого источника шума [7].

В заключение отметим, что анализ схем, содержащих дробный интегродифференциальный преобразователь, может сводиться к решению дифференциальных уравнений дробного порядка. Подобные уравнения, как известно, возникают в теории кинетических процессов во фрактальных средах [3]. Рассмотрим это на конкретном примере. Пусть имеется стохастическое дифференциальное уравнение дробного порядка (дробный аналог уравнения Ланжевена)

$$D_{0t}^{\alpha}U(t) + bU(t) = F(t),$$
(10)

где U(t) — неизвестная функция, F(t) — случайная сила (шумовое напряжение), b — некоторая постоянная. Это уравнение можно переписать в виде

$$U(t) = D_{0t}^{-\alpha} \left( F(t) - bU(t) \right).$$
(11)

Уравнение (11) представляет собой интегральное уравнение Вольтерра 2-го рода, которое может быть решено итерационным методом. Если b > 0, то схематически вычислительные итерации будут соответствовать наличию отрицательной обратной связи. Таким образом, электрическая схема решения уравнения (10) приобретает вид, показанный на рис. 3.

### Список литературы

- [1] Тимашев С.Ф. // Шумовые и деградационные процессы в полупроводниковых приборах (метрология, диагностика, технология): Матер. докл. науч.-тех. семинара. М.: МНТОРЭС им. А.С. Попова, МЭИ, 1999. С. 239–260.
- [2] Федер Е. Фракталы. М.: Мир, 1991.
- [3] Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003.

- [4] Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987.
- [5] Коверда В.П., Скоков В.Н. // ЖТФ. 2000. Т. 70. Вып. 10. С. 1–7.
- [6] Титце У., Шенк К. Полупроводниковая схемотехника. М.: Мир, 1982.
- [7] *Рытов С.М.* Введение в статистическую радиофизику. М.: Наука, 1966.
- [8] Разевиг В.Д. Применение программ Р-САD и PSpice для схемотехнического моделирования на ПЭВМ: Вып. 2, 3. М.: Радио и связь, 1992.