Структура протяженной плазменной струи в вакуумной дуге в аксиальном магнитном поле

© И.А. Кринберг¹, Г.К. Матафонов²

¹Иркутский государственный университет, 664003 Иркутск, Россия ²Институт солнечно-земной физики СО РАН, 664033 Иркутск, Россия e-mail: krinberg@physdep.isu.ru

(Поступило в Редакцию 6 июля 2005 г.)

С помощью квази-одномерной магнитогидродинамической модели исследованы движение, нагрев и ионизация плазмы в вакуумной дуге с кольцеобразным анодом, помещенной в аксиальное магнитное поле. Рассмотрена как область между катодом и анодом (токонесущая плазменная струя), так и за срезом анода (бестоковая струя). Найдено, что в бестоковой плазме на большом протяжении сохраняются высокие значения электронной плотности и температуры и происходит значительное повышение зарядности ионов вследствие ударной ионизации.

PACS: 52.77.Fv

Введение

04:12

В настоящее время ионные источники на основе вакуумно-дугового разряда находят широкое применение в технике. В таких источниках эмитируемая с поверхности катода плазменная струя двигается в направлении кольцевого (или трубчатого) анода и после прохода через него попадает в другие части вакуумной системы (например, в экстрактор). Как правило [1-4], разрядный промежуток располагается внутри соленоида, создающего магнитное поле, направленное вдоль оси разряда (рис. 1). В случае сильного магнитного поля диаметр плазменной струи может быть существенно меньше диаметра анодного отверстия, и катодное вещество (ионы) практически не попадает на анод [4]. При этом замыкание тока происходит, по-видимому, за счет ухода на кольцевой анод быстрых электронов (имеющих большой ларморовский радиус) с поверхности плазменной струи. Таким образом, между катодом и анодом

Рис. 1. Схематическое изображение ионного источника: *I* — катод, *2* — анод, *3* — соленоид.

реализуется токонесущая плазменная струя, а за срезом анода струя становится бестоковой.

В теоретических моделях вакуумной дуги в магнитном поле [5–7] ранее рассматривалась лишь токонесущая часть плазменной струи с характерной длиной 1–3 ст. Вместе с тем длина бестоковой струи, как правило, на порядок больше [3,4]. Можно ожидать, что в сильном аксиальном магнитном поле такая струя не будет существенно расширяться и сохранит достаточно высокие значения электронной плотности и температуры (вследствие теплового потока из области энерговыделения). Следствием может быть продолжение ударной ионизации и повышение зарядности ионов даже в бестоковой плазме. Изучение данных процессов в протяженных плазменных струях, распространяющихся вдоль магнитного поля, является целью настоящей работы.

Модель и уравнения плазменной струи

1. Струя с током. При исследовании плазменных течений с характерным размером по радиусу, значительно меньшим характерного размера вдоль потока, можно использовать метод профилирования, позволяющий перейти от двумерной задачи к квази-одномерной [8]. Считая концентрацию и температуру частиц и плотности потока массы и заряда постоянными по сечению струи, интегральные законы сохранения заряда, массы и продольного импульса в стационарном случае можно записать в виде [7–9].

$$eN_e(V_e - V)S = I = \text{const},\tag{1}$$

$$\rho VS = G = \text{const},\tag{2}$$

$$\rho V^2 S + PS - \frac{\mu_0 I^2}{4\pi} \ln R = \text{const.}$$
(3)

Здесь $\rho = mN_i$ и $P = kT_eN_e + kT_iN_i$ — плотность и давление плазмы; N_e, N_i, T_e, T_i — концентрация и температура электронов и ионов; V и V_e — продольная скорость плазмы (ионов) и электронов, R и $S = \pi R^2$ радиус и площадь поперечного сечения струи; I сила разрядного тока; G — интегральный поток массы (расход материала катода в плазменной фазе), т масса иона, е — элементарный заряд, к — постоянная Больцмана, μ_0 — магнитная проницаемость вакуума. При записи соотношения (1) принято во внимание, что в вакуумных дугах $V_e > V > 0$, так как электроны и ионы двигаются в одну сторону (от катода к аноду) [10]. Далее везде предполагается выполнение условия квазинейтральности $N_e = Z_i N_i$, где Z_i — средний заряд ионов.

В работе [8] получены уравнения для расчета площади сечения плазменной перетяжки, а в [7,11] проведено их обобщение на случай плазменной струи во внешнем аксиальном магнитное поле. Соответствующие уравнения имеют вид:

$$\rho VS = \frac{dV_R}{dz} = \frac{3PS}{R} - \frac{\mu_0 I^2}{2\pi R} - \omega_e \tau_e IB_z \frac{dR}{dz}, \qquad (4)$$

$$V_R = V \, \frac{dR}{dz}.\tag{5}$$

Здесь z — расстояние от прикатодной области разряда, *V_R* — радиальная скорость плазмы на боковой поверхности струи, $B_z = \text{const} - \text{однородное внешнее магнитное}$ поле, τ_e — время электрон-ионных столкновений [12], $\omega_e = eB_z/m_e, m_e$ — масса электрона.

Так как джоулево тепло выделяется в электронном газе, то за пределами прикатодной области в плазменных струях $T_e \gg T_i$ [10]. Поэтому ионы далее считаются "холодными" и принимается $P \approx N_e k T_e$. В силу этого вместо полного теплового баланса плазмы целесообразно использовать уравнение теплового баланса электронов, которое с учетом [12,13] можно представить в виде

$$\frac{d}{dz}\left(\frac{3}{2}PV_eS + qS\right) + P\frac{d}{dz}\left(V_eS\right) = \frac{eI^2}{\sigma S} - Q_{ei}S.$$
 (6)

Здесь Q_{ei} — скорость потерь энергии электронами при неупругих столкновениях с ионами, $q = -\kappa_e dT_e/dz$ электронный поток тепла, $\kappa_e = \gamma_0 \sigma k T_e / e^2$ — коэффициент теплопроводности, $\sigma = e^2 N_e \tau_e / m_e$ — коэффициент электропроводности. Для вакуумной дуги в продольном магнитном поле с типичным зарядом ионов $Z_i = 2-4$ [1] можно принять $\gamma_0 \approx 6$ [12].

Для расчета ионного состава используется следующая система уравнений [7]:

$$V \frac{df_n}{dz} = k_n f_{n-1} N_e - k_{n+1} f_n N_e \quad (n = 1, 2, 3, \ldots).$$
(7)

Здесь $f_n = N_n/N_i$ — доля ионов *n*-ой зарядности с концентраций N_n , $f_0 = 0$; $k_n(T_e)$ — коэффициент ионизации для образования *n*-кратно заряженного иона. Средний ионный заряд определяется как $Z_i = \sum_{n=1}^{\infty} nf_n$, а его производная равна $dZ_i/dz = N_e/V \sum_i k_{n+1} f_n$. Если считать, что при неупругих столкновениях энергия электрона расходуется в основном на ионизацию ионов [14], то скорость потерь определяется соотношением $Q_{ei} = N_e N_i \sum_{i=1}^{n} E_{n+1} k_{n+1} f_n$, где E_{n+1} есть энергия

образования (*n* + 1)-кратно заряженного иона.

2. Бестоковая струя. Для упрощения задачи будем полагать, что при $z < z_a$ (z_a — расстояние от катода до анода, (рис. 1) реализуется токонесущая плазменная струя, а при $z > z_a$ струя становится бестоковой. Таким образом, предполагается, что замыкание тока на анод происходит поперек струи в узкой области $\Delta z_a \ll z_a$ порядка толщины анодного отверстия (рис. 1). Косвенным подтверждением такой схемы замыкания тока являются измерения падения напряжения на разряде [4], которые показали, что при увеличении диаметра D_a входного отверстия анода напряжение возрастает, тогда как при увеличении расстояния z_a напряжение не меняется.

В случае тонкого кольцевого анода ($\Delta z_a \ll z_a$) плазменная струя за его пределами заведомо становится бестоковой. При использовании трубчатого анода оценка области замыкания тока усложняется. Как правило [4], диаметр входного отверстия D_a существенно меньше диаметра трубы D_t (рис. 1). Поэтому можно ожидать, что при наличии аксиального магнитного поля наибольшая часть тока будет замыкаться по кратчайшему расстоянию, т.е. преимущественно на переднюю часть анода.

Для бестоковой струи уравнения (1)-(3), (5)-(7) сохраняют свой вид (с учетом I = 0). Из (1) тогда следует условие равенства скоростей электронов и ионов $V_e = V$, что требуется учитывать в (6). Существенно меняется уравнение (4) для радиальной скорости движения поверхности струи, в котором последнее слагаемое соответствует силе Ампера $j_{\varphi}B_z$, проинтегрированной по сечению струи. Если в токонесущей струе азимутальный ток $j_{\varphi} = \omega_e \tau_e j_r$ возникает из-за наличия радиального тока (равного $j_r = -Ir(dR/dz)/(RS)$ [7,11]), то в случае I = 0 азимутальный ток $j_{\varphi} = -\sigma B_z V_r$ индуцируется вследствие радиального движения плазмы поперек магнитного поля со скоростью $V_r = V_R r/R$ (здесь r расстояние от оси струи) [7,11]. В итоге для радиальной скорости V_R на поверхности струи (при r = R) получается уравнение

$$\rho V \frac{dV_R}{dz} = \frac{3P}{R} - \sigma B_z^2 V_R. \tag{8}$$

Сравнивая последние члены уравнений (4) и (8), легко показать, что радиальная сила Ампера в бестоковой струе в ξ/Z_i раз меньше, чем в струе с током. Здесь $\xi = mI/eG$ — параметр обмена [15], принимающий для вакуумной дуги значения в диапазоне 15-30 [10].

Граничные условия

Как известно [10], в вакуумной дуге плазма образуется на поверхности катода в виде отдельных микроструй, которые на расстоянии менее 1 mm от катода объединяются в суммарную плазменную макрострую. Параметры плазмы в этой области далее используются как граничные условия для начального сечения струи при z = 0. В качестве таких параметров можно использовать значения скорости и заряда ионов, электронной температуры, а также отношения ионного и полного токов (коэффициент ионной эрозии) $\eta_0 = I_i/I = Z_{i0}/\xi$, измеренные в слаботочных дугах ($I \le 200$ A) без магнитного поля. Для вакумной дуги с титановым катодом имеем $V_0 = 1.5 \cdot 10^4$ m/s [16], $Z_{i0} \approx 2$, $f_1^0 = 0.1$, $f_2^0 = 0.8$, $f_3^0 = 0.1$ [1], $\eta_0 = 0.07$ [17], а для электронной температуры можно взять в качестве оценки $kT_{e0} \approx 1$ eV [18]. Значения плотности плазмы и концентрации электронов можно найти с помощью соотношений $\rho_0 = mI/(\xi eV_0S_0)$ и $N_{e0} = Z_{i0}\rho_0/m$.

Граничными условиями для уравнений (4), (5) являются начальные значения радиуса R_0 и угла полураскрытия струи α_0 (так как $(dR/dz)_0 = \text{tg}\,\alpha_0$). Далее считалось, что катодные пятна занимают всю поверхность катода и $R_0 = R_{\text{cath}} \approx 3 \text{ mm}$ (такой катод использовался в экспериментальных установках [1–4]). Для угла было принято значение $\alpha_0 = 45^\circ$, достаточно типичное для начального участка струи.

Если не учитывать процесс теплопроводности, то перечисленных граничных условий (заданных вблизи поверхности катода) достаточно для решения задачи. В случае учета теплопроводности возникает проблема постановки дополнительного граничного условия для температуры. Наиболее естественным для рассматриваемой задачи будет задание условия в виде $T_e
ightarrow 0$ при $z \to \infty$, так как плазменная струя, проходя через отверстие в аноде и становясь бестоковой, должна постепенно охлаждаться в удаленных частях вакуумной системы. При численных расчетах использовалось условие $T_e \approx T_{e0}/10$ при $z = z_{end}$, где $z_{end} \approx 10^2 z_a$ некоторое достаточно большое расстояние от разрядного промежутка. При таком подходе задача становится краевой. Однако краевую задачу можно свести к решению последовательности задач Коши [19], задавая различные значения производной dT_e/dz в точке z=0и выбирая то из них, которое обеспечивает выполнение краевого условия. Именно такой подход использовался в настоящей работе.

Результаты вычислений

1. Влияние магнитного поля. Результаты численного решения уравнений (1)–(8) для тока I = 500 А, длины разрядного промежутка $z_a = 15$ mm ($z_a/R_0 = 5$) и магнитного поля в диапазоне $B_z = 0.05-1$ Т представлены на рисунках 2–5. Основной причиной влияния аксиального магнитного поля на параметры токонесущей плазменной струи, как было показано в [5,7], является ограничение радиального движения плазмы таким полем. Из рис. 2 видно, что при величине поля $B_z \ge 0.1$ Т радиальное расширение токонесущей части струи практически подавляется и ее радиус не меняется по мере

Рис. 2. Профиль плазменной струи (I = 500 A) при различной величине магнитного поля: I = 0.05; 2 = 0.1; 3 = 0.2; 4 = 0.5; 5 = 1 Т. Вертикальной штриховой линией отмечено положение кольцевого анода.

удаления от катода (т.е. $R \approx R_0$). Однако расширению бестоковой струи существенно препятствует лишь поле $B_z \ge 1$ Т. Как видно из рис. 3 и 4, значения температуры и плотности электронов сохраняются на высоком уровне и при $z > z_a$, т.е. при отсутствии тока в струе. Следствием этого является продолжение ударной ионизации ионов и за пределами кольцевого анода. Как видно из рис. 5, основное увеличение ионного заряда происходит не в промежутке катод–анод, а за пределами анодного

Рис. 3. Изменение электронной температуры вдоль оси плазменной струи (I = 500 A). Обозначения те же, что и на рис. 2.

Журнал технической физики, 2006, том 76, вып. 4

Рис. 4. Изменение электронной концентрации вдоль оси плазменной струи (I = 500 A). Обозначения те же, что и на рис. 2.

Рис. 5. Изменение среднего ионного заряда вдоль оси плазменной струи (I = 500 A). Обозначения те же, что и на рис. 2.

отверстия. Значения $Z_i \approx 2.3-2.4$, полученные с учетом ионизации в бестоковой части плазменной струи (при $z \approx 100$ и $B_z = 0.1-0.2$ T), гораздо лучше согласуются с измерениями $Z_i \approx 2.5$ [4] при близких параметрах разряда, чем расчет Z_i только для участка $z \leq z_a$.

Иногда в экспериментальных установках используется короткий соленоид, обеспечивающий значительную напряженность магнитного поля лишь в промежутке катод–анод ($z \le z_a$). Для моделирования таких условий было принято, что в бестоковой части струи магнитное поле отсутствует, т. е. $B_z = 0$ при $z > z_a$. Как видно из уравнения (8), в этом случае нет сил, препятствующих радиальному расширению струи. Расчеты, проведенные в данном предположении, действительно показали быстрое увеличение радиуса струи за кольцевым анодом и, как следствие, спад температуры (рис. 6) и концентрации электронов. В таких условиях ионизация в бестоковой струе отсутствует, и заряд ионов за срезом анода не меняется (рис. 7, *b*) в отличие от случая

Рис. 6. Изменение электронной температуры вдоль оси плазменной струи при I = 700 А. a — расчет для $B_z = 0.7$ Т вдоль всей струи; b — расчет для $B_z = 0.7$ Т при $z \le z_a$ и $B_z = 0$ при $z > z_a$.

Рис. 7. Изменение среднего ионного заряда вдоль оси плазменной струи при I = 700 А. Обозначения те же, что и на рис. 6.

Рис. 8. Изменение электронной температуры вдоль оси плазменной струи при I = 700 A, $B_z = 0.7 \text{ T}$ для различных расстояний катод-анод (отмечены штриховыми линиями). $I - z_a/R_0 = 3$; $2 - z_a/R_0 = 5$; $3 - z_a/R_0 = 8$.

присутствия аксиального поля во всей рассматриваемой области $z \le z_{end}$ (рис. 7, *a*).

2. Влияние геометрии разрядного промежутка. Были проведены также расчеты (при $I = 700 \text{ A}, B_z = 0.7 \text{ T}$) для различных расстояний катод-анод. Было найдено, что увеличение расстояния z_a/R_0 от 3 до 8 приводит к росту температуры электронов (рис. 8) и повышению ионного заряда от $Z_i \approx 2.2$ до $Z_i \approx 3.1$ (последнее значение близко к измеренному $Z_i \approx 3.5$ [1] при таких же значениях тока и поля). Однако при дальнейшем увеличении z_a/R_0 оказалось невозможным обеспечить выполнение условия $T_e \rightarrow 0$ на расстояниях $z_{end} \gg z_a$. Более того, при $z_a/R_0 \ge 14$ не существует стационарного решения даже для интервала $0 \le z \le z_a$. Появление такого ограничения на область существования решения есть следствие законов сохранения массы и импульса (2), (3), из которых можно получить следующее уравнение для скорости [11]:

$$V = \frac{V_0}{2} \left(\varepsilon + \left(\varepsilon^2 - \frac{2Z_i k T_e}{W_0} \right)^{1/2} \right), \tag{9}$$

где $\varepsilon = 1 + \gamma_0 + \gamma_1 \ln(R/R_0)$, $\gamma_0 = 0.5Z_{i0}kT_{e0}/W_0$, $\gamma_1 = = \mu_0 I^2/(4\pi GV_0)$, $W_0 = mV_0^2/2$ — начальная кинетическая энергия иона. Для титана имеем $W_0 \approx 56 \text{ eV}$, $\gamma_0 \approx 0.02$ и $\gamma_1 \approx 0.2$ (при I = 700 A). Так как в случае сильного магнитного поля $R/R_0 \approx 1$, то можно принять $\varepsilon \approx 1$. Тогда из (9) следует, что действительное решение существует лишь при $T_e < T_e^{\text{max}}$, где $kT_e^{\text{max}} \approx W_0/(2Z_i)$ — предельное значение температуры в токонесущей части плазменной струи. Для вакуумной дуги с титановым катодом, учитывая значения Z_i/Z_{i0}

при $z \leq z_a$ (рис. 5 и 7), получаем $kT_e^{\max} \approx 12-14 \text{ eV}$. Используя соотношения (2), (9), можно показать, что в точке $T_e = T_e^{\max}$ производная $d\rho/dz \to \infty$ и поэтому при $T_e \geq T_e^{\max}$ стационарное движение плазмы становится невозможным.

Заключение

Проведенные модельные расчеты показали, что за пределами кольцевого анода (в бестоковой плазменной струе) сохраняются высокие значения температуры и плотности электронов, если в этой области присутствует сильное аксиальное магнитное поле. Поэтому в ионных источниках на основе вакуумно-дугового разряда для получения высокой зарядности ионов следует налагать магнитное поле не только на промежуток катод-анод, но и на бестоковую часть плазменной струи, чтобы воспрепятствовать ее расширению и охлаждению. Более того, целесообразно использовать магнитное поле, возрастающее по величине за пределами анода, так как ограничение радиального расширения бестоковой струи требует более высоких значений напряженности магнитного поля. По-видимому, именно такой механизм лежит в основе повышения зарядности ионов урана, наблюдавшегося в [3] при использовании магнитного поля, возраставшего от значений $B_z \approx 0.1 \,\mathrm{T}$ в промежутке катод-анод до $B_z \approx 1 \,\mathrm{T}$ за пределами анодного отверстия.

Работа выполнена при поддержке РФФИ (проект 04-02-16431).

Список литературы

- Oks E.M., Anders A., Brown I.G. et al. // IEEE Trans. Plasma Sci. 1996. Vol. 24. N 3. P. 1174–1183.
- [2] Николаев А.Г., Окс Е.М., Юшков Г.Ю. // ЖТФ. 1998. Т. 68. Вып. 5. С. 39–43.
- [3] Кулевой Т.В., Кубида Р.П., Петренко С.В. и др. // Препринт ИТЭФ. 2001. № 14-01. С. 1–14.
- [4] Galonska M., Hollinger R., Spadtke P. // Emerging Applications of Vacuum-ArcProduced Plasma, Ion and Electron Beams. / Dordrecht: Kluwer Academic Publishers. NATO Science Series II, 2002. Vol. 88. P. 123–130.
- [5] Keidar M., Beilis I.I., Boxman R.L. et al. // J. Phys. D: Appl. Phys. 1996. Vol. 29. N 7. P. 1973–1983.
- [6] Shmelev D.L. // Proc. XIX Int. Symp. Discharges and Electr. Insulation in Vacuum (Xi'on, China), 2000. Vol. 1. P. 218– 221.
- [7] Кринберг И.А. // Прикладная физика. 2004. № 6. С. 77-82.
- [8] Имшенник В.С., Осовец С.М., Отрощенко И.В. // ЖЭТФ. 1973. Т. 76. Вып. 6. С. 2057–2070.
- [9] Любимов Г.А. // ЖТФ. 1977. Т. 47. Вып. 2. С. 297–303.
- [10] Месяц Г.А., Баренгольц С.А. // УФН. 2002. Т. 172. № 10. С. 1113–1130.
- [11] Krinberg I.A. // IEEE Trans. Plasma Sci. 2005. Vol. 33. N 10.
- [12] Брагинский С.И. // Вопросы теории плазмы. М.: Госатомиздат, 1963. В. 1. С. 183–272.

119

- [13] Бейлис И.И., Зекцер М.П., Любимов Г.А. // ЖТФ. 1988.
 Т. 58. Вып. 10. С. 1861–1870.
- [14] Goldsmith S., Boxman R.L. // J. Appl. Phys. 1980. Vol. 51. N 7. P. 3649–3656.
- [15] Морозов А.И., Соловьев Л.С. // Вопросы теории плазмы. М.: Госатомиздат, 1974. В. 8. С. 3–87.
- [16] Anders A., Yushkov G.Y. // J. Appl. Phys. 2002. Vol. 91. N 8. P. 4824–4832.
- [17] Anders A., Oks E.M., Yushkov G.Yu. et al. // Proc. XXI Int. Symp. Discharges and Electr. Insulation in Vacuum, Yalta, Ukraine, 2004. Vol. 1. P. 272–275.
- [18] Rosenthal H., Beilis I., Goldsmith S. et al. // J. Phys. D: Appl. Phys. 1996. Vol. 29. N 2. P. 1245–1259.
- [19] *Турчак Л.И., Плотников П.В.* Основы численных методов. М.: Физматлит, 2002.