05;12 Простое чувствительное устройство для измерения слабых магнитных полей на основе высокотемпературного сверхпроводящего иттриевого купрата

© А.И. Головашкин, Н.Д. Кузьмичев, В.В. Славкин

Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия e-mail: golov@sci.lebedev.ru

(Поступило в Редакцию 6 июля 2005 г.)

Результаты проведенных ранее исследований магнитных свойств поликристаллов YBa₂Cu₃O_{7-x} использованы для разработки высокочувствительного устройства, позволяющего измерять слабые магнитные поля. Чувствительность устройства близка к параметрам сквидов и значительно превосходит чувствительность феррозонда. В то же время это устройство проще и надежнее, чем сквиды. В отличие от сквидов устройство позволяет измерять непосредственно величину напряженности магнитного поля, имеет широкий диапазон измеряемых магнитных полей и обладает выраженной диаграммой направленности.

PACS: 85.75.Ss, 07.55.Ge

Высокотемпературные сверхпроводники с точки зрения приложений имеют целый ряд недостатков: у них малая длина когерентности, сильная анизотропия электронных свойств, их свойства сильно зависят от содержания кислорода [1-3]. Тем не менее на их основе уже созданы различные сверхпроводящие устройства с высокой чувствительностью [4-7]. Дело в том, что такие устройства являются весьма привлекательными для применений в различных областях электроники и электротехники благодаря высоким критическим параметрам и возможности работать при температуре жидкого азота или с относительно простыми рефрижераторами. Если для фундаментальных физических исследований необходимы качественные монокристаллы или пленки высокотемпературных сверхпроводников, то для целого ряда приложений необходима простота изготовления и надежность, и для таких применений вполне пригодны поликристаллические образцы. В некоторых случаях параметры поликристаллических образцов даже предпочтительнее соответствующих характеристик монокристаллов и эпитаксиальных пленок.

Одним из самых распространенных направлений прикладной сверхпроводимости является использованием сквидов как в различных технических областях, так и в научных исследованиях [8]. Примером использования в этой области поликристаллических образцов являются работающие при азотных температурах керамические высокотемпературные сверхпроводящие сквиды [9], которые наряду с высокой чувствительностью обладают хорошей технологичностью и могут быть достаточно легко изготовлены в лабораториях. Технология высоктемпературных сверхпроводящих сквидов быстро совершенствуется, и область их использования значительно расширяется за счет упрощения эксплуатационных проблем. Криогенная система азотного уровня более надежна в эксплуатации, значительно дешевле и доступнее. А поскольку высокая чувствительность высокотемпературных сверхпроводящих сквидов вполне достаточна для многих приложений, некоторый выигрыш в чувствительности низкотемпературных сквидов для этих целей не является существенным преимуществом.

Датчики магнитного поля широко применяются в практике магнитных измерений. Разработан целый ряд таких датчиков, не основанных на явлении сверхпроводимости. Физический принцип работы широко распространенных полупроводников датчиков магнитного поля основан на эффекте Холла [10-12]. Феррозондовые датчики или феррозоиды [13,14] обладают более высокой чувствительностью по сравнению с датчиками Холла, но являются более громоздкими устройствами. Основным недостатком существующих несверхпроводящих датчиков является относительно невысокая чувствительность. Наиболее перспективным методом повышения чувствительности датчиков магнитного поля считается использование нелинейных свойств сверхпроводимости, и, в частности, для многих приложений использование сверхпроводящего состояния высокотемпературных сверхпроводящих материалов.

Нами ранее [15–19] исследовался нелинейный магнитный отклик поликристаллических образцов YBa₂Cu₃O_{7-x} (YBaCuO) на переменное магнитное поле с амплитудой напряженности $h \leq 50$ Oe. Подробные измерения нелинейного отклика образцов YBaCuO при разных значениях величины напряженности постоянного магнитного поля H_0 в зависимости от глубины модуляции h поля выполнены нами в работе [19]. Результаты вышеуказанных работ показывают, что при помещении поликристаллического образца YBaCuO во внешнее синусоидальное переменное магнитное поле откликом является сигнал сложной формы, резко отличной от формы гармонического входного сигнала. Это связано с сильной нелинейностью намагниченности

Нелинейность поликристалла. намагниченности обусловливает наличие гармоник намагниченности, амплитуда которых M_n пропорциональна амплитудам ε_n гармоник электродвижущей силы сигнала отклика образца. Измерения проводились с использованием компенсационной методики при температуре жидкого азота $T \approx 78$ К. Поликристаллические высокотемпературные сверхпроводящие образцы YBaCuO изготовлялись по обычной технологии твердофазного сигнала. Они имели критическую температуру $T_c = 91.5 \,\mathrm{K}$ и ширину перехода в сверхпроводящее состояние $\Delta T \approx 1$ К. Полученные данные были объяснены на основе модели критического состояния Джозефсоновской среды [20-22]. Результаты работ [15-19] указывают на высокую чувствительность амплитуд высших гармоник намагниченности высокотемпературных сверхпроводников на основе YBaCuO к внешнему магнитному полю. В этой связи результаты проведенных фундаментальных исследований представляют большой интерес и могут быть использованы для разработки высокочувствительных устройств, позволяющих измерять слабые магнитные поля.

В области магнитных полей $H_0 \leq 10$ Ое при работе датчика магнитного поля целесообразно использовать зависимости напряжений нечетных гармоник сигнала отклика поликристаллического образца $\varepsilon_{2n-1}(H_0)$, например зависимости $\varepsilon_3(H_0)$ или $\varepsilon_5(H_0)$. Использование $\varepsilon_5(H_0)$ вместо $\varepsilon_3(H_0)$ повышает чувствительность датчика, так как $\varepsilon_5(H_0)$ имеет более крутую зависимость от величины поля, чем $\varepsilon_3(H_0)$ [19]. Однако при дальнейшем росте номера гармоник их амплитуда начинает заметно падать. Меняя параметры используемых образцов УВаСuO, можно оптимизировать свойства датчика поля и всего устройства для конкретных задач.

Для магнитных полей $H_0 \leq 3$ Ое при работе датчика целесообразно использовать четные гармоники сигнала отклика. Это объясняется тем, что хотя при $H_0 = 0$ четные гармоники не наблюдаются из-за того, что $M(H_0) = M(-H_0)$ (т.е. при $H_0 = 0$ амплитуда нечетных гармоник $\varepsilon_{2n} = 0$), однако при $H_0 \neq 0$ они появляются. Наличие даже незначительного постоянного магнитнго поля, например, магнитного поля Земли, приводит к появлению четных гармоник в сигнале отклика образца. Величины амплитуд четных гармоник возрастают практически линейно от поля вплоть до полей $\sim 2{-}4\,{
m Oe}$ (рис. 1). Величины их амплитуд превышают амплитуды близких нечетных гармоник. Следовательно, применение четных гармоник сигнала отклика в случае слабых полей дает более чувствительный метод определения значения H_0 . Кривые $\varepsilon_{2n}(H_0)$ и $\varepsilon_{2n+1}(H_0)$ смещаются вправо на величину напряженности магнитного поля Земли $H_s \sim 0.2 - 0.4$ Oe [19]. Таким образом, используя квазилинейные зависимости амплитуд гармоник $\varepsilon_n(H_0)$ (n = 2, 4, ...) в пределах малых полей $0 < H_0 < 3$ Ое можно изготовить (с использованием "нуль-методики") очень чувствительные датчики магнитного поля.

Принцип работы датчика магнитного поля [23] основан на нелинейности намагниченности поликристаллов

Рис. 1. Зависимость величины напряжения второй гармоники сигнала отклика поликристалла YBaCuO от постоянного магнитного поля.

Рис. 2. Схема датчика магнитного поля.

УВаСиО. Целью создания датчика является повышение чувствительности по сравнению с существующими устройствами, расширение диапазона измерений магнитных полей и непосредственное измерение поля, в отличие от высокотемпературных сверхпроводящих сквидов. В основу датчика магнитного поля был взят ферромодуляционный заряд [13,14], который применяется для измерения слабых магнитных полей.

На рис. 2 приведена схема датчика магнитного поля. Датчик содержит катушку возбуждения 1 и измерительную катушку, выполненную в виде двух равных встречно включенных катушек 2 и 3, в одной из которых расположен сердечник 4, выполненный из поликристаллического высокотемпературного сверхпроводника YBaCuO. На рис. 3 приведен вариант конструкции датчика магнитного поля.

Рис. 3. Конструкция датчика магнитного поля. *1* — трубкадержатель; *2* — немагнитный диэлектрический каркас; *3*, *5* выходные катушки; *4* — катушка возбуждения (входная); *6* — сердечник из высокотемпературного сверхпроводника УВаСиО.

Рис. 4. Блок-схема устройства для измерения магнитного поля (магнитометр).

Устройство для измерений магнитного поля — магнитометр (рис. 4) содержит генератор возбуждения 1, удвоитель частоты 2, датчик магнитного поля 3, избирательный усилитель 4, настроенный на удвоенную частоту генератора, синхронный детектор 5 и регистрирующее устройство 6. Магнитометр работает следующим образом. На катушку 1 датчика (рис. 2) подается синусоидальный ток частотой f от генератора для создания переменного магнитного поля амплитудой напряженности h. В силу нелинейности намагниченности сердечника 4 на концах измерительных катушек 2 и 3 наводится негармоническая электродвижущая сила $\varepsilon(t)$, пропорциональная производной по времени намагниченности dM/dt. Электродвижущая сила содержит большое число высших гармоник. В отсутствии сверхпроводящего сердечника 4 из-за встречного включения двух одинаковых катушек 2 и 3 сигнала на выходе не будет. Амплитуды четных гармоник ε_{2n} вначале растут с ростом поля H_0 , а затем уменьшаются (рис. 1). Зависимость амплитуды второй гармоники $\varepsilon_2(H_0)$ от внешнего постоянного магнитного поля H_0 имеет вид [20]

$$\varepsilon_{2}(H_{0},h) = 2\mu_{0}\omega NS \left\{ 2\sum_{n=0}^{\infty} \frac{1}{n!(n+2)!} \left(\frac{h}{2}\right)^{2n+2} \overline{M}^{(2n+2)}(H_{0}) \right\}$$
$$\approx \frac{1}{2} \cdot \mu_{0} NS \omega S^{2} \overline{M}^{(2)}(H_{0})$$
$$\approx \frac{1}{2} \cdot \mu_{0} NS \omega S^{2} \left(\frac{d\chi_{d}}{dH}\right)_{H_{0}}. \tag{1}$$

Здесь μ_0 — магнитная постоянная, N — число витков катушки 2 (рис. 2), S — сечение YBaCuO сердечника, $\omega = 2\pi f$ — циклическая частота модуляции, $\overline{M}^{(k)}(H_0)$ — производная порядка k от средней кривой намагниченности и χ_d — дифференциальная восприимчивость YBaCuO сердечника. Используя полученный в [21–22] аналитический вид зависимости $M(H_0)$ и выражение (1), имеем

$$\varepsilon_{2} \approx \mu_{0} N S \omega S_{0} \left(\frac{h}{H^{*}} \right)^{2} \cdot \frac{\operatorname{th} \left(\frac{H_{0}}{H^{*}} \right)}{\operatorname{ch}^{2} \left(\frac{H_{0}}{H^{*}} \right)} \bigg|_{H_{0} \ll H^{*}}$$
$$\approx \mu_{0} N S \omega S_{0} \left(\frac{h}{H^{*}} \right)^{2} \frac{H_{0}}{H^{*}} \propto H_{0}. \tag{2}$$

Величина M_0 — есть намагниченность насыщения, а параметр H^* для зависимости $\varepsilon_2(H_0)$ (рис. 1) равен $H^* \approx 4.7$ Ое. Величина $H^* \approx 1.5 H_0^{\text{max}}$, где H_0^{max} является значением H_0 , при котором $\varepsilon_2(H_0)$ имеет максимум.

Чем выше номер, используемый гармоники, тем выше чувствительность датчика магнитного поля. На четных гармониках, например, *n* = 6 с использованием "нульметодики" порог чувствительности датчика можно увеличить в два-три раза. На чувствительность датчика также влияет амплитуда модуляции магнитного поля h. Оптимальная амплитуда модуляции находится в интервале полей h = 0.5 - 10 Oe [19]. При работе в магнитных полях $H_0 \leq 5-20$ Ое датчик гистерезисных свойств, связанных с захватом магнитного потока, не обнаруживает, поэтому не нужно переводить сверхпроводящий сердечник в нормальное состояние [23]. В случае попадания датчика в магнитные поля $H_0 > 10-50$ Oe сверхпроводящий сердечник (YBaCuO поликристалл) захватывает магнитный поток, и чувствительность датчика снижается примерно в 1.5-2 раза. Чувствительность датчика можно восстановить путем перевода YBaCuO сердечника в нормальное состояние. Можно отградуировать датчик на случай замороженного магнитного потока и работать, не переводя сверхпроводящий поликристалл в номальное состояние, так как нелинейные свойства намагниченности сохраняются [15-22]. Следовательно, значительные перегрузки не влияют на надежную работу датчика магнитного поля. Длительная эксплуатация сверхпроводящего сердечника приводит к постепенной деградации нелинейных магнитных свойств. В этом случае можно применить самоподстраивающее устройство для автоматической подстройки датчика магнитного поля.

Таким образом, выделяя и усиливая с помощью избирательного усилителя 4 (рис. 4) движущей силы какуюто гармонику, и определяя ее величину посредством регистрирующего устройства 6, можно определить величину внешнего постоянного магнитного поля H_0 , предварительно производя градуировку устройства. В нашем магнитометре используется вторая гармоника сигнала отклика.

Чувствительность предлагаемого датчика магнитного поля определяется вольтовой чувствительностью $\Sigma = \delta \varepsilon_2 / \delta H_0$. Из (2) и рис. 1 имеем, что $\Sigma \approx 3 \text{ mV/Oe}$. Чувствительность с учетом шумов в расчете на единичный интервал частот определяется по следующей формуле:

$$D = rac{1}{\Sigma} \sqrt{rac{U_s^2}{\Delta f}},$$

Ì

где U_s^2 — среднеквадратичное напряжение шумов, Δf — полоса пропускания усилителя. Учитывая, что основной вклад в величину U_s^2 дает шум Найквиста $U_s^2 = 4kTR\Delta f$, где k — постоянная Больцмана, T — температура ($T \approx 78$ K), R — эквивалентное сопротивление датчика ($R \sim 100$ Ohm) получим: $D \approx 2 \cdot 10^{-7}$ Oe/Hz^{1/2}.

Оптимизируя устройство путем подбора рабочей частоты $(0 < f < 10^8 \text{ Hz})$ тока, подаваемого на катушку возбуждения 1, числа витков в катушках 2 и 3 и номера рабочей гармоники можно добиться чувствительности $\sim 10^{-8}\,{
m Oe/Hz^{1/2}}$ и выше. Для сравнения чувствительность обычного сквида $\sim 10^{-9}$ Oe/Hz^{1/2} [24,25], а у лучших феррозондов $\sim 10^{-5}\,\text{Oe/Hz}^{1/2}$ [13,14]. Кроме высокой чувствительности магнитометр обладает широким диапазоном измеряемых полей от $\sim 10^{-6}\,\mathrm{Oe}$ до $10\,\mathrm{Oe}$ (~ 160 dB) и выраженной диаграммой направленности. Датчик магнитного поля, обладая чувствительностью, близкой к чувствительности сквидов, имеет ряд преимуществ. Например, датчик реагирует непосредственно на величину напряженности самого магнитного поля, а не на его изменение, как сквид. Датчик работает в интервале температур, при которых сердечник является сверхпроводником.

Таким образом, датчик магнитного поля (высокотемпературный сверхпроводящий зонд) обладает всеми преимуществами феррозонда (диаграмма направленности, непосредственное измерение напряженности магнитного поля и широкий диапазон измерения полей), но имеет на два-три порядка большую чувствительность. Разработанный на основе поликристаллического высокотемпературного сверхпроводника YBaCuO датчик является проще конструктивно, более надежен и долговечен в

Рис. 5. Внешний вид датчика магнитного поля в азотном криостате и измерительного блока.

отличие сквидов, изготовленных из пленок высокотемпературных сверхпроводников. Сквиды из обычных сверхпроводников работают только при гелиевых температурах, что усложняет конструкцию криостатов и сильно повышает их стоимость.

Рассматриваемый датчик магнитного поля из-за его высокой чувствительности $(10^{-7} \text{ Oe/Hz}^{1/2} \text{ и выше})$ и широкого диапазона измерений магнитных полей (от ~ 10^{-7} Oe до ~ 10 Oe) можно использовать в прецизионном приборостроении. Можно также использовать датчик в сочетании с полупроводниковыми приборами или устройствами для улучшения параметров последних. Перспективным представляется внедрение датчика магнитного поля в новые разработки магнитометрических систем неразрушающего контроля, необходимых в авиационной, космической и атомной промышленности, а также для медицинской диагностики (магнитокардиография и магнитоэнцефалография) и в других прикладных областях.

На рис. 5 показана фотография датчика магнитного поля в азотном криостате и измерительного блока.

Работа выполнена при поддержке РФФИ (проект № 04-02-16455) и Минобрнауки.

Список литературы

- [1] Жуков А.А., Мощалков В.В. // СФХТ. 1991. Т. 4. №. С. 850– 887.
- [2] Мелихов Е.З., Шапиро В.Г. // СФХТ. 1991. Т. 4. № 8. С. 1437–1492.
- [3] Хирный В.Ф., Козловский А.А. // УФН. 2004. Т. 174. № 3. С. 285–301.
- [4] Лутидзе Ш.И., Джафаров Э.А. Сверхпроводящие трансформаторы. М.: Научтехлитиздат, 2002. 167 с.
- [5] Lindgren M., Zorin M.A., Trifonov V. et al. // Appl. Phys. Lett. 1994. Vol. 65. N 26. P. 3398–3400.
- [6] Бахвалов Ю.А., Бочаров В.И., Винокуров В.А. и др. Транспорт с магнитным подвесом. М.: Машиностроение, 1991. 213 с.

- [7] Матвеев В.А., Полущенко О.Л., Нижельский Н.А. и др. // Первая Международная конференция "Фундаментальные проблемы высокотемпературной сверхпроводимости" (ФПС'04). 2004. С. 315–316.
- [8] Головашкин А.И., Гуденко А.В., Жерихина Л.Н. и др. // Письма в ЖЭТФ. 1994. Т. 60. Вып. 8. С. 595–599.
- [9] Vasikiev B.V. Review of High T_c Ceramics SQUID's // Intern. Workshop of Physics and Technology of HTS Artifical Structures for Josephson Electronics. Tokyo, Japan, 1991. P. 4–15.
- [10] Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. М.: Радио и связь, 1990. 110 с.
- [11] Олемский А.И. // УФН. 1996. Т. 166. № 7. С. 697–715.
- [12] Грошев А.Г., Новокшонов С.Г. // ФТТ. 2000. Т. 42. Вып. 7. С. 1322–1330.
- [13] Афанасьев Ю.В. Феррозондовые приборы. Л.: Энергоатомиздат, 1986. 188 с.
- [14] Сергеев В.Г., Шихин А.Х. Магнитоизмерительные приборы и установки. М.: Энергоиздат, 1982. 152 с.
- [15] Головашкин А.И., Кузьмичев Н.Д., Левченко И.С. и др. // Препринт № 41. М.: ФИАН, 1989. 23 с.
- [16] Головашкин А.И., Кузьмичев Н.Д. Левченко И.С. и др. // Препринт № 151. М.: ФИАН, 1989. 26 с.
- [17] Головашкин А.И., Кузьмичев Н.Д., Левченко И.С. и др. // ФТТ. 1989. Т. 31. № 4. С. 233–235.
- [18] Головашкин А.И., Кузьмичев Н.Д., Левченко И.С. и др. // ФТТ. 1990. Т. 32. № 5. С. 1374–1377.
- [19] Головашкин А.И. Кузьмичев Н.Д., Левченко И.С. и др. // Препринт № 163. М.: ФИАН, 1990. 38 с.
- [20] Кузьмичев Н.Д. // ЖТФ. 1994. Т. 64. Вып. 12. С. 63-74.
- [21] Кузьмичев Н.Д. // Письма в ЖЭТФ. 2001. Т. 74. Вып. 5. С. 291–295.
- [22] Кузьмичев Н.Д. // ФТТ. 2001. Т. 43. С. 1934–1938.
- [23] Кузьмичев Н.Д., Славкин В.В., Васютин М.А., Головашкин А.И., Левченко И.С., Мотулевич Г.П. Датчик магнитного поля. Патент № 1827653 от 23.03.93 г.
- [24] Волков А.Ф., Заварицкий Н.А., Надь Ф.Я. Электронные устройства на основе слабосвязанных сверхпроводников. М.: Сов. радио, 1978. 137 с.
- [25] Кларк Дж. Слабая сверхпроводимость. Квантовые интерферометры и их применение / Под ред. В.В. Шмидт. М.: Мир, 1980. С. 7–65.