Модуляционная неустойчивость волновых пакетов при наличии линейной и нелинейной межмодовой связи

© И.О. Золотовский, А.Н. Петров, Д.И. Семенцов

Ульяновский государственный университет, 432700 Ульяновск, Россия e-mail: sementsovdi@ulsu.ru, petrovan@ulsu.ru

(Поступило в Редакцию 18 января 2005 г.)

Получены условия возникновения модуляционной неустойчивости (МН) волнового пакета, сформированного двумя однонаправленными линейно-связанными волнами, распространяющимися в световоде с керровской нелинейностью. Для случаев симметричного и антисимметричного возбуждения световода проанализирована динамика развития МН в зависимости от параметров световода, межволновой линейной и нелинейной связи, вводимого излучения. В отличие от одноволновых систем выявлена возможность развития МН в частотных диапазонах, соответствующих нормальной материальной дисперсии, а также в случае нулевой частоты возмущения.

PACS: 42.25.-p

Введение

01:07

Волоконно-оптическим системам с реализуемым в них межволновым взаимодействием в последнее время уделяется пристальное внимание, что объясняется широкими возможностями создания на их основе многочисленных устройств управления лазерным излучением, а также полностью оптических логических элементов [1-3]. Данное обстоятельство делает актуальным анализ динамики распространения волновых пакетов, формируемых двумя однонаправленными связанными волнами, с учетом различных нелинейных эффектов [4-6]. Одним из таких эффектов, реализуемых как в одномодовых, так и многомодовых волоконных световодах (ВС), является модуляционая неустойчивость (МН) оптического излучения. Известно, что в одномодовом ВС с нелинейностью керровского типа МН волнового пакета возникает за счет самовоздействия только в области аномальной дисперсии групповых скоростей [9,10]. Для двухмодовых волновых пакетов МН может иметь место и в области частот, соответствующих аномальной дисперсии групповых скоростей, за счет нелинейного кроссмодуляционного взаимодействия мод [10,12]. Обширные исследования данного эффекта обусловлены как его фундаментальной значимостью, так и возможностями практического использования для генерации оптических ультракоротких импульсов [7–14]. В предыдущих работах по изучению особенностей МН в двухволновых системах нами исследовалась ситуация, отвечающая сильной межволновой линейной связи, допускающей сведение системы уравнений взаимодействующих волн к системе несвязанных уравнений для парциальных импульсов [12,14]. Под сильной понимается связь, при которой длина межмодового взаимодействия $L_{\sigma} = \sigma^{-1}$, определяющая пространственный период межволновой перекачки энергии намного меньше всех других характерных длин [6]. Подобная связь, как правило, реализуется в туннельносвязанных оптических волноводах (ТСОВ), которые могут быть выполнены как в планарной, так и волоконной геометрии и представляют собой два пространственно разделенных волноведущих канала, допускающих значительное перекрытие волновых полей, распространяющихся в каждом из каналов волн [1,15]. Между тем в различных световедущих системах параметр линейной связи может различаться как по величине, так и по знаку, а нелинейная связь содержать и не содержать кроссмодуляционную составляющую, которая имеет место в волноведущих структурах, где взаимодействующие волны распространяются в общем канале. В связи с этим в настоящей работе проводится анализ условий возникновения и развития МН в системе двух линейно и нелинейно связанных однонаправленных волн, формирующих единый волновой пакет и распространяющихся в оптической волноведущей структуре, обеспечивающей различный тип и величину межволновой связи, а также симметричный или антисимметричный тип возбуждения световода.

Основные уравнения

Распространение в световоде в направлении оси z двух (l = 1, 2) взаимодействующих волн, формирующих единый волновой пакет, при условии их фазового синхронизма и учете межволновой расстройки, дисперсии групповых скоростей, линейной и нелинейной связи волн описывается следующей системой уравнений для их временны́х огибающих [12].

$$\frac{\partial A_l}{\partial z} + \frac{1}{u_l} \frac{\partial A_l}{\partial t} - i \frac{d_l}{2} \frac{\partial^2 A_l}{\partial t^2} + i \left(\gamma_c |A_l|^2 + \gamma_k |A_{3-l}|^2 \right) A_l = -i\sigma A_{3-l}.$$
(1)

Здесь $u_l = (\partial \beta_l / \partial \omega)_{\omega_0}^{-1}$; β_l и d_l — групповая скорость, константа распространения и дисперсия групповых ско-

ростей соответствующей волны; ω_0 — несущая частота волнового пакета; σ — параметр линейной связи, определяемый перекрытием профильных функций волнового поля мод, распространяющихся в светодиоде [9,10]; γ_c и γ_k — параметры нелинейности, определяющие фазовую самомодуляцию и кроссмодуляцию взаимодействующих волн. Система уравнений (1) должна решаться совместно с начальными условиями для временны́х огибающих мод A_l . В данной работе будем использовать симметричные и антисимметричные начальные условия $A_2(0) = \psi A_1(0)$, где $\psi = \pm 1$ соответственно, отвечающие наиболее часто встречающемуся на практике типу возбуждения световода.

Если длительность вводимого волнового пакета достаточно велика и применимо квазимонохроматическое приближение для волны накачки (т. е. пренебрежимо малы дисперсионные члены, что корректно для импульсов с начальной длительностью $t_0 > 10^{-9}$ s), временные огибающие A_l не зависят от времени t. С учетом указанных начальных условий для них могут быть получены точные стационарные решения системы уравнений (1)

$$A_l(z) = \sqrt{I_0} \exp\left[-i([\gamma_c + \gamma_k]I_0 + \psi\sigma)z\right], \qquad (2)$$

где $I_0 = |A_l(0)|^2$ — интенсивность вводимого в световод излучения.

Для получения условий возникновения МН в волноведущей структуре рассматриваемого типа в соответствии с общей схемой решения подобных задач [9,10] введем в амплитуду стационарного решения (2) малое возмущение $\varphi_l(z, t)$:

$$A_l(z,t) = \left(\sqrt{I_0} + \varphi_l(z,t)\right) \exp\left[-i([\gamma_c + \gamma_k]I_0 + \psi\sigma)z\right],\tag{3}$$

для которого предполагается верным соотношение $|\varphi_l(z,t)| \ll \sqrt{I_0}$. Подставляя (3) в уравнения (1) и линеаризуя их по возмущениям $\varphi_l(z,t)$, получаем следующую систему уравнений, описывающую динамику возмущений:

$$\frac{\partial \varphi_l}{\partial z} + \frac{1}{u_l} \frac{\partial \varphi_l}{\partial t} - i \frac{d_l}{2} \frac{\partial^2 \varphi_l}{\partial t^2} + i \left[(\varphi_l + \varphi_l^*) \gamma_c + (\varphi_{3-l} + \varphi_{3-l}^*) \gamma_k \right] I_0 = -i \psi \sigma (\varphi_{3-l} - \varphi_l).$$
(4)

Из этого уравнения следует, что изменение типа возбуждения световода с симметричного на антисимметричное (и наоборот) эквивалентно смене знака параметра линейной связи, т. е. замене $\sigma \to -\sigma$.

Для гармонических волновых возмущений решение уравнений (4) можно представить в стандартном виде

$$\varphi_l(z,t) = c_l \cos(kz - \Omega t) + ib_l \sin(kz - \Omega t), \quad (5)$$

где k и $\Omega = \omega_0 - \omega_v$ — волновое число и частота возмущения, ω_v — частота сигнальной возмущающей волны, или спонтанного "шумового" возмущения.

Является ли стационарное решение (2) устойчивым либо неусточивым к слабым возмущениям $\varphi_l(z, t)$, определяется характером решения $k(\Omega)$, соответствующего этим возмущениям дисперсионного уравнения. Для его получения подставим выражения (5) в (4), что приводит к системе четырех однородных уравнений для амплитуд возмущения c_l и b_l :

$$kc_{l} - \frac{\Omega}{u_{l}}c_{l} + \frac{d_{l}}{2}\Omega^{2}b_{l} = -\psi\sigma(b_{3-l} - b_{l}),$$

$$kb_{l} - \frac{\Omega}{u_{l}}b_{l} + \frac{d_{l}}{2}\Omega^{2}c_{l}$$

$$+ 2(\gamma_{c}c_{l} + \gamma_{k}c_{3-l})I_{0} = -\psi\sigma(c_{3-l} - c_{l}).$$
 (6)

Приравнивая определитель этой системы к нулю, получаем искомое дисперсионное уравнение

$$K_{1}^{2}K_{2}^{2} - \Gamma_{c1}D_{1}K_{2}^{2} - \Gamma_{c2}D_{2}K_{1}^{2} - 2\psi\Gamma_{k}K_{1}K_{2}\sigma + (\Gamma_{c1}\Gamma_{c2} - \Gamma_{k}^{2})D_{1}D_{2} + (\Gamma_{k}^{2} - \Gamma_{c1}\Gamma_{c2})\sigma^{2} = 0, \quad (7)$$

где введены следующие обозначения:

$$K_l = k - rac{\Omega}{u_l}, \qquad D_l = rac{d_l}{2} \, \Omega^2 - \psi \sigma,$$

 $\Gamma_{cl} = D_l + 2\gamma_c I_0, \qquad \Gamma_k = 2\gamma_k I_0 + \psi \sigma.$

В общем случае решение уравнения (7) приводит к комплексным корням и соответственно к комплексным волновым числам возмущения. Неустойчивости решения (2) по отношению к малым возмущениям типа (5), т. е. модуляционной неустойчивости, отвечают решения уравнения (7), для которых мнимая часть волнового числа k отлична от нуля. В этом случае возмущения (5) будут экспоненциально нарастать по длине световода, что означает неустойчивость рассматриваемых стационарных решений относительно волновых возмущений с частотой Ω . Области положительных значений инкремента усиления g = 2ImK определяют частотные области существования модуляционной неустойчивости.

В аналитическом виде корни приведенного дисперсионного уравнения (7) могут быть определены лишь для некоторых частных случаев. Для дальнейшего анализа остановимся на ситуации, которая реализуется в системах с одним волноведущим каналом и в симметричных TCOB, и в соответствии с которой можно считать $d_1 \cong d_2 \equiv d$ и $u_1 \cong u_2 \equiv u$. При этом параметры $D_1 = D_2 \equiv D$, $\Gamma_{c1} = \Gamma_{c2} \equiv \Gamma_c$, $K_1 = K_2 \equiv K$ и дисперсионное уравнение принимает вид

$$\begin{aligned} K^4 - 2(\Gamma_c D + \psi \Gamma_k \sigma) K^2 \\ + (\Gamma_c^2 - \Gamma_k^2) D^2 + (\Gamma_k^2 - \Gamma_c^2) \sigma^2 &= 0. \end{aligned} \tag{8}$$

Решениями этого уравнения являются следующие две дисперсионные ветви $K_j(\Omega)$:

$$K_1^2 = \frac{d}{2} \Omega^2 \left(\frac{d}{2} \Omega^2 + 2(\gamma_c + \gamma_k) I_0 \right),$$

$$K_2^2 = \left(\frac{d}{2} \Omega^2 - 2\psi\sigma \right) \left(\frac{d}{2} \Omega^2 + 2(\gamma_c - \gamma_k) I_0 - 2\psi\sigma \right),$$
(9)

т.е. на одной и той же частоте возможны два типа волновых возмущений с различными значениями волнового числа. Таким образом, волновое возмущение каждой из двух (l = 1, 2) волн, формирующих исходный волновой пакет, представлено в свою очередь двумя (j = 1, 2) типами волновых решений (мод возмущения) с различными пространственными периодами. Поэтому решения уравнения (4) в общем случае должны иметь вид

$$\varphi_l(z,t) = \sum_{j=1,2} \left[c_{lj} \cos(k_j z - \Omega t) + i b_{lj} \sin(k_j z - \Omega t) \right],$$
(10)

где амплитуды мод возмущения соответствующей волны c_{lj} и b_{lj} определяются интенсивностью возмущающей волны, или "шумового" возмущения.

Условия возникновения МН

Рассмотрим некоторые важные случаи, приводящие к возникновению МН.

1. Пусть в системе связанных волн отсутствует линейная связь, т.е. параметр $\sigma = 0$ и межволновая связь реализуется только за счет нелинейного кроссмодуляционного взаимодействия. В этом случае корни дисперсионного уравнения (8) принимают вид

$$K_j^2 = \frac{d}{2} \,\Omega^2 \left(\frac{d}{2} \,\Omega^2 + 2 \big(\gamma_c - (-1)^j \gamma_k \big) I_0. \right) \tag{11}$$

Развитию неустойчивости отвечают неравенства $K_j^2 < 0$. В зависимости от знака и соотношения между параметрами, входящими в (11), возможны различные ситуации возникновения МН. Как показывает анализ (11), для волнового возмущения первого типа (j = 1), отвечающего решению $K_1(\Omega)$ дисперсионного уравнения, МН будет существовать только в случае аномальной материальной дисперсии, т.е. при d < 0. Область параметров, отвечающих МН, в этом случае определяется неравенством $d > -4(\gamma_k + \gamma_c)I_0/\Omega^2$, а инкремент усиления $g = 2 \, \mathrm{Im} \, K$ принимает вид

$$g_1 = 2 \text{Im} K_1 = |\Omega| \sqrt{4|d|(\gamma_c + \gamma_k)I_0 - d^2 \Omega^2}.$$
 (12)

Для возмущения второго типа (j = 2), отвечающего ветви $K_2(\Omega)$, МН может реализовываться как в случае аномальной, так и нормальной материальной дисперсии. Так, при аномальной дисперсии МН существует при выполнении условий $d > -4(\gamma_c - \gamma_k)I_0/\Omega^2$ и

Рис. 1. Зависимость инкремента усиления от частоты возмущения в отсутствие линейной межмодовой связи ($\sigma = 0$) для каждого из двух (j = 1, 2) типов волновых возмущений.

 $\gamma_c > \gamma_k$, а при нормальной — при выполнении условий $d < 4(\gamma_k - \gamma_c)I_0/\Omega^2$ и $\gamma_k > \gamma_c$. Инкремент усиления для этого типа возмущения в обоих случаях определяется выражением

$$g_2 = 2 \text{Im} K_2 = |\Omega| \sqrt{4I_0 |d(\gamma_c - \gamma_k)| - d^2 \Omega^2}.$$
 (13)

Область существования неустойчивых решений в рассмотренных случаях симметрична по частоте и включает в себя интервал частот $(-\Omega_c, \Omega_c)$, где для возмущений первого и второго типов предельная частота определяется выражениями

$$\Omega_{c1} = 2\left(\frac{(\gamma_c + \gamma_k)I_0}{|d|}\right)^{1/2}, \quad \Omega_{c2} = 2\left(\frac{|\gamma_c - \gamma_k|I_0}{|d|}\right)^{1/2}.$$
(14)

При этом максимум инкремента усиления достигается на частотах $|\Omega_{mj}| = \Omega_{cj}/\sqrt{2}$, а его величина определяется выражением $g_{mj} = 2I_0|\gamma_c + (-1)^j\gamma_k|$ соответственно.

Известно, что развитие МН фактически вызывает генерацию коротких импульсов и сопровождается перекачкой части энергии исходных волн в спектральные компоненты, частоты которых отличны от начального значения несущей частоты волнового пакета [10]. Во временном представлении проявление МН состоит в частичном преобразовании квазистационарной волны (5) в периодическую последовательность импульсов с периодом следования $T \cong 2\pi/\Omega_c$. Отсюда ясно, что при реализации МН за счет возмущения первой моды имеется возможность генерации ультракоротких импульсов, период следования которых (для стандартных значений параметров кварцевых световодов $d \cong 10^{-27} - 10^{-26} \text{ s}^2/\text{m}, (\gamma_c + \gamma_k)I_0 \cong 1 \text{ m}^{-1})$ составляет $T \cong 2\pi/\Omega_{c1} \cong 1-3 \cdot 10^{-13}$ s.

На рис. 1 представлена частотная зависимость инкремента усиления $g_j = 2 \operatorname{Im} K_j$ от частоты возмущения, полученная в отсутствие линейной межмодовой связи $(\sigma = 0)$ для каждого из двух (j = 1, 2) типов волновых возмущений, развивающихся в структуре. Приведенные зависимости соответствуют следующим значениям параметров: $d = (-1)^{j} (0.625, 1.025, 1.425) \cdot 10^{-26} \text{ s}^{2}/\text{m}$ (кривые 1-3); для первого типа возмущения $\gamma_c = 2(\mathbf{W} \cdot \mathbf{m})^{-1}$, $\gamma_k = 1(\mathbf{W} \cdot \mathbf{m})^{-1},$ для второго $\gamma_c = 1 (W \cdot m)^{-1}, \ \gamma_k = 2 (W \cdot m)^{-1}.$ Здесь и далее численный анализ проводится при значениях параметров $u = 2 \cdot 10^8$ m/s, $I_0 = 1$ W. В связи с отсутствием в решениях (11) зависимости K_i от параметра ψ полученные кривые справедливы как для случая симметричного возбуждения световода, так и для антисимметричного. Из приведенных кривых следует, что с увеличением модуля параметра дисперсии *d* частотная область существования МН сужается, а максимум инкремента усиления смещается в область меньших частот возмущения; кривые усиления $g_i(\Omega)$ симметричны относительно смены знака Ω и на частоте возмущения $\Omega = 0$ усиление отсутствует. Величина пикового значения инкремента усиления g_m не зависит от величины дисперсии d, а определяется лишь величиной мощности падающего излучения I_0 . При этом величина частотной области, где реализуется МН, и максимальное значение инкремента усиления для волнового возмущения, определяемого ветвью $K_1(\Omega)$, при одних и тех же параметрах световода существенно больше, чем для возмущения, определяемого ветвью $K_2(\Omega)$.

2. При наличии межволновой связи в рассматриваемой волноводной структуре возможна реализация волновой неустойчивости на частоте $\Omega \simeq 0$. В этом случае не возникает режима МН и соответствующей ей генерации коротких импульсов, поскольку период их следования в этом случае должен составлять $T \simeq 1/\Omega \rightarrow \infty$. Отличный же от нуля инкремент усиления возмущения, определяемого дисперсионной ветвью $K_2(\Omega)$ при $\Omega = 0$, характеризует интенсивность перекачки в это возмущение энергии из системы первичных волн. Возможность подобного характера неустойчивости в связанных системах отмечалась также в работе [8]. Решение дисперсионного уравнения (8) для случая $\Omega = 0$ приводит к следующему выражению для инкремента усиления:

$$g(0) = 4\sqrt{\sigma \left[\psi(\gamma_c - \gamma_k)I_0 - \sigma\right]},$$
 (15)

из которого следует, что при $\gamma_c > \gamma_k$ для развития неустойчивости данного типа необходимо выполнение неравенств $\sigma < \psi(\gamma_c - \gamma_k)I_0$ при $\sigma > 0$ и $\sigma > \psi(\gamma_c - \gamma_k)I_0$ при $\sigma < 0$. Своего максимального значения $g_m = \sqrt{2}|\gamma_c - \gamma_k|I_0$ инкремент усиления достигает при значении коэффициента связи $|\sigma_m| = |\gamma_c - \gamma_k|I_0/2$. Для реализации подобного рода волновой неустойчивости наиболее удобным представляется использование ТСОВ, для которых $\gamma_k \cong 0$ и величина $|\gamma_c - \gamma_k|$ принимает максимальное значение γ_c , при этом достаточно

Рис. 2. Зависимость инкремента усиления g(0) от параметра межволновой связи σ для симметричного и антисимметричного возбуждения световода ($\psi = \pm 1$) при $\gamma_c I_0 = 1, 2, 3 \text{ m}^{-1}$ (кривые I-3).

легко получить необходимые значения σ . Из (15) следует, что область параметров, где реализуется подобный тип неустойчивости, существенно зависит от характера возбуждения световода. Так, в последнем случае ($\gamma_k = 0$) при $\sigma > 0$ неустойчивость рассматриваемого типа реализуется только при симметричном возбуждении световода, а при $\sigma < 0$ — только при антисимметричном. На рис. 2 приведена зависимость инкремента усиления g(0) от параметра межволновой связи, полученная для симметричного и антисимметричного возбуждения световода ($\psi = \pm 1$) и значений $\gamma_c I_0 = 1, 2, 3 \text{ m}^{-1}$ (кривые I-3). Видно, что область волновой неустойчивости ограничена значениями $|\sigma| \leq \gamma_c I_0$. Дальнейшее увеличение параметра межволновой связи $|\sigma|$ делает волновой процесс устойчивым.

3. Исследуем теперь решения дисперсионного уравнения при наличии линейной и нелинейной межволновой связи, т.е. $\sigma \neq 0$ и $\gamma_k \neq 0$. Анализ решения $K_1(\Omega)$, не зависящего от величины σ и условий возбуждения световода, приведен выше. Для волнового возмущения, описываемого решением $K_2(\Omega)$, МН имеет место при выполнении следующих общих неравенств:

$$4[\psi\sigma - (\gamma_c - \gamma_k)I_0] < d\Omega^2 < 4\psi\sigma, \quad \gamma_c > \gamma_k, \quad (16 a)$$

$$4\psi\sigma < d\Omega^2 < 4\big[\psi\sigma + (\gamma_k - \gamma_c)I_0\big], \quad \gamma_c < \gamma_k. \quad (16\,\mathrm{b})$$

В соответствии с этими соотношениями МН должна иметь место в следующих случаях: при аномальной материальной дисперсии (d < 0) и $\psi \sigma > 0$ только для $\gamma_c > \gamma_k$, если же $\psi \sigma < 0$, то для $\gamma_c > \gamma_k$ и $\gamma_c < \gamma_k$; при нормальной материальной дисперсии (d > 0) и $\psi \sigma > 0$ для $\gamma_c > \gamma_k$ и $\gamma_c < \gamma_k$, если же $\psi \sigma < 0$, то только для $\gamma_c < \gamma_k$. В зависимости от соотношения между входящими в (16) параметрами возможны различные реализации МН. Проведем более подробный анализ одной из этих возможностей.

Будем считать дисперсию аномальной (d < 0), а $\psi \sigma > 0$. В этом случае МН реализуется только при $(\gamma_c - \gamma_k)I_0 > |\sigma|$ в частной области

$$|\Omega| < 2\sqrt{\left[\Psi\sigma - (\gamma_c - \gamma_k)I_0\right]d^{-1}}.$$
(17)

При этом возможны два типа решений дисперсионного уравнения, приводящие к различным зависимостям $g(\Omega)$. Так, при $(\gamma_c - \gamma_k)I_0 > 2\psi\sigma$ зависимость $g(\Omega)$ имеет два экстремума: на частоте $\Omega = 0$ с g(0), определяемым соотношением (15), и на частоте

$$|\Omega_m| = \sqrt{2 \big[2\psi\sigma - (\gamma_c - \gamma_k) I_0 \big] d^{-1}}, \qquad (18)$$

где инкремент усиления $g_m = 2(\gamma_c - \gamma_k)I_0$.

При выполнении двойного неравенства $\psi \sigma < (\gamma_c - \gamma_k)I_0 < 2\psi \sigma$ имеется один максимум инкремента усиления на частоте $\Omega = 0$ со значением g(0).

Пусть теперь d < 0 и $\psi \sigma < 0$. В этом случае частотный интервал МН зависит от соотношения параметров γ_c и γ_k . Так, при $(\gamma_c - \gamma_k)I_0 > |\sigma|$ для частотной области получаем

$$2\sqrt{\psi\sigma/d} < |\Omega| < 2\sqrt{\left[\psi\sigma - (\gamma_c - \gamma_k)I_0\right]d^{-1}},\qquad(19)$$

а максимальное значение инкремента усиления $g_m = 2(\gamma_c - \gamma_k)I_0$. В случае же $\gamma_k > \gamma_c$ имеются две возможности для реализации МН: при $(\gamma_k - \gamma_c)I_0 < |\sigma|$ в области

$$2\sqrt{\left[\psi\sigma + (\gamma_k - \gamma_c)I_0\right]d^{-1}} < |\Omega| < 2\sqrt{\psi\sigma/d}, \qquad (20)$$

а при $(\gamma_k - \gamma_c)I_0 \ge |\sigma|$ в области $0 < |\Omega| < 2\sqrt{\psi\sigma/d}$. Максимальное значение инкремента усиления в каждом из указанных случаев дается выражением $g_m = 2(\gamma_c - \gamma_k)I_0$.

Аналогичный анализ может быть проведен и для случая нормальной дисперсии, который здесь мы опускаем.

На рис. 3 представлена зависимость инкремента усиления g от частоты возмущения Ω , полученная для симметричного возбуждения световода ($\psi = 1$), аномальной материальной дисперсии $d = 1.025 \cdot 10^{-26} \text{ s}^2/\text{m}$, параметрах нелинейности $\gamma_c = 2(W \cdot m)^{-1}, \ \gamma_k = 1(W \cdot m)^{-1}$ и значениях параметра линейной связи $\sigma = (-0.55,$ -0.25, 0, 0.05, 0.25, 0.85) m⁻¹ (кривые 1-6). В зависимости от соотношения между входящими в (16) параметрами возможны различные ситуации и области возникновения неустойчивости, каждой из которых соответствуют свои кривые. При $\sigma > 0$ (кривые 4-6) для зависимости $g(\Omega)$ характерно неравенство нулю инкремента усиления при $\Omega = 0$, где он достигает максимального значения. С увеличением σ область существования MH смещается в область меньших частот волновых возмущений. Для $\sigma = 0$ (кривая 3) при $\Omega = 0$ усиление отсутствует, а область МН лежит в области частот $(0, \Omega_c)$. Величина максимума инкремента усиления g_m постоянна

Рис. 3. Зависимость инкремента усиления от частоты возмущения при симметричном возбуждении световода, аномальной материальной дисперсии и $\sigma = (-0.55, -0.25, 0, 0.05, 0.25, 0.85) \text{ m}^{-1}$ (кривые *1*–6).

при взятых значениях σ ввиду постоянства мощности I_0 . При $\sigma < 0$ (кривые 1, 2) область существования МН берет начало не от нуля частоты возмущения, а с частоты возмущения $\Omega_{c1} > 0$. С увеличением параметра линейной связи область существования МН увеличивается для зависимостей, не включающих значение частоты $\Omega = 0$, и уменьшается для зависимостей, включающих это значение. Приведенные зависимости остаются справедливыми, если рассматривать антисимметричное возбуждение $(\psi = -1)$ и поменять знак параметра линейной связи на противоположный. При этом если в случае симметричного возбуждения световода при увеличении σ область существования МН смещается на менее низкие частоты возмущения, то в случае антисимметричного — на более высокие частоты. Полученные зависимости $g(\Omega)$ полностью соответствуют проведенному выше анализу характера их поведения и частотных областей МН.

На рис. 4 приведены аналогичные зависимости $g(\Omega)$, полученные для симметричного возбуждения световода ($\psi = 1$), нормальной материальной дисперсии $d = 1.025 \cdot 10^{-26} \, \text{s}^2/\text{m}$, а также $\gamma_c = 2(\text{W} \cdot \text{m})^{-1}$, $y_k = 1(W \cdot m)^{-1}$. В рассматриваемом случае МН будет существовать лишь при $\sigma > 0$, поэтому выбраны следующие значения параметра линейной связи: $\sigma = (1.45, \, 1.15, \, 1.0, \, 0.85, \, 0.25, \, 0.05) \, \mathrm{m}^{-1}$ (кривые ${\it 1-6}$). Различные по характеру зависимости от σ кривые $g(\Omega)$, определяющие области возникновения МН, будут разделяться зависимостью, построенной при $\sigma = 1 \, \mathrm{m}^{-1}$ (на рис. 3 эти области были разделены зависимостью, построенной при $\sigma = 0$). При $0 < \sigma < 1 \, {\rm m}^{-1}$ (кривые 4-6) на частоте возмущения $\Omega = 0$ инкремент усиления достигает экстремального значения. С увеличением σ (от 0 до 1 m⁻¹) область существования МН смещается в область больших частот волновых возмущений. Для значения $\sigma = 1 \, {\rm m}^{-1}$ (кривая 3) на

Рис. 4. Зависимость инкремента усиления от частоты возмущения при симметричном возбуждении световода, нормальной материальной дисперсии и $\sigma = (1.45, 1.15, 1.0, 0.85, 0.25, 0.05) m^{-1}$ (кривые *I*-6).

нулевой частоте возмущения усиление отсутствует, область существования МН определяется интервалом частот (0, Ω_c) и для зависимости $g(\Omega)$ характерен единственный максимум. При $\sigma > 1 \text{ m}^{-1}$ (кривые 1, 2) МН реализуется на интервале частот (Ω_{c1} , Ω_{c2}). С увеличением линейной связи область существования МН смещается в область больших частот волновых возмущений.

Заключение

Проведенный анализ показывает, что динамика волнового пакета и условия возникновения МН во многом определяются величиной линейной и нелинейной межмодовой связи, дисперсии групповых скоростей и типом возбуждения световода. Важным результатом, следующим из полученных соотношений, является возможность генерации ультракоротких импульсов в области частот, соответствующей нормальной материальной дисперсии, в отличие от одномодовых световодов, где МН возникает лишь при аномальной дисперсии. Это позволяет использовать для генерации ульракоротких импульсов наиболее распространенные и технически отработанные на сегодняшний день полупроводниковые лазеры, работающие в частотном диапазоне с $\lambda < 0.8 \,\mu m$. Для большинства современных световодов эта спектральная область соответствует нормальной материальной дисперсии [9,10], а потому при одномодовом режиме работы указанные лазеры (и нелинейные световоды) не могут быть использованы в качестве генераторов ультракоротких импульсов. Предложенная двухмодовая схема реализации режима МН снимает эти ограничения. Отметим также, что кубическая нелинейность в ИК и видимом диапазонах практически линейно растет с частотой [10], поэтому значение керровской нелиней-

Журнал технической физики, 2006, том 76, вып. 2

ности, т.е. величина параметров γ_c и γ_k в видимом диапазоне (при прочих равных условиях) должна быть существенно выше, чем в ИК диапазоне. Следовательно, при реализации предложенной двухмодовой схемы генерации коротких импульсов с одинаковыми параметрами (длительность, частота повторения, амплитуда и т.д.) в УФ диапазоне частот можно использовать источники излучения значительно меньшей (по сравнению с ИК областью) мощности.

Список литературы

- [1] Майер А.А. // УФН. 1995. Т. 165. № 9. С. 1037–1075.
- [2] Васильев С.А., Дианов Е.М., Курков А.С. и др. // Квантовая электрон. 1997. Т. 24. № 10. С. 151–154.
- [3] Ахманов С.А., Воронцов М.А. Новые физические принципы оптической обработки информации. М.: Наука, 1990.
- [4] Маймистов А.И. // Квантовая электрон. 1991. Т. 18. № 6. С. 758–761.
- [5] Выслоух В.А., Геворкян Л.П. // Изв. АН СССР. Сер. Физ. 1991. Т. 55. № 2. С. 322–328.
- [6] Золотовский И.О., Семенцов Д.И. // ЖТФ. 2002. Т. 72. Вып. 5. С. 78–81.
- [7] Agrawal G.P. // Phys. Rev. Lett. 1987. Vol. 59. N 8. P. 880– 883.
- [8] Торчигин В.П., Кострюков В.А., Романова О.Б. и др. // Квантовая электрон. 1991. Т. 18. № 10. С. 1259–1263.
- [9] Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988.
- [10] Агравал Г. Нелинейная волоконная оптика. М.: Мир, 1996.
- [11] Trillo S., Ferro P. // Opt. Lett. 1995. Vol. 20. N 1. P. 47-51.
- [12] Золотовский И.О., Семенцов Д.И. // Квантовая электрон. 1999. Т. 27. № 3. С. 273–277. Опт. и спектр. 2000. Т. 88. № 4. С. 620–623.
- [13] *Казанцева Е.В., Маймистов А.И.* // Опт. и спектр. 2002. Т. 93. № 5. С. 783–792.
- [14] Золотовский И.О., Петров А.Н., Семенцов Д.И. // РиЭ. 2004. Т. 49. № 6. С. 671–676.
- [15] Юх П., Ярив А. Оптические волны в кристаллах. М.: Мир, 1987.