01;03 Об учете аккомодации энергии и вычислении потока тепла в плоском слое двухатомного газа

© С.А. Савков, Е.Ю. Тюлькина

Орловский государственный университет, 302015 Орел, Россия

(Поступило в Редакцию 1 марта 2005 г.)

Рассмотрен вопрос о вычислении потока тепла в плоском слое двухатомного газа. В линейном по перепаду температуры приближении получены общие (не зависящие от формы и способа решения кинетического уравнения) выражения зависимости потока тепла от коэффициента аккомодации энергии. В рамках метода полупространственных моментов проведен анализ зависимости точности вычисления потока тепла от числа удерживаемых в функции распределения слагаемых.

PACS: 51.10.+y

Изучение процесса теплопереноса в молекулярных газах представляет интерес как с теоретической точки зрения, так и в плане практического приложения. В частности, данные, полученные по измерению потока тепла между параллельными пластинами используются для определения характера взаимодействия молекул газа с их поверхностью [1]. Теоретический анализ указанного явления требует рассмотрения кинетического уравнения для решения которого, как правило, используются различные численные методы [2-6]. Причем все конкретные расчеты проводятся при фиксированных значениях коэффициентов аккомодации, что затрудняет сравнение с экспериментом. Основной целью данной публикации является определение аналитических выражений, задающих зависимость потока тепла от характера аккомодации энергии.

В данной работе рассматривается процесс переноса тепла через слой двухатомного газа толщиной d, заключенного между двумя неподвижными плоскими пластинами, на поверхности которых поддерживается постоянная температура $T_s^1 > T_s^2$. Перепад $\Delta T_s = T_s^1 - T_s^2$ считается достаточно малым, для того чтобы ограничиться линейным приближением.

Введем декартову систему координат с осью OZ, направленной по нормали, и началом на расстоянии d/2 от каждой из пластин.

В качестве единицы длины примем величину

$$l=\frac{3\lambda}{\sqrt{\pi}},$$

где

$$\lambda = \frac{\chi}{3} \sqrt{\frac{2\pi m}{kT_0}}, \qquad \chi = \frac{2}{7} \frac{\varkappa}{n_0 k}, \qquad (1)$$

где \varkappa и χ — коэффициенты тепло- и температуропроводности, m — масса, T_0 и n_0 — некоторые, принятые за равновесные, значения температуры и концентрации молекул газа, k — постоянная Больцмана. В силу линейности поставленной задачи, представим функцию распределения в виде

$$f = f_0(1 + \varphi),$$

где

$$f_0 = n_0 \left(\frac{m}{2\pi k T_0}\right)^{3/2} \frac{J}{k T_0} \exp\left(-C^2 - \gamma^2\right)$$

 $C = V\sqrt{m/2kT_0}; \ \gamma = \omega\sqrt{J/2kT_0}; V$ и ω — собственная (тепловая) скорость поступательного и вращательного движения молекул газа; J — момент инерции молекул.

В качестве граничных условий примем закон диффузного отражения молекул газа от поверхности каждой из пластин, что эквивалентно

$$\varphi\big|_{(-1)^k C_z < 0, z = (-1)^k d/2} = \Phi_r^k = \frac{n_r^k - n_0}{n_0} + \left(C^2 - \frac{3}{2}\right) \tau_v^k + (\gamma^2 - 1)\tau_\omega^k.$$
(2)

Значения n_r^k , τ_v^k и τ_ω^k определяются требованием отсутствия массового движения газа

$$\int C_z \varphi \exp\left(-C^2 - \gamma^2\right) \gamma d\gamma d^3 C = 0$$
 (3)

и характером аккомодации энергии

$$\alpha_{v}^{k} = \frac{E_{v,i}^{k} + E_{v,r}^{k}}{E_{v,i}^{k} + E_{v,s}^{k}}, \qquad \alpha_{\omega}^{k} = \frac{E_{\omega,i}^{k} + E_{\omega,r}^{k}}{E_{\omega,i}^{k} + E_{\omega,s}^{k}}, \tag{4}$$

где

 $E_{v,i}^{k} = 2\pi^{-3/2}$

$$\times \int_{(-1)^k C_z > 0} C_z C^2 \varphi \big|_{z = (-1)^k d/2} \exp\left(-C^2 - \gamma^2\right) \gamma d\gamma d^3 C$$
(5)

и

$$E_{\omega,i}^{k} = 2\pi^{-3/2} \\ \times \int_{(-1)^{k}C_{z}>0} C_{z}\varphi|_{z=(-1)^{k}d/2} \exp\left(-C^{2}-\gamma^{2}\right)\gamma^{3}d\gamma d^{3}C$$
(6)

 обезразмеренное значение энергии поступательного и вращательного движения, приносимой падающими, а

$$E_{\nu,r}^{k} = 2\pi^{-3/2} \int_{(-1)^{k}C_{z}<0} C_{z}C^{2}\Phi_{r}^{k}\exp\left(-C^{2}-\gamma^{2}\right)\gamma d\gamma d^{3}C$$
(7)

И

$$E_{\omega,r}^{k} = 2\pi^{-3/2} \int_{(-1)^{k}C_{z}<0} C_{z} \Phi_{r}^{k} \exp\left(-C^{2} - \gamma^{2}\right) \gamma^{3} d\gamma d^{3}C$$
(8)

— уносимой отразившимися от поверхности *k*-й пластины молекулами;

$$E_{\nu,s}^{k} = 2\pi^{-3/2} \int_{(-1)^{k}C_{z}<0} C_{z}C^{2}\Phi_{s}^{k} \exp\left(-C^{2}-\gamma^{2}\right) \gamma d\gamma d^{3}C$$
(9)

И

$$E_{\omega,s}^{k} = 2\pi^{-3/2} \int_{(-1)^{k}C_{z}<0} C_{z} \Phi_{s}^{k} \exp\left(-C^{2} - \gamma^{2}\right) \gamma^{3} d\gamma d^{3}C$$
(10)

— энергия, которую уносили бы молекулы, если бы отражались с температурой T_s^k , т. е. с функцией распределения

$$\Phi_s^k = \frac{n_s^k - n_0}{n_0} + \left(C^2 + \gamma^2 - \frac{5}{2}\right) \frac{T_s^k - T_0}{T_0}.$$
 (11)

Из (3-11) находим

$$\begin{split} \frac{n_r^k - n_0}{n_0} &= (-1)^k 2I_0^k - \frac{\tau_v^k}{2}, \quad E_{v,i}^k = \frac{I_1^k}{\sqrt{\pi}}, \quad E_{\omega,i}^k = \frac{I_2^k}{\sqrt{\pi}}, \\ E_{v,r}^k &= \frac{(-1)^{k+1}\tau_v^k - 2I_0^k}{\sqrt{\pi}}, \quad E_{\omega,r}^k = \frac{(-1)^{k+1}\tau_\omega^k - 2I_0^k}{2\sqrt{\pi}}, \\ E_{v,s}^k &= \frac{(-1)^{k+1}\tau_s^k - 2I_0^k}{\sqrt{\pi}}, \quad E_{\omega,s}^k = \frac{(-1)^{k+1}\tau_s^k - 2I_0}{2\sqrt{\pi}}, \end{split}$$

что дает

$$\begin{aligned} \tau_v^k + (-1)^k (1 - \alpha_v^k) (2I_0^k - I_1^k) &= \alpha_v^k \tau_s^k, \\ \tau_\omega^k + (-1)^k (1 - \alpha_\omega^k) (2I_0^k - 2I_2^k) &= \alpha_\omega^k \tau_s^k. \end{aligned} \tag{12}$$

Здесь

$$I_i^k = \frac{2}{\pi} \int_{(-1)^k C_z > 0} A_i C_z \varphi \Big|_{z = (-1)^k d/2} \exp\left(-C^2 - \gamma^2\right) \gamma d\gamma d^3 C,$$

$$A_0 = 1, \quad A_1 = C^2, \quad A_2 = \gamma^2,$$

 $au_s^k = \left(T_s^k - T_0\right)/T_0.$

Искомый поток тепла определяется соотношением

$$q = \int C_z \left(\frac{mV^2}{2} + \frac{J\omega^2}{2}\right) f_0 \varphi \omega d\omega d^3 V$$

и может быть представлен в виде

$$q=n_0\sqrt{\frac{2k^3T_0^3}{m}}Q,$$

где

$$Q = Q_v + Q_\omega,$$

$$Q_v = \frac{2}{\pi^{3/2}} \int C_z C^2 \varphi \exp\left(-C^2 - \gamma^2\right) \gamma d\gamma d^3 C,$$

$$Q_\omega = \frac{2}{\pi^{3/2}} \int C_z \varphi \exp\left(-C^2 - \gamma^2\right) \gamma^3 d\gamma d^3 C.$$

При этом на поверхности каждой из пластин

$$\begin{split} Q_v \big|_{z=(-1)^k d/2} &= E_{v,i}^k + E_{v,r}^k = \frac{1}{\sqrt{\pi}} \left((-1)^{k+1} \tau_v^k + I_1^k - 2I_0^k \right), \\ Q_\omega \big|_{z=(-1)^k d/2} &= E_{\omega,i}^k + E_{\omega,r}^k \\ &= \frac{1}{\sqrt{\pi}} \left((-1)^{k+1} \frac{\tau_\omega^k}{2} + I_2^k - I_0^k \right). \end{split}$$

В силу принятого условия линейности интегралы I_i^k , как и сама функция φ , могут быть представлены в виде линейной комбинации относительных перепадов температуры τ_v^k и τ_ω^k . Соответственно выражения (12) представляют собой систему четырех линейных алгебраических уравнений, решение которой позволяет выразить значения перечисленных перепадов через разность температуры между пластинами. В частности, в наиболее значимом с практической точки зрения случае, когда обе пластины выполнены из одного материала, т.е. $\alpha_v^1 = \alpha_v^2 = \alpha_v$ и $\alpha_\omega^1 = \alpha_\omega^2 = \alpha_\omega$, из (12) имеем

$$\begin{aligned} \left(2\sqrt{\pi}Q_v^v(1-\alpha_v)+\alpha_v\right)\tau_v+2\sqrt{\pi}Q_v^\omega(1-\alpha_v)\tau_\omega &=\alpha_v\frac{\Delta T_s}{T_0},\\ 4\sqrt{\pi}Q_\omega^v(1-\alpha_\omega)\tau_v &+\left(4\sqrt{\pi}Q_\omega^\omega(1-\alpha_\omega)+\alpha_\omega\right)\tau_\omega &=\alpha_\omega\frac{\Delta T_s}{T_0}. \end{aligned}$$
(13)

Здесь

$$au_v = rac{T_v^1 - T_v^2}{T_0} = au_v^1 - au_v^2, \quad au_\omega = rac{T_\omega^1 - T_\omega^2}{T_0} = au_\omega^1 - au_\omega^2.$$

Под Q_v^v и Q_ω^v понимаются значения Q_v и Q_ω на поверхности первой (более нагретой) пластины, вычисленные при $\tau_v = 1$, $\tau_\omega = 0$, а Q_v^ω и Q_ω^ω — при $\tau_v = 0$, $\tau_\omega = 1$. В качестве равновесных приняты значения температуры и концентрации при z = 0.

Журнал технической физики, 2006, том 76, вып. 2

Решая (13), находим

$$au_v = rac{\Delta_v}{\Delta} rac{\Delta T_s}{T_0}, \qquad au_\omega = rac{\Delta_\omega}{\Delta} rac{\Delta T_s}{T_0}$$

где

$$egin{aligned} \Delta_v &= lpha_v \left(4 \sqrt{\pi} Q^\omega_\omega (1-lpha_\omega) + lpha_\omega
ight) - 2 lpha_\omega \sqrt{\pi} Q^\omega_v (1-lpha_v), \ \Delta_\omega &= lpha_\omega \left(2 \sqrt{\pi} Q^v_v (1-lpha_v) + lpha_v
ight) - lpha_v 4 \sqrt{\pi} Q^v_\omega (1-lpha_\omega), \ \Delta &= \left(2 \sqrt{\pi} Q^v_v (1-lpha_v) + lpha_v
ight) \left(4 \sqrt{\pi} Q^\omega_\omega (1-lpha_\omega) + lpha_\omega
ight) \ - 8 \pi Q^\omega_v Q^v_\omega (1-lpha_v) (1-lpha_\omega). \end{aligned}$$

Результирующий поток тепла определяется соотношением

$$Q = (Q_v^v + Q_\omega^v) \, au_v + (Q_v^\omega + Q_\omega^\omega) au_\omega$$

Значение потока тепла в промежуточном диапазоне определяется из решения кинетического уравнения, которое в силу принятого условия линейности и симметрии задачи может быть представлено в виде

$$C_z \frac{\partial \varphi}{\partial z} = I_{\rm st}[\varphi]. \tag{14}$$

Следует заметить, что любой численный метод решения подобного рода уравнений по существу состоит в аппроксимации искомой функции на конечном множестве точек фазового пространства. При этом необходимо учитывать тот факт, что основное изменение функции распределения происходит на расстояниях порядка длины свободного пробега. Данное обстоятельство приводит к необходимости соответствующего дробления шага. Указанной проблемы можно избежать в рамках моментных методов, когда функция распределения представляется в виде ряда по заданным полиномам скорости, коэффициенты которого являются функциями координат и определяются из соответствующей системы дифференциальных уравнений. Причем, в случае плоской геометрии последняя может быть решена в аналитической форме.

Для анализа рассмотрим простейшую модель интеграла столкновений [7]:

$$I_{\rm st}[\varphi] = \sum_{i=1}^{3} P_i M_i - \varphi.$$
(15)

Здесь

$$M_{i} = 2\pi^{-3/2} \int P_{i}\varphi \exp\left(-C^{2} - \gamma^{2}\right) \gamma d\gamma d^{3}C;$$

$$P_{1} = 1; \quad P_{2} = \sqrt{\frac{2}{5}} \left(C^{2} + \gamma^{2} - \frac{5}{2}\right); \quad P_{3} = \sqrt{2}C_{z}$$

В этом случае зависимость функции распределения от модуля скорости поступательного и вращательного движения молекул определяется соотношением

$$\varphi = \varphi_1 + \varphi_2 C^2 + \varphi_3 \gamma^2, \tag{16}$$

где φ_i зависит только от z и C_z .

В силу (16) решение уравнения (14), удовлетворяющее условиям (2), может быть представлено в виде

$$\varphi = \varphi^+ H(C_x) + \varphi^- H(-C_x)$$

где

$$\varphi^{\pm} = \sum_{k=0}^{N} \left(a_{1,k}^{\pm} + a_{2,k}^{\pm} C^2 + a_{3,k}^{\pm} \gamma^2 \right) C_z^k, \qquad (17)$$

 $H(x) = \frac{|x|+x}{2x}$ — стандартная функция Хевисайда.

Коэффициенты $a_{i,k}$ определяются из системы дифференциальных уравнений, для составления которой кинетическое уравнение следует последовательно умножить на все входящие в (17) моменты и проинтегрировать по всему пространству скоростей.

Опуская достаточно громоздкие выкладки, которые могут быть выполнены в любой среде символьного программирования, такой как Maple, отметим, что результирующее решение задается выражением

$$\varphi = \varphi_{\mathrm{Ch.E.}} + \varphi,$$

где

$$\varphi_{\text{Ch.E.}} = K_1 + K_2 \left(C^2 + \gamma^2 - \frac{5}{2} \right) + K_3 C_z$$

+ $K_4 \left(C^2 + \gamma^2 - \frac{7}{2} \right) (z - C_z)$

представляет собой газодинамическое решение кинетического уравнения (функцию Чепмена–Энскога), определяющее распределение молекул на достаточно большом (порядка нескольких длин свободного пробега) удалении от каждой из пластин. А функция

$$\tilde{\varphi} = \sum_{k=1}^{N-4} K_{k+4} \varphi_k \exp(\alpha_k z)$$

описывает поведение газа в непосредственной близости от каждой из пластин.

Значения потоков энергии определяются соотношениями

$$Q_v=rac{5}{4}K_4+ ilde{Q},\qquad Q_\omega=rac{1}{2}K_4- ilde{Q},$$

где

$$\tilde{Q} = \frac{2}{\pi^{3/2}} \int C_z C^2 \tilde{\varphi} \exp\left(-C^2 - \gamma^2\right) \gamma d\gamma d^3 C$$
$$= -\frac{2}{\pi^{3/2}} \int C_z \tilde{\varphi} \exp\left(-C^2 - \gamma^2\right) \gamma^3 d\gamma d^3 C.$$

При этом в свободномолекулярном режиме, т. е. в случае, когда расстояние между пластинами много меньше средней длины свободного пробега молекул, изменением функции распределения в объеме газа можно пренебречь и считать ее равной

$$\varphi = \Phi_r^1 H(C_z) + \Phi_r^2 H(-C_z),$$

Журнал технической физики, 2006, том 76, вып. 2

		-			
$d \backslash N$	1	2	3	4	5
0.01	0.55987	0.55988	0.55989	0.55990	0.55990
0.1	0.52515	0.52606	0.52663	0.52701	0.52726
0.5	0.42706	0.43336	0.43535	0.43584	0.43586
1	0.36186	0.36840	0.36899	0.36879	0.36866
1.25	0.33953	0.34501	0.34509	0.34485	0.34479
1.5	0.32108	0.32542	0.32521	0.32503	0.32503
1.75	0.30543	0.30874	0.30842	0.30832	0.30835
2	0.29191	0.29437	0.29404	0.29401	0.29405
2.5	0.26961	0.27090	0.27068	0.27073	0.27077
3	0.25189	0.25255	0.25246	0.25253	0.25255
4	0.22547	0.22569	0.22575	0.22579	0.22579
5	0.20673	0.20691	0.20698	0.20700	0.20700
7	0.18193	0.18211	0.18214	0.18215	0.18215
10	0.16026	0.16036	0.16038	0.16039	0.16039
100	0.10102	0.10105	0.10106	0.10106	0.10106

Таблица 1. Значения Q_v^v

Таблица 2. Значения $Q_v^{\omega} = Q_{\omega}^v$

$d \backslash N$	1	2	3	4	5
0.01	$-7.4 imes10^{-8}$	$-1.1 imes 10^{-7}$	$-1.4 imes10^{-7}$	$-1.7 imes10^{-7}$	$-1.9 imes 10^{-7}$
0.1	$-5.8 imes10^{-5}$	$-7.6 imes10^{-5}$	$-8.8 imes10^{-5}$	$-9.5 imes10^{-5}$	$-9.8 imes10^{-5}$
0.5	-0.00282	-0.00281	-0.00264	-0.02502	-0.02422
1	-0.00922	-0.00818	-0.00766	-0.07500	-0.07480
1.25	-0.01247	-0.01096	-0.01044	-0.01035	-0.01037
1.5	-0.01554	-0.01373	-0.01329	-0.01327	-0.01331
1.75	-0.01841	-0.01647	-0.01614	-0.01617	-0.01621
2	-0.02110	-0.01915	-0.01894	-0.01900	-0.01903
2.5	-0.02601	-0.02428	-0.02426	-0.02433	-0.02434
3	-0.03040	-0.02904	-0.02912	-0.02917	-0.02916
4	-0.03798	-0.03730	-0.03741	-0.03741	-0.03740
5	-0.04424	-0.04398	-0.04404	-0.04403	-0.04402
7	-0.05372	-0.05375	-0.05375	-0.05375	-0.05375
10	-0.06292	-0.06296	-0.06296	-0.06296	-0.06296
100	-0.08920	-0.08922	-0.08923	-0.08923	-0.08923

Таблица З. Значения Q_{ω}^{ω}

$d \backslash N$	1	2	3	4	5
0.01	0.27963	0.27963	0.27964	0.27964	0.27965
0.1	0.26002	0.26050	0.26079	0.26097	0.26109
0.5	0.20759	0.21032	0.21095	0.21099	0.21093
1	0.17606	0.17778	0.17757	0.17740	0.17736
1.25	0.16595	0.16684	0.16650	0.16639	0.16640
1.5	0.15787	0.15811	0.15777	0.15774	0.15778
1.75	0.15125	0.15103	0.15078	0.15080	0.15084
2	0.14571	0.14524	0.14508	0.14514	0.14517
2.5	0.13704	0.13642	0.13644	0.13651	0.13652
3	0.13064	0.13015	0.13025	0.13030	0.13029
4	0.12208	0.12196	0.12208	0.12208	0.12208
5	0.11679	0.11692	0.11698	0.11697	0.11697
7	0.11078	0.11100	0.11099	0.11099	0.11100
10	0.10620	0.10631	0.10631	0.10632	0.10632
100	0.09445	0.09448	0.09449	0.09449	0.09449

что дает

$$egin{aligned} Q_v^v &= 2Q_\omega^\omega = rac{1}{\sqrt{\pi}}, \qquad Q_v^\omega = Q_\omega^v = 0, \ Q &= rac{1}{\sqrt{\pi}} \left(rac{lpha_v}{2-lpha_v} + rac{1}{2}rac{lpha_\omega}{2-lpha_\omega}
ight) rac{\Delta T_s}{T_0}. \end{aligned}$$

Таким образом, при $\alpha_{\omega} = 0$, т.е. когда в результате отражения от пластин возбуждаются только поступательные степени свободы молекул газа, поток тепла (в рассматриваемом пределе) совпадает, а при полной аккомодации энергии оказывается в полтора раза больше значения, рассчитанного для атомарного газа.

В газодинамическом пределе и при условии полной аккомодации энергии на поверхности каждой из пластин, т. е. в случае $d \gg 1$ и $\alpha_v = \alpha_\omega$, суммарный поток энергии может быть представлен в виде

$$Q = \frac{7}{4d} \frac{1}{1 + 2KnC_t} \frac{\Delta T_s}{T_0}$$

здесь $Kn = \lambda/d$; $C_t = 2.07\,013$, 2.06 022, 2.0 586, 2.05 822 и 2.05 808 для N = 1, 2, 3, 4 и 5 соответственно. Напомним, что аналитическое решение [7] дает значение $C_t = 2.05\,798$.

Результаты расчетов в промежуточном диапазоне значений d приведены в табл. 1–3.

Проведенный анализ позволяет утверждать, что погрешность полученных в рамках изложенного подхода к решению кинетического уравнения результатов не превышает 0.01% во всем диапазоне значений числа Кнудсена.

Авторы выражают признательность доктору физикоматематических наук, профессору А.А. Юшканову за обсуждение результатов и ценные рекомендации.

Список литературы

- [1] Ларина И.Н., Рыков В.А. // Изв. АН СССР. МЖГ. 1986. № 5. С. 141–148.
- [2] Bassanini P., Cercingnani C., Pagani C.D. // J. Heat and Mass Transfer. 1967. Vol. 10. N 4. P. 447–460.
- [3] *Черемисин Ф.Г. //* Изв. АН СССР. МЖГ. 1970. № 5. С. 190–193.
- [4] Hsu S.K., Morse T.F. // Phys. Fluids. 1972. Vol. 15. P. 584-591.
- [5] Cipolla J.W. // J. Heat and Mass Transfer. 1970. Vol. 14. N 10. P. 1599–1610.
- [6] Pazooki N., Loyalka S.K. // J. Heat and Mass Transfer. 1985. Vol 28. N 11. P. 2019–2026.
- [7] Латышев А.В., Юшканов А.А. // Теор. и мат. физика. 1993.
 Т. 95. № 3. С. 530–540.