02;03;11 Об оценках заряда изолированного адатома

© С.Ю. Давыдов,^{1,2} А.В. Павлык²

¹ Физико-технический институт им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 ² Санкт-Петербургский государственный электротехнический университет (ЛЭТИ),
 197376 Санкт-Петербург, Россия
 e-mail: sergei.davydov@mail.ioffe.ru

(Поступило в Редакцию 17 июня 2005 г.)

Методом связывающих орбиталей Харрисона в рамках модели поверхностной молекулы расчитаны значения заряда изолированного адатома Z_0 и сопоставлены с величинами Z_0 , полученными нами ранее [2,3] из зависимости работы выхода адсорбционной системы от поверхностной концентрации адатомов.

Хорошо известно [1], что дипольный момент изолированного адатома

$$p_0 = 2e\,\lambda Z_0,\tag{1}$$

где 2λ — расстояние между центрами адатома, обладающего зарядом eZ_0 (e — величина заряда электрона), и его изображения в подложке могут быть определены из начального наклона зависимости работы выхода адсорбционной системы ϕ от степени покрытия поверхности адатомами $\Theta = N/N_{ML}$ (N — концентрация адатомов на поверхности подложки, N_{ML} — концентрация адатомов в монослое) по формуле

$$(d\phi/d\Theta)_{\Theta\to 0} = -2\pi e p_0. \tag{2}$$

Определяя из экспериментальных данных величину этой производной и предполагая какое-либо определенное значение λ , найдем величину безразмерного заряда адатома Z_0 . Для адсорбции щелочных металлов на поверхностях Si(100) и GaAs (110) подобная процедура была проделана в работах [2,3] соответственно. При этом под величиной λ понимали длину адсорбционной связи, полагая $\lambda \approx (r_i + r_a)/2$, где $r_i(r_a)$ — ионный (атомный) радиус атома щелочного металла. Отметим, что в рамках использованной в [2,3] модели удалось вполне адекватно описать изменение работы выхода ϕ во всем интервале субмонослойных покрытий $0 \leq \Theta \leq 1$.

С целью дополнительной проверки полученных в [2,3] результатов следует оценить заряд изолированного адатома Z_0 , воспользовавшись каким-либо методом, максимально отличном от описанного выше. В качестве такой альтернативы выберем метод связывающих орбиталей Харрисона [4,5], являющийся одним из вариантов приближения сильной связи. Будем рассматривать так называемый "режим поверхностной молекулы" — простейшее кластерное приближение, когда считается, что адсорбированный атом связан лишь с одним атомом подложки, находящимся непосредственно под ним. При этом мы будем руководствоваться схемой расчета, предложенной в работах [6,7].

Рассмотрим адсорбцию атомов щелочных металлов на германии и арсениде галлия. В соответствии с теорией связывающих орбиталей Харрисона и режимом поверхностной молекулы нам потребуются следующие энергетические параметры: 1) ε_h — энергия гибридизованной $s p^3$ -орбитали поверхностного атома подложки, которая вычисляется по формуле

$$\varepsilon_h = \frac{1}{4} \left(\varepsilon_s + 3\varepsilon_p \right), \tag{3}$$

где ε_s и ε_p — энергии $|s\rangle$ и $|p\rangle$ состояний, отсчитываемые от уровня вакуума и приведенные в [5] (по таблицам атомных термов Хермана и Скиллмана); 2) энергия *s*-уровня адсорбированного атома, которую мы будем принимать равной потенциалу ионизации *I*; 3) ковалентная энергия V_2 , или потенциал взаимодействия между уровнями адатома и поверхностного атома подложки, вычисляемый по формуле

$$V_2 = (V_{ss\sigma} - V_{sp\sigma}\sqrt{3})/2. \tag{4}$$

Здесь $V_{nm\sigma} = \eta_{nm\sigma} (\eta^2/md^2)$, где m — масса электрона; $d = (r_s + r_a)$ — межцентровое расстояние между адатомом и атомом подложки (r_s — радиус атома

Таблица 1. Исходные данные и результаты расчета адсорбции щелочных металлов на грани (100) кремния (энергетические параметры I, V_2 и V_3 в eV, r_a и d в Å)

Адатом	Li	Na	Κ	Rb	Cs
Ι	5.39	5.14	4.34	4.12	3.89
r_a	1.57	1.86	2.36	2.48	2.62
d	2.75	3.04	3.54	3.66	3.80
$-V_2$	1.90	1.56	1.145	1.08	1.00
$-V_3$	1.445	1.57	1.97	2.08	2.195
$lpha_p$	0.80	0.70	0.50	0.46	0.415
Z_0	0.90	0.85	0.75	0.73	0.71
(Настоящий					
расчет)					
Z_0 [3]	0.72	0.59	0.71	0.62	0.75

Таблица 2. Исходные данные и результаты расчета адсорбции щелочных металлов на атоме галлия на грани GaAs (110) (энергетические параметры I, V_2 и V_3 в eV, d в Å)

Адатом	Li	Na	K	Rb	Cs				
Адсорбция на атоме Ga ($r_a = 1.39$ Å)									
d	2.96	3.25	3.75	3.87	4.01				
$-V_2$	1.64	1.36	1.02	0.96	0.90				
$-V_{3}$	1.11	1.235	1.635	1.745	1.86				
α_p	0.83	0.74	0.53	0.48	0.44				
Z_0	0.91	0.87	0.76	0.74	0.72				
(Настоящий									
расчет)									
Адсорбция на атоме As $(r_a = 1.48 \text{ Å})$									
d	3.05	3.34	3.84	3.96	4.10				
$-V_2$	1.545	1.29	0.97	0.92	0.85				
$-V_{3}$	2.44	2.56	2.96	3.07	3.19				
α_p	0.53	0.45	0.31	0.29	0.26				
Z_0	0.77	0.72	0.66	0.64	0.63				
(Настоящий									
расчет)									
Z_0 [2]	—	—	0.49	0.55	0.55				
Z_0 [2]	—	—	0.49	0.55	0.55				

подложки, с которым непосредственно связан адатом радиуса r_a); $\eta_{nm\sigma}$ — численные коэффициенты, равные для n = m = s величине (-1.32), а для n = s и m = p — (1.42); полярная энергия

$$V_3 = (\varepsilon_h - I)/2. \tag{5}$$

Полярность связи α_p вычисляется по формуле

$$\alpha_p = \frac{|V_2|}{\sqrt{V_2^2 + V_3^2}}.$$
(6)

Заряд изолированного адатома Z₀ определяется выражением

$$Z_0 = \frac{1}{2} (1 + \alpha_p).$$
 (7)

Результаты расчета по формулам (3)–(7) сведены в табл. 1 и 2. Там же (последние ряды в табл. 1 и 2) приведены значения Z_0 , полученные в [2,3] из начального наклона зависимости $\Phi(\Theta)$. Данные по атомным радиусам и энергиям ионизации брались из [8]. Согласие значений зарядов, полученных двумя принципиально различными методами, следует признать вполне удовлетворительным.

Так как ионная составляющая энергии адсорбции $E_{ads}^i \sim Z^2$ (см., например [9]), из расчетов по методу Харрисона следует, что адсорбция на атомах галлия является предпочтительной. Результаты работы [10] также свидетельствуют о том, при адсорбции щелочных металлов на поверхности (110) арсенида галлия, Ga-позиции энергетически более выгодны.

Список литературы

- Большов Л.А., Напартович А.П., Наумовец А.Г., Федорус А.Г. // УФН. 1977. Т. 122. Вып. 1. С. 125–145.
- [2] Давыдов С.Ю., Павлык А.В. // ЖТФ. 2004. Т. 74. Вып. 8. С. 95–99.
- [3] Давыдов С.Ю., Павлык А.В. // ЖТФ. 2004. Т. 74. Вып. 4. С. 98–101.
- [4] Харрисон У. Электронная структура и свойства твердых тел. М.: Мир, 1983. Т. 1. 383 с.
- [5] Harrison W.A. // Phys. Rev. B. 1983. Vol. 27. N 6. P. 3592– 3604.
- [6] Mönch W. // Phys. Rev. B. 1988. V. 37. N 12. P. 7129-7132.
- [7] Давыдов С.Ю., Тихонов С.К. // ФТТ. 1995. Т. 37. Вып. 9. С. 2749–2754.
- [8] Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [9] Давыдов С.Ю. // ФТТ. 1977. Т. 19. Вып. 11. С. 3376–3380.
- [10] Klepeis J.E., Harrison W.A. // Phys. Rev. B. 1989. V. 40. N 8.
 P. 5810–5813.