05;12 Выбор на основе волновой теории резания оптимальных режимов высокоскоростной обработки материалов точением

© О.В. Вишенкова

Московский государственный технологический университет "Станкин", 103055 Москва, Россия e-mail: vis-olv@yandex.ru

(Поступило в Редакцию 22 сентября 2004 г. В окончательной редакции 31 мая 2005 г.)

В работе [1] предложена волновая теория высокоскоростных режимов обработки материалов резанием. В рамках этой теории срезаемый слой и лезвие инструмента рассматриваются как акустические резонаторы, возбуждаемые изгибной волной. Резонаторы связаны нелинейной контактной жесткостью. Данная статья является развитием и экспериментальным обоснованием работы [1]. В ней показано, как выбирается на основе волновой теории оптимальный по качеству обработанной поверхности и производительности обработки высокоскоростной режим точения.

PACS: 04.30.Nk, 81.05.-t

Введение

Технология высокоскоростной обработки материалов резанием предполагает не просто повышение скорости резания, а пересмотр всей концепции обработки. Основной целью высокоскоростной обработки является существенное повышение производительности обработки за счет увеличения режимов резания. Главные отличия высокоскоростной обработки от обычной заключаются в увеличении скорости резания, увеличении подачи, уменьшении сечения стружки, сокращении до минимума температуры на режущей кромке, уменьшении усилий резания, уменьшении износа инструмента.

Потенциальные возможности высокоскоростной обработки обусловлены следующими ее особенностями: большой удельный съем материала в единицу времени; высокое качество обработки материала; уменьшение силы резания, за счет этого возможность обработки тонкостенных деталей; уменьшение образования заусенцев; уменьшение нарушения целостности верхних слоев материала.

Применение технологии высокоскоростной обработки предьявляет дополнительные требования к инструменту, станку и процессу подготовки производства. В частности, станки для высокоскоростной обработки должны обладать шпиндельными подшипниками с высокой скоростью вращения, высокой мощностью шпинделя; узлы подачи и их управление должны обеспечивать максимальную динамику линейных перемещений; сама структура станка должна быть как можно более жесткой; станок должен обеспечивать подачу смазочноохлаждающей жидкости (СОЖ) через шпиндель под высоким давлением или быть оснащенным системой минимальной подачи СОЖ.

В современной металлообрабатывающей промышленности широко используются высокоскоростные режимы обработки материалов резанием [2,3]. Однако до появления работы [1] в литературе фактически отсутствовало физически ясное понимание того, что является мерой высокой скорости резания.

Хорошо известно (см., например, [4]), что при обработке материала зубилом энергия передается обрабатываемому материалу посредством упругой (акустической) волны. Зубило может рассматриваться при этом, как упругий стержень, в котором распространяется волна дилатации (сжатия и растяжения). Понятие потока энергии в упругой среде было введено в науку Н.А. Умовым. Оно легло в основу его докторской диссертации "Уравнения движения энергии в телах", в которой впервые доказана общая теорема о потоке энергии в любой среде.

При обработке цилиндрической заготовки точением энергия передается заготовке также посредством акустической волны. Возникает, однако, вопрос, по какому каналу и какой тип волны передает эту энергию.

Можно видеть, что в зоне резания благодаря механическим напряжениям порядка несколько GPa и пластическим деформациям формируются акустические волноводы. В результате в силу конечности размеров заготовки и режущей пластины в срезаемом и режущем слоях образуются акустические резонаторы. Резонаторы связаны нелинейной контактной жесткостью. Частота f_0 вращения шпинделя и частота f_1 , возбуждаемая в срезаемом слое, смешиваются на нелинейной контактной жесткости: появляются комбинационные частоты $|kf_0 + lf_1|$, где k и l — целые положительные и отрицательные числа. Режущий слой пластины как акустический резонатор выделяет свою собственную частоту.

Рассматривая эти резонаторы как тонкие пластинки, можно убедиться в том, что основным типом волн, передающим энергию, является так называемая низшая антисимметричная мода Лэмба (изгибная волна). Ее характерное свойство — отсутствие критической частоты. Изгибная волна вызывает вибрации режущей кромки, что определяет механизм возникновения тонкой структуры шероховатости обработанной поверхности. Таким образом, частота f_0 и f_1 оказываются связанными

с параметрами шероховатости поверхности. Возникает возможность оптимизации высокоскоростного режима по качеству обработанной поверхности и производительности обработки.

Трансформация частот в зоне резания определяет также механизм нагрева режущей кромки лезвия. Энергия комбинационных частот $|kf_0 + lf_1|$, не прошедших в режущий слой лезвия, рассеивается на режущей кромке. Для низкоскоростного точения это приводит к интенсивному нагреву режущей кромки. Для высокоскоростных режимов резания комбинационные частоты являются достаточно высокими, чтобы пройти практически целиком в режущий слой лезвия. Это существенно уменьшает нагрев режущей кромки. Энергия рассеивается при этом в основном в стружке.

В рамках теории, изложенной в [1], дан, по-видимому, корректный ответ на вопрос о том, что является мерой большой скорости резания. Режим резания характеризуется безразмерным числом

$$\Gamma \equiv \frac{f_0}{\Omega_1}$$

где f_0 — частота вращения шпинделя, Ω_1 — основная собственная частота срезаемого слоя как акустического резонатора. Можно показать, что

$$\Omega_1 = \frac{c_{t1}a_1}{\pi D^2}.$$

Здесь c_{t1} — скорость сдвиговых волн в материале обрабатываемой заготовки, D — диаметр заготовки, a_1 — толщина срезаемого слоя ($a_1 = s \cdot \sin \varphi$, где s — подача на оборот, φ — главный угол в плане) (рис. 1). Для высокоскоростных режимов $\Gamma \geq 1$.

"Работающий" слой режущей пластины также представляет собой акустический резонатор (рис. 2). Стрелки на прямоугольнике (*ABCD*) указывают направление распространения изгибной волны. Фазовая скорость волны равна [1]

$$v_{\phi} = \sqrt{\pi c_{t2} a_2 f_2}.$$

Здесь индексом 2 отмечены величины, относящиеся к режущей пластине (индексом 1 мы отмечаем величины, относящиеся к заготовке); c_{t2} — скорость сдвиговых волн в материале пластины, a_2 — толщина слоя режущей пластины, в которой распространяется изгибная волна. В установившемся режиме имеем

$$p\lambda_2 = qL,\tag{1}$$

где λ_2 — длина волны, L — периметр прямоугольника (*ABCD*), p и q — целые числа. Отсюда находим

$$\lambda_2 = \frac{v_\phi}{f_2} = \sqrt{\frac{\pi c_{t2} a_2}{f_2}}$$

или

$$f_2 = \frac{p^2}{q^2} \cdot \frac{\pi c_{t2} a_2}{L^2}.$$

Рис. 1. Элементы режима резания при точении. D_r — главное движение (вращательное движение заготовки), D_s — движение подачи (прямолинейное поступательное движение режущего инструмента), 1 — обработанная поверхность заготовки, 2 — обрабатываемая поверхность заготовки, 3 — режущий инструмент, φ — главный угол в плане, φ_1 — вспомогательный угол в плане, t — глубина резания.

Основная собственная частота резонатора, следовательно, равна

$$\Omega_2 = \frac{\pi c_{t2} a_2}{L^2}.$$

Если, например, $c_{t2} = 6 \cdot 10^3$ m/s, L = 30 mm, $a_2 = 5 \,\mu$ m, то $\Omega_2 \approx 100$ Hz.

Поскольку изгибная волна, распространяющаяся в режущей пластине, вызывает вибрации в режущей кромке, представляется естественным предположение о том, что величина a_2 по порядку величины совпадает с параметром шероховатости R_a , который определяется как

$$R_a = \frac{1}{l_0} \int_0^{l_0} |y| dx,$$

где у — расстояние точек измеренного профиля до его средней линии, l_0 — базовая длина измерения. Экспериментальное подтверждение этого обстоятельства является существенным доказательством справедливости теории, изложенной в [1].

Рис. 2. Режущий слой пластины.

Журнал технической физики, 2006, том 76, вып. 1

N₂	f₀,Hz	s, mm	D, mm	c_{t1} , m/s	Ω_1, Hz	$\Gamma = rac{f_0}{\Omega_1} pprox rac{\mathrm{m}}{\mathrm{n}}$	$R_a, \mu m$
1	5.25	0.05	70	$3\cdot 10^3$	6.8	3/4	1.67
2	6.67	0.05	70	$3 \cdot 10^3$	6.8	1	1.63
3	8.33	0.05	70	$3 \cdot 10^3$	6.8	5/4	1.53
4	10.50	0.05	70	$3 \cdot 10^3$	6.8	3/2	1.48
5	13.33	0.05	70	$3 \cdot 10^3$	6.8	2/1	1.35
6	5.25	0.075	70	$3 \cdot 10^3$	10.2	1/2	2.56
7	8.33	0.075	70	$3 \cdot 10^3$	10.2	5/6	2.22
8	10.50	0.075	70	$3 \cdot 10^3$	10.2	1	1.97
9	16.66	0.075	70	$3 \cdot 10^3$	10.2	5/3	1.89
10	20.83	0.075	70	$3\cdot 10^3$	10.2	2/1	1.93

Таблица 1. Экспериментально исследуемые режимы точения проходным резцом

Данная статья посвящена экспериментальным исследованиям простейшего способа обработки материалов резанием-точения проходным резцом (рис. 1). На основании экспериментально устанавливаемого соотношения $a_2 \sim R_a$ решается задача выбора оптимального режима высокоскоростной обработки. Параметрами оптимизации являются качество обработанной поверхности и производительность обработки (толщина срезаемого слоя).

Механизм возникновения шероховатости поверхности

Образование микронеровностей поверхности в первом приближении можно представить как след рабочего движения режущей кромки инструмента в поверхностном слое металла. Для обработки резцом с радиусом при вершине, равным нулю (рис. 3), высота микронеровностей при этом равна [5]

$$h = \frac{s \sin \varphi_1 \cdot \sin \varphi}{\sin(\varphi_1 + \varphi)},\tag{2}$$

где *s* — подача на оборот, φ — главный угол в плане, φ_1 — вспомогательный угол в плане. Если радиус *r* при вершине резца отличен от нуля (рис. 4), то

$$h = r - \frac{\sqrt{4r^2 - s^2}}{2}.$$
 (3)

Из анализа формул (2) и (3) следует, что h уменьшается с уменьшением подачи s и углов φ и φ_1 , а также с увеличением радиуса r при вершине резца.

Реальные микронеровности, однако, по форме и высоте существено отличаются от рассчитаных по формулам (2) и (3). Это обусловлено, как принято считать, пластическим течением металла; колебаниями детали и инструмента во время обработки; трением задних поверхностей инструмента о поверхность резания; неровностями лезвий инструмента, которые возрастают по мере его изнашивания. С точки зрения волновой теории резания можно утверждать, что основным фактором, определяющим тонкую структуру обработанной поверхности, являются вибрации режущей кромки, обусловленные распространением изгибной волны.

В наших экспериментах использовался резец, для которого r = 0.5 mm. Если подача на один оборот s = 0.05 mm, то из (3) находим $h = 0.6 \,\mu$ m. Для s = 0.075 mm соотношение (3) дает $h = 1.4 \,\mu$ m.

Рис. 3. Схема образования шероховатости поверхности при r = 0 (расчетный профиль). *s* — подача на один оборот, φ — главный угол в плане, φ_1 — вспомогательный угол в плане.

Рис. 4. Схема образования шероховатости поверхности при r > 0.

Как видно из данных табл. 1, экспериментально измеренные значения параметра R_a больше h для обеих подач, что свидетельствует о наличии вибраций режушей кромки.

Результаты экспериментальных исследований

Исследовались 10 режимов точения проходным резцом из твердого сплава марки T15K6 цилиндрической заготовки из стали 45. Глубина *t* резания равна 1 mm, диаметр заготовки D = 70 mm. Упругие константы твердого сплава: E = 530 GPa, $\rho = 11.3 \cdot 10^3$ kg/m³, $\nu = 0.3$ ($c_{t2} = 4.25$ km/s). Линейный размер режущего слоя равен 26.5 mm (рис. 2). Результаты исследования представлены в табл. 1.

Оценка толщины *a*₂ режущего слоя проводилась по формуле

$$a_2 = \frac{L^2}{\pi c_{t2}} |kf_0 + lf_1|,$$

$$f_0 = \Gamma \Omega_1, \quad f_1 = \Gamma^2 \Omega_1.$$

Вычисления дают: $L^2/\pi c_{t2} = 52.62 \cdot 10^{-9} \text{ m} \cdot \text{s}$. Результаты оценки приведены в табл. 2. Сравнивая табл. 1 и табл. 2, можно видеть, что действительно $a_2 \sim R_a$.

Отметим, что целые числа k и l являются здесь подгоночными параметрами. Их значения свидетельствуют о том, что при низких скоростях в режущий слой проникают комбинационные частоты лишь с большими значениями k и l. (Это обусловлено высокой собственной частотой Ω_2 режущего слоя). Остальные частоты, интенсивность которых значительно больше, рассеиваются на режущей кромке.

Собственная частота режущего слоя, а следовательно и его толщина a_2 , могут быть определены более корректно на основании Фурье-анализа профилограммы обработанной поверхности, поскольку спектр пространственных частот, характеризующих шероховатость обработанной поверхности обусловлен спектром временных частот, возникающих в технологической системе обра-

Таблица 2. Оценка толщины а2 режущего слоя

N⁰	f_0, Hz	Ω_1, Hz	Γ	f_1, Hz	c_{t2} , km/s	L, mm	k	l	$a_2, \mu m$
1	5.25	6.8	3/4	3.82	4.25	26.5	3	3	1.43
2	6.67	6.8	1	6.8	4.25	26.5	2	2	1.42
3	8.33	6.8	5/4	10.62	4.25	26.5	2	1	1.44
4	10.50	6.8	3/2	15.3	4.25	26.5	1	1	1.35
5	13.33	6.8	2/1	27.2	4.25	26.5	0	1	1.43
6	5.25	10.2	1/2	2.55	4.25	26.5	6	6	2.46
7	8.33	10.2	5/6	7.08	4.25	26.5	3	3	2.43
8	10.5	10.2	1	10.2	4.25	26.5	2	2	2.17
9	16.66	10.2	5/3	28.3	4.25	26.5	1	1	2.36
10	20.83	10.2	2/1	40.8	4.25	26.5	0	1	2.15

ботки; при этом

$$K = \frac{2\pi f}{v_s} = \frac{2\pi f}{sf_0},$$

где K — пространственная частота, f — временная частота, v_s — скорость подачи, s — подача на один оборот, f_0 — частота вращения шпинделя.

Выбор оптимальных режимов

На основании изложенного выше можно предположить определенную схему выбора оптимальных режимов точения. Понятие высокопроизводительной обработки в отличие от высокоскоростной подразумевает не только увеличение скорости резания и подачи, но и оптимизацию всего процесса обработки с целью получения максимально возможной производительности. Необходимо установить компромисс между качеством обработанной поверхности и удельным съемом материала в единицу времени.

Задача выбора оптимальных режимов точения формулируется поэтому следующим образом. Задаются: упругие константы материалов заготовки и лезвия инструмента (c_{t1}, c_{t2}) ; диаметр D заготовки; линейный размер L режущей пластины; главный угол φ в плане; ширина b_1 срезаемого слоя; параметр R_a обработанной поверхности. Требуется найти скорость v резания, подачу s на один оборот, глубину t резания, при которых величина отношения s/R_a имеет максимальное значение для $\Gamma = 1$.

Поскольку

$$|kf_0 + lf_1| = \Omega_2,$$

где

$$f_0 = \Gamma \Omega_1; \quad f_1 = \Gamma^2 \Omega_1,$$

имеем

$$a_1 = s \cdot \sin \varphi = \left(\frac{\pi D}{L}\right)^2 \frac{1}{|k\Gamma + l\Gamma^2|} \frac{c_{t2}}{c_{t1}} a_2$$

Полагая $a_2 = R_a$, находим

$$\frac{s}{R_a} = \left(\frac{\pi D}{L}\right)^2 \cdot \frac{1}{|k\Gamma + l\Gamma^2|\sin\varphi} \cdot \frac{c_{t2}}{c_{t1}}.$$
 (4)

Для рассмотренных выше десяти режимов резания соотношение (4) дает

$$\frac{s}{R_a} = \frac{140}{|k\Gamma + l\Gamma^2|}.$$
(5)

В табл. З представлены значения отношения s/R_a , рассчитанные по формуле (5).

Максимально возможное значение отношения *s*/*R*_{*a*} достигается при минимальном значении величины

Таблица 3. Значения отношения s/R_a для различных режимов точения

N⁰	Г	k	l	$ k\Gamma + l\Gamma^2 $	$ k\Gamma + l\Gamma^2 ^{-1}$	s/R_a
1	3/4	3	3	3.94	0.254	35.6
2	1	2	2	4.00	0.250	35.0
3	5/4	2	1	4.06	0.246	34.7
4	3/2	1	1	3.75	0.266	37.2
5	2/1	0	1	4.00	0.50	35.0
6	1/2	6	6	4.50	0.222	31.1
7	5/6	3	3	4.58	0.218	30.3
8	1	2	2	4.00	0.250	35.0
9	5/3	1	1	4.45	0.224	31.3
10	2/1	0	1	4.00	0.250	35.0

 $|k\Gamma + l\Gamma|$. Для основного резонанса, когда $\Gamma = 1$, минимальное значение этой величины равно единице. Поэтому

$$\left(\frac{s}{R_a}\right)_{\max} = \left(\frac{\pi D}{L}\right)^2 \cdot \frac{1}{\sin\varphi} \cdot \frac{c_{t2}}{c_{t1}}.$$
 (6)

Поскольку

$$f_0 = \frac{c_{t1}s\sin\varphi}{\pi D^2}$$

для скорости резания имеем

$$v = \pi D f_0 = \frac{c_{t1} s \sin \varphi}{\pi D}.$$
 (7)

Для подачи из (6) находим

$$s = \left(\frac{\pi D}{L}\right)^2 \cdot \frac{1}{\sin\varphi} \cdot \frac{c_{t2}}{c_{t1}} \cdot R_a.$$
(8)

Глубина резания

$$t = b_1 \sin \varphi. \tag{9}$$

Подставляя (8) в (7), получаем

$$v = \frac{\pi^2 D}{L^2} c_{t2} R_a.$$
 (10)

Формулы (8), (9), (10) решают поставленную задачу оптимизации. Для оборудования, на котором осуществлялись рассмотренные выше десять режимов точения, это дает $s = 140 \cdot R_a(m)$; $v = 4.2 \cdot 10^6 R_a(m/s)$; $f_0 = 2 \cdot 10^7 R_a(Hz)$, где R_a выражено в метрах. Если, например, $R_a = 1 \mu m$, это означает, что максимальная подача *s* на один оборот равна 0.14 mm, скорость *v* резания при этом равна 252 m/min, частота вращения шпинделя $f_0 = 20 \text{ Hz} = 1200 \text{ min}^{-1}$. Максимальное значение толщины a_1 срезаемого слоя равно 0.098 mm.

Можно видеть, что в соотношении (6) фигурирует безразмерное число

$$V = \left(\frac{\pi D}{L}\right)^2 \cdot \frac{1}{\sin \varphi} \cdot \frac{c_{t2}}{c_{t1}}$$

В рамках выбранного критерия оптимальности это число характеризует эффективность режима точения.

Заключение

Несколько слов об упрощающих допущениях. Строго говоря, изгибные волны в заготовке и лезвии — это не моды Лэмба: срезаемый и режущий слои не являются плоскими, а одна из ограничивающих их поверхностей не является свободной. Мода Лэмба — это тип колебания в упругом слое, ограниченном двумя свободными плоскостями. Для рассматриваемой теории существенно, что эта мода не имеет критической частоты.

Однако выражения для собственных частот Ω_1 и Ω_2 , дисперсионное соотношение (1), а также безразмерный параметр Γ могут быть найдены также с помощью метода размерностей. Полученные выражения будут отличаться от рассмотренных выше лишь численными коэффициентами.

Ясно, что это не изменит процедуру оптимизации режима резания.

Автор благодарит проф. В.И. Власова и проф. С.Н. Григорьева за внимание к работе и полезные дискуссии. Автор признателен также В.Д. Гурину за помощь в проведении экспериментальных исследований.

Список литературы

- [1] Гладун А.Д., Вишенкова О.В. // Письма в ЖТФ. 2005. Т. 31. Вып. 4. С. 37–44.
- [2] Klocke F. // Perspektiven der Zerspantechnik. Aachen, 2002.
- [3] Krieg T. // Perspektiven der Zerspantechnik. Aachen, 2002.
- [4] Горелик Г.С. Колебания и волны. Введение в акустику, радиофизику и оптику. М.: Госфизматлит, 1959. С. 192.
- [5] Третьяков И.П., Аршинов В.А., Киселев Н.Ф., Синопальников В.А. Лабораторные работы по курсу "Резание металлов". М.: Машиностроение, 1965.