# Влияние геометрии разрядной камеры на эффективность дугового способа производства фуллеренов. І. Осесимметричный случай

© Н.И. Алексеев, Г.А. Дюжев

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: aleks@mail.ioffe.ru

#### (Поступило в Редакцию 2 февраля 2005 г.)

Впервые проведен расчет газодинамики разрядной камеры для производства фуллеренов дуговым методом в атмосфере инертного газа. Показано, что принципиальную роль в формировании газодинамической картины в камере играет турбулентная веерная струя, формируемая истечением углерода из разрядного зазора. Построены расчетные зависимости доли фуллеренов, выносимых из камеры по отношению к количеству произведенных фуллеренов. Варьируемыми параметрами расчета были прокачка газа и геометрические размеры камеры: радиус и длина камеры. Проанализирован один из возможных путей более эффективного вывода фуллеренов из камеры — тангенциальная закрутка газа.

### Введение

03:05:12

Сложность процесса образования фуллеренов в дуговом методе их производства [1–3] и зависимость процесса от газодинамики разрядной камеры приводят к тому, что цельной теоретической модели, позволяющей оптимизировать дугу, пока не существует. Между тем возможности дугового способа производства фуллеренов явно не исчерпаны, и бо́льшая часть фуллеренов, произведенных в мире в ближайшие годы, будет получена именно таким путем. В пользу этого говорят и работы о положительном влиянии плазмы на различные этапы сборки фуллереновых молекул [4–6].

В данной работе, являющейся продолжением [7], построена простая модель, позволяющая рассчитать газовые потоки в дуговой камере цилиндрической геометрии, ось которой совпадает с осью электродов. Такая геометрия типична для большинства дуговых установок производства фуллеренов. Проведенный расчет позволяет оценить распределение газовых потоков в камере любой геометрии с заданными конечными размерами и определить влияние этой геометрии на выход фуллеренов. Акцент в расчете делается на случай прокачки газа вдоль электродов, что позволяет не счищать фуллереновую сажу со стенок камеры, а накапливать ее в специальном сборнике [8].

Исходные представления о газодинамической картине в камере, основанные на расчете образования фуллеренов в камере бесконечного размера и в условиях отсутствия прокачки газа через камеру, получены в [7] и могут быть резюмированы следующим образом.

1. В области источника имеется высокая концентрация углерода как в виде атомарного газа, так и ионов, т.е. плазма с весьма высокой степенью ионизации. При этом буферный газ (гелий) в значительной степени выдавлен из области разряда давлением углерода. 2. В области источника формируется газоплазменная струя. Ее начальную скорость можно оценить как

$$\mathbf{V}_0 = \frac{DP}{P - n_C T} \left( \frac{\nabla n_C}{n_C} + \frac{\nabla T}{T} \right),\tag{1}$$

где *Т* и  $n_C$  — температура и концентрация атомов углерода в дуге [7].

Рассчитанная по (1) скорость потока, или струи, хорошо соотносится с экспериментальными результатами [9]. Она резко растет по мере увеличения тока и соответственно концентрации углерода и составляет в оптимальных для производства фуллеренов условиях примерно 20–60 m/s в зависимости от режима дуги.

3. Струя не перпендикулярна оси дуги *z*, а наклонена к ней под некоторым углом  $\theta_0 \approx 60-70^\circ$ , если считать ось электродов направленной от анода к катоду (рис. 1). В практике использования струй такая струя называется струей из конического насадка [10] в отличие от веерной или радиально-щелевой струи, для которой  $\theta_0 \approx 90^\circ$ .

4. Струя турбулентна, т.е. число Рейнольдса Re, рассчитанное с характерным размером разрядного зазора, существенно больше 1.

5. Струя является бинарной, причем в начале ее есть преимущественно одна компонента — углерод, а по мере того, как в струю накачивается буферный газ —



Рис. 1. Геометрия разрядного зазора.

гелий, она превращается в гелиевую струю с малой примесью углерода. Однако именно в такой ситуации, когда струя тяжелого газа бьет в легкий газ при большой (почти на порядок) разности температур между источником струи и ее внешней областью, можно использовать результаты, полученные для несжимаемой жидкости, так как плотность вещества струи меняется относительно слабо [7].

Поэтому с достаточной для наших целей точностью можно пользоваться результатами теории свободных турбулентных струй несжимаемой жидкости [11,12] для полуширины струи  $\delta$ , продольной (радиальной) скорости на оси струи  $u_m$ , поперечной скорости  $V_m$  притока газа в струю на ее границе  $\delta(x)$  и потока газа G, накачиваемого в струю, как функции расстояния x от источника струи

$$\delta = 2.4 \, ax,\tag{2}$$

$$u_m = n/ax, \tag{3}$$

$$V_m = n/x, \tag{4}$$

$$G = 4\pi x \cdot 1.2 \sqrt{ar_0 b_0}.$$
 (5)

Параметр  $a \approx 0.1$  в (2)-(5) — феноменологический параметр турбулентной теории [11]  $n = 1.2 \sqrt{ar_0 b_0} u_0$ ,  $2r_0$  — диаметр графитовых электродов,  $2b_0$  — межэлектродный зазор. Формулы (2)-(5) относятся к основному участку струи, однако влияние начального участка струи на конечный результат незначительно. Существенно при этом, что формула (5) с хорошей точностью справедлива и для начального участка струи.

6. Фуллерены образуются на расстоянии  $x_1 \approx 3-4$  ст от оси разряда [13]. Это расстояние по крайней мере в несколько раз меньше типичных размеров камеры, используемой в экспериментах [1–3,8]. Поэтому можно считать, что геометрия камеры не влияет на образование первичного количества фуллеренов. В дальшейшем это количество снижается за счет "засветки" фуллеренов ультрафиолетовым излучением дуги [14], аггломерации фуллеренов, фуллереноподобных кластеров в ассоциаты [9,15] и других эффектов, замкнутых на газодинамику камеры.

Предположение об отсутствии влияния ограниченности радиуса камеры на параметры струи (по крайней мере в пределах зоны образования фуллеренов) следует из экспериментальных результатов по исследованию струй [11].

Таким образом, задачи о получении максимального количества фуллеренов и их выносе из камеры можно разделить. Первый процесс определяется лишь током, давлением газа и размерами электродов, второй — динамикой буферного газа в конкретной камере и движением примеси (фуллеренов) в этом газе.

Все результаты, относящиеся к первой задаче, подробно изложены в [7]. Важная дополнительная информация о влиянии плазменной среды на сборку фуллеренов содержится в [4–6].

# Качественное рассмотрение и формулировка расчетной модели

Структура газовых потоков в камере. Особенностью газовой струи как течения газа является то, что по мере удаления от источника сечение струи растет и она всасывает газ из окружающего пространства. В условиях рассматриваемой задачи таким пространством является объем камеры.

Начальное представление о характере движения газа легко сделать из следующих соображений и оценок. При начальной скорости струи (скорости при  $x = r_0$ )  $V_0 = 40 \, \text{m/s}$  и типичных параметрах межэлектродного зазора поток газа, всасываемый из камеры в струю и рассчитываемый по (5), составляет примерно  $G = 130 \,\mathrm{m^3/h}$ в расчете на радиус камеры  $R = 10 \,\mathrm{cm}$ . В дальнейших расчетах полагается в соответствии с условиями эксперимента [8], что поток газа на входе и на выходе из камеры G<sub>o</sub> (прокачка) по крайней мере в 3-4 раза меньше этой величины. Это означает, что протекающий газовый поток обеспечивает лишь часть характерного поперечного масштаба распространения струи (область  $x < x_{Fl}$ , рис. 2). На остальной части поперечного сечения камеры газ натекает в струю за счет обратного потока вдоль стенок камеры.

При разработке общей схемы решения будем рассматривать вначале двумерную геометрию, отвечающую радиально-симметричной картине течения в камере. Такое течение обеспечивается вводом и выводом газа из камеры либо вдоль оси электродов, либо через радиально-кольцевую щель в стенках камеры (такой вывод газа показан жирной линией *1* на рис. 2). В соответствии с условиями эксперимента считалось, что газ внутри камеры параллельно направлению от анода к катоду. Соответственно входной фланец и та часть камеры,



Рис. 2. Двумерная картина течения газа в камере цилиндрической формы в случае затухания струи до достижения стенок камеры. Вдув газа — через всю площадь анодного фланца, вывод — через кольцевую щель. Граница турбулентной струи (жирный пунктир) переходит в мелкий пунктир — условное продолжение выхода струи до точки выхода из камеры.

17

которая находится выше по течению газа, называются анодными (левая половина рис. 2), а часть камеры, прилегающая к катоду, — катодной (правая половина). Термины "анодная" и "катодная" будут также использоваться для обозначения частей струи, прилегающих к анодной и катодной половинкам камеры.

Изменения радиальной скорости вдоль оси струи и поперечной скорости на границе струи (и вдоль продолжения этой границы до стенок камеры, если турбулентность струи затухает — пунктир на рис. 2) качественно показаны на рис. 3. Радиальная скорость струи на боковых стенках камеры определяется прокачкой газа, если струя направлена в отверстие (кривая 1), или обращается в нуль (если прокачки газа нет или вывод газа осуществляется, например, вдоль оси катодного фланца) (кривая 1'). Поперечная к границе струи (или продолжению этой границы) скорость должна при приближении к стенкам камеры менять знак (кривая 2). Это происходит при любом режиме течения газа в области отверстия: турбулентный выход струи из камеры без отражения, отражение турбулентной струи от стенок камеры (или кромки выходного отверстия) или затухание турбулентности еще до достижения струей стенок камеры.



**Рис. 3.** Кривые изменения радиальной скорости вдоль оси струи и поперечной скорости на границе струи.



**Рис. 4.** Турбулентное отражение струи от стенок камеры (радиально-симметричный случай). *1* — граница проточной области камеры, волнистая линия — границы струи, *2* — ось струи.



**Рис. 5.** Структура турбулентной струи от области зазора до кольцевого выхода газа из камеры. Случай турбулентного истечения газа из камеры. Границы струи показаны волнистой линией. *Р* — потенциальное ядро истекающей струи.

В случае турбулентного отражения (рис. 4) струя, распространяющаяся вдоль стенок, должна затухать на некотором расстоянии от точки отражения. Положение области затухания (точка D на рис. 4) зависит от длины камеры и определяется балансом газа: суммарное количество газа, поглощенное струей, должно быть возвращено в камеру (за вычетом прокачки), причем скорость в области возврата должна соответствовать вязкому режиму течения, т.е. Re < 1. Это условие определяет минимальную длину (точнее, полудлину) камеры L в направлении отражения струи от стенок; в отсутствии прокачки

$$\frac{L}{R-\delta} > \frac{n}{(\eta/\rho) \cdot \gamma},\tag{6}$$

где  $\eta$  и  $\rho$  — динамическая вязкость и плотность газа.

При рабочем давлении в камере 300 Тогт и температуре 1000 К условие (6) выполняется лишь в случае очень длинной камеры  $L \ge 5R$ . Учет прокачки вносит в (6) лишь небольшие изменения, и реально это условие не выполняется. Поэтому существует две возможности: А) турбулентность струи затухает до того, как струя достигает стенок камеры; накачка газа в струю сменяется при этом выносом газа из струи вдоль стенок (рис. 2); В) истечение газа из камеры турбулентное, причем качественная картина турбулентных зон в области отверстия должна быть такой же, как и в случае "внутреннего" истечения струи из кольцевого источника радиуса Rи ширины h с точностью до обращения направления скорости (рис. 5).

В случае А радиус затухания турбулентности  $x_T$ , определенный из тех же соображений, что и для турбулентного отражения, легко оценить на уровне

$$x_T = \left(\frac{\eta}{\rho} + \frac{G_g}{2\pi R}\right) \cdot \left(n + \frac{\eta}{\rho}\right)^{-1} \tag{7}$$

при одновременном условии вязкого истечения струи через выходное отверстие камеры

$$\frac{\rho R}{\eta} \frac{G_g}{2\pi Rh} < 1. \tag{8}$$

Скорость движения газа вдоль стенок, определяющая обратный поток газа в камеру, полагается в (7), как и в (6), равной  $\eta/\rho$ , что отвечает условию Re = 1.

Условия (7) и (8) выполняются лишь для очень малой прокачки и задают струю весьма малой длины

$$\frac{x_T}{R} \le \frac{\eta}{\rho} \left(\frac{h}{R} + 1\right) \cdot \left(n + \frac{\eta}{\rho}\right)^{-1},\tag{9}$$

лишь незначительно превышающей размер потенциального ядра струи. Поэтому должен реализоваться случай В (рис. 5). Поток газа от разрядного зазора до выходной щели камеры представляет собой, таким образом, сочетание двух турбулентных струй, переходящих одна в другую. Для краткости будем далее называть участок струи от зазора до точки  $x_T$  струей зазора, от точки  $x_T$  до выходной щели — выходной струей. Обозначение точки  $x_T$  на рис. 5 имеет при этом тот же смысл, что и на рис. 2, — точка смены знака поперечной скорости на границе струи.

Для выходной струи зависимости параметров  $u_m$ ,  $V_m$ , G,  $\delta$  от расстояния до стенок камеры (R-x) известны из теории плоских турбулентных струй, схожи с соотношениями (2)–(5) для струи зазора и выписаны в Приложении 1. Баланс газа в струе приводит тогда к следующему уравнению для определения точки  $x_T$ , в которой поперечная к струе скорость меняет знак (Приложение 2):

$$x_T^2 + x_T x_{\rm FI} \left( 0.36 \, \frac{x_{\rm FI} a}{b_1} - 1 \right)$$
  
= 0.36  $\left( \frac{x_{\rm FI}}{R} \right)^2 \frac{aR}{b_1} - \frac{1}{4} \left( \frac{x_{\rm FI}}{R} \right)^2$ . (10)

При выводе (10) существенно, что значения  $x_T$  для анодной (проточной) и катодной (заглушенной) частей камеры различны. Так как трудно представить себе структуру струи, в которой симметричные относительно оси струи области работают одна на ввод газа в струю, а другая на вынос газа наружу, полагалось, что  $x_T$ определяется полусуммой значений, рассчитанных для "катодной" и "анодной" половинок струи.

Очевидно, что все проведенное выше рассмотрение справедливо лишь при  $x_{\rm Fl} < x_T$ , когда структура потоков газа в части струи, прилегающей к анодной половине камеры, идентична структуре катодной части (есть область обратного тока вдоль стенок камеры). Естественно предположить, что ситуация сильной прокачки, когда  $x_{\rm Fl} \rightarrow x_T$  физически соответствует срыву дуги.

Расчет газовых потоков во всем объеме камеры осложняется сочетанием областей с разным характером

течения (турбулентное и вязкое) и ограниченностью размеров камеры. Кроме того, начальный угол вылета струи  $\theta_0$  по отношению к оси камеры может, вообще говоря, зависеть от положения кольцевой щели вывода струи.

При этом формально полноценное решение (полученное из единой для всех областей системы уравнений и граничных условий на входе, выходе из камеры и на стенках) не только сложно, но и не дает гарантии достоверности. Это связано с тем, что усредненные турбулентные уравнения содержат множество временны́х корреляционных функций, значение каждой из которых в конкретной геометрии камеры может быть различным.

Поэтому в данной работе использовались имеющиеся аналитические решения свободной турбулентной струи в приближении пограничного слоя [11,12]. На естественных границах струи эти решения сшивались с вязкими решениями в остальной части камеры.

Положение щели осевого вывода газа из камеры считалось таким, что естественная ось струи (т.е. ось струи в отсутствии прокачки) направлена на щель. При этом, основываясь на экспериментальных данных о типичной ширине щели, мы считали для удобства, что граница, отделяющая струю от анодной (левой на рис. 2, 5) части камеры, образует прямой угол с осью камеры.

Течение газа вне области струи и ее продолжения до стенок камеры рассматривалось как вязкое. Тогда в двумерной задаче система уравнений непрерывности Навье-Стокса сводится к уравнению четвертого порядка на функцию тока  $\Psi$ , задаваемую условиями

$$V_{y} \equiv V = (1/x)(\partial \Psi/\partial x),$$
  

$$V_{x} \equiv u = -(1/x)(\partial \Psi/\partial z),$$
(11)

и имеет вид уравнения переноса ротора

$$(V\nabla)\operatorname{rot} \mathbf{V} - (\operatorname{rot} \mathbf{V}\nabla)V = \nu\Delta\operatorname{rot} \mathbf{V}, \qquad (12)$$

где  $\nu = \eta / \rho$  — кинематическая вязкость газа.

В отсутствии закрутки газа и областей вязкого затухания струи достаточная точность рассмотрения достигается, как известно, и при использовании простого потенциального приближения [10]

$$\Delta \Psi = 0. \tag{13}$$

На стенках камеры функцию тока можно полагать равной нулю, на входе камеры  $\Psi$  задается условиями ввода газа. При равномерном по входному фланцу вводе газа зависимость  $\Psi(x)$  на входе в камеру определяется лишь прокачкой  $G_g$ . Функцию тока на границах турбулентной струи с катодной и анодной областями камеры нетрудно рассчитать с помощью первого из условий (11) по формулам (4) и (23) (Приложение 1) вне некоторой окрестности точки  $x_T$  (рис. 5), а в окрестности точки  $x_T$  — с помощью простой линейной сшивки (4) и (23) и интегрированием затем по координате x.

В условиях цилиндрической формы камеры соответствующее решение нетрудно построить аналитически разложением в ряд Фурье-Бесселя. Расчет анодной области камеры при этом вообще является тривиальной задачей, так как границы области имеют простейшую цилиндрическую форму (рис. 5). Несколько сложнее обстоит дело с катодной областью, так как ее граница со струей образует с поперечным сечением камеры угол, примерно равный  $2 \cdot 2.4a \approx \pi/6$  (таков рассчитанный теоретически и подтвержденный экспериментом угол раскрыва веерной струи зазора [11,12], формула (2)). Для выходной струи угол выхода из камеры (угол  $\phi_2$  на рис. 5) связан с углом раскрыва другого струйного течения — плоской струи [11,12]. Однако он, в нашем случае угол  $\phi_2$ , определен не вполне четко — точка перехода от струи зазора к струе выхода может соответствовать начальному участку струи выхода. Поэтому граничные условия переносились для простоты в осевую плоскость симметрии (ось х на рис. 5) и выбирались так, чтобы производная потенциала dq/dl вдоль фактической границы, рассчитанная из решения, совпадала с истинной производной по крайней мере в начале струи зазора, на выходе из камеры и в точке x<sub>T</sub>.

Вывод фуллеренов из разрядной камеры. Наиболее естественными показателями эффективности производства фуллеренов в дуговой установке с прокачкой газа являются процент фуллеренов  $\alpha'$  в сажевом потоке, выносимом из камеры, и относительный выход фуллеренов Г, который можно определить как отношение потока фуллеренов из камеры F к количеству рождающихся фуллеренов  $F_0$  (рис. 2),

$$\Gamma \equiv \frac{F}{F_0} = \frac{F_0 - F_1 + F' - F_2 + F'_2}{F_0}.$$
 (14)

Потоки фуллеренов  $F_1$ ,  $F_2$ , выходящие из струи вдоль стенок камеры в анодную и катодную части камеры, и потоки  $F'_1$ ,  $F'_2$ , возвращающиеся в струю из камеры (рис. 2), должны находиться из задачи о диффузии тяжелой примеси (фуллеренов) в потоке газа и гибели фуллеренов в условиях ультрафиолетовой "засветки" фуллеренов и их высаживания на стенки камеры. Очевидно, что такая задача может быть поставлена лишь в очень упрощенном виде. Это связано с тем, что в холодной области камеры вблизи стенок фуллерены аггрегируют в кластеры с совершенно другими кинетическими свойствами, а систематические результаты по разрушению фуллеренов ультрафиолетом практически отсутствуют.

В данной работе в задачу диффузии примеси (фуллеренов) в известном поле скоростей газа

$$\operatorname{Div}\left(n_{C}\mathbf{V}(x, y) - D\nabla n_{C}\right) = -n_{C}/\tau \qquad (15)$$

закладывался коэффициент диффузии сажевых кластеров с характерным размером  $\langle r_s \rangle = 3 \cdot 10^{-3}$  сm [15]. Способ задания граничных условий к задаче (15) и

характерного времени "засветки" фуллеренов  $\tau$  рассмотрен в Приложении 3.

Процент  $\alpha'$  очевидным образом получается в ходе решения задачи (15), описывающей фуллерены в составе сажевых частиц, и задачи, аналогичной (15) для описания сажевых частиц, не содержащих фуллеренов (в этом случае правая часть (15) равна нулю).

## Результаты расчета двумерного течения газа и выхода фуллеренов из камеры

Для дальнейшего сопоставления расчета с испытаниями реальной трехмерной камеры (где газ выводился через круглое отверстие радиусом  $R_{out} \approx 2.5 \,\mathrm{cm}$  в боковой стенке камеры [8]) ширина выходного кольцевого отверстия  $2b_1$  полагалась равной  $2b_1 = 0.5 \,\mathrm{cm}$  исходя из условия равенства площадей  $2b_1 \cdot 2\pi R = \pi R_{out}^2$ .

В качестве параметра, определяющего относительный выход фуллеренов, на рис. 6 принята величина прокачки газа  $G_g$ . Видно, что увеличение прокачки ведет к росту Г. Правые концы кривых, показанных на рис. 6, соответствуют значениям  $G_g$ , при которых  $x_{\rm Fl} \rightarrow x_T$ . Таким образом, для камеры данного размера оптимальным с точки зрения выхода фуллеренов является максимальная прокачка, при которой дуга еще не срывается.

Зависимость процента фуллеренов  $\alpha'(G_g)$  при заданном радиусе камеры очень слабая в полном соответствии с экспериментом.

При заданной  $G_g$  Г почти не зависит от размеров камеры (рис. 7). Левый конец кривой 3 на рис. 7 соответствует  $x_{\rm Fl} \rightarrow x_T$ . При пропорциональном росте размеров камеры Г растет вместе с  $G_g$  (рис. 8).

Качественно понять приведенные результаты расчета можно следующим образом. Наряду с определением Г из решения задачи диффузии, включающей локальное время "засветки" фуллеренов, Г можно находить из



**Рис. 6.** Зависимость относительного выхода фуллеренов от прокачки газа  $G_g$ . Радиус камеры, ст: 1 - 10, 2 - 15, 3 - 20, 4 - 25.

Журнал технической физики, 2005, том 75, вып. 12



**Рис. 7.** Зависимость относительного выхода фуллеренов от радиуса камеры при разных уровнях прокачки  $G_g$  (m<sup>3</sup>/h): 1 - 20, 2 - 40, 3 - 60, 4 - 80.



**Рис. 8.** Зависимость относительного выхода фуллеренов от радиуса камеры при постоянном отношении  $G_g$  (m<sup>3</sup>/R), cm: I = 3, 2 = 4, 3 = 5.

приближенного соотношения

$$\Gamma = \left(\frac{1}{\varepsilon_1} \left(\frac{1}{1-g} + \frac{G_2}{G_1}\right) - 1 - \frac{\varepsilon_2}{\varepsilon_1} \frac{G_2}{G_1}\right) \\ \times \left(\frac{1}{\varepsilon_1} \left(\frac{1}{1-g} + \frac{G_2}{G_1}\right) - P_1 - P_2 \frac{\varepsilon_2}{\varepsilon_1} \frac{G_2}{G_1}\right)^{-1}, \quad (16)$$

где  $P_1 = F'_1/F_1$ ,  $P_2 = F'_2/F_2$  — интегральные вероятности выживания фуллеренов в результате однократного их "прокручивания" в областях замкнутого течения газа в анодной и катодной частях камеры соответственно; другие параметры в (16) определены следующим образом (рис. 2):  $G_1/G_2$  — отношение газовых потоков, отраженных внутрь анодной и катодной частей камеры;

$$g\equiv \frac{G_g}{G_1+G_g}$$

 доля проходящего потока газа в формировании анодной части струи; отношения

$$\varepsilon_1 = \frac{F_1/F}{G_1/G}, \qquad \varepsilon_2 = \frac{F_2/F}{G_2/G}$$

характеризуют поведение фуллереновой примеси в потоке газа вблизи стенок камеры в момент разделения этого потока  $G = G_1 + G_g$  на обратный поток вдоль стенок и поток, выходящий из камеры.

Соотношение (16) следует из баланса газа, баланса фуллеренов, и определения параметров  $\varepsilon_1$ ,  $\varepsilon_2$ , g. В отсутствии катодной части камеры и в предположении  $\varepsilon = 1$  оно приобретает совсем простой вид

$$\Gamma = \frac{g}{1 - P \cdot (1 - g)}$$

 сумма бесконечной геометрической прогрессии, каждый член которой есть вероятность выживания фуллеренов в результате еще одного их прокручивания в вязком замкнутом течении газа.

В геометрии настоящей работы, т.е. случае камеры с "заглушенной" катодной частью, и в предположении  $\varepsilon_1 = \varepsilon_2 = 1$  из (16) следует, что

$$\Gamma = g \left( 1 - P_1 (1 - g) + \frac{G_2}{G_1} (1 - P_2) (1 - g) \right)^{-1}.$$
 (17)

Если струя бьет из зазора под прямым углом, естественно считать, что  $G_1 + G_g \approx G_2$ , и (17) еще более упрощается

$$\Gamma = g \left( 2 - P_2 - P_1 \cdot (1 - g) \right)^{-1}, \tag{18}$$

где  $g \approx x_{\rm Fl}/x_T$ , а  $x_T$  определяется из (10).

Вероятности  $P_1$ ,  $P_2$  можно оценить по времени "засветки" и быстроте осаждения фуллеренов (и сажевых частиц) на стенки камеры

$$P = 1 - (L/\tau V) \cdot \chi (1 - L/\tau V) - (L/\tau_{\text{diff}} V) \cdot \chi (1 - L/\tau_{\text{diff}} V),$$

где  $au_{\text{diff}}$  — характерное время диффузии частиц поперек линий тока газа,  $\chi(q) = 1$  при q > 0 и  $\chi(q) = 0$  при q < 0.

Основываясь лишь на (17), (18), нетрудно "увидеть" качественно все полученные выше результаты. Из (10) следует, что для камеры заданного размера зависимость  $g(G_g)$  при большой прокачке близка к корневой. Однако одновременно с ростом  $G_g$  уменьшаются размер зоны замкнутого течения газа в анодной части камеры и "засветка" фуллеренов, поэтому вероятность  $P_1$  выживания фуллеренов в (18) нарастает и зависимость  $\Gamma(G_g)$  на рис. 6 более сильная, чем корневая.



**Рис. 9.** Максимальный уровень выхода фуллеренов, возможный при данном радиусе камеры (1), и необходимая для этого прокачка (2).

При постоянной прокачке (рис. 7) увеличение размера камеры приводит к отдалению области "засветки" фуллеренов от области дуги, но этот эффект компенсируется увеличением размеров области замкнутого течения газа и количества втягиваемых туда фуллеренов. Чтобы повысить выход фуллеренов, необходимо увеличивать прокачку.

На рис. 9 построена зависимость максимального выхода фуллеренов, возможного в камере данного размера (т.е. выхода фуллеренов при прокачке на пороге срыва дуги) от радиуса камеры R. Видно, что в камере с R = 30 ст можно получить на выходе примерно на 20-30% больше фуллеренов, чем при R = 10 ст, но для этого необходимо увеличить прокачку в 4(!) раза. Очевидно, что изготовление газодувки соответствующей мощности, не говоря уже о сложности изготовления большой камеры, ведет к неоправданному удорожанию установки.

Технически оптимальным вариантом представляется поэтому камера небольшого радиуса, работающая при прокачке газа, близкой к пороговой.

# Возможные факторы увеличения выхода фуллеренов в рамках двумерной геометрии задачи

В силу того что двумерная постановка задачи является простейшей, представляет интерес количественный расчет иных геометрий, в которых могли бы проявиться возможные факторы увеличения выхода фуллеренов, в первую очередь камеры с тангенциальной подачей и выводом газа. В такой камере можно предположить постоянный дополнительный вынос тяжелой компоненты (фуллеренов) по отношению к выводимому из камеры газовому потоку за счет центробежной сепарации компонент.

Еще до проведения расчетов можно сказать, что в случае закрученного и незакрученного потоков газа должна наблюдаться сходная картина пространственных областей с точки зрения поведения линий тока газа. В обоих случаях есть области проходящих линий тока и области замкнутого движения газа (рис. 2, 5). Однако веерная турбулентная струя очевидным образом превращается теперь в закрученную веерную струю. Закрутка струи осуществляется двояко: за счет тангенциального вывода потока газа из камеры (и связанного с ним турбулентным переносом ротора вверх по струе) и за счет вязкого переноса ротора от входного сечения камеры через проточную часть камеры. Очевидно, первое воздействие проявляется гораздо сильнее. Если считать для определенности, что выход потока газа осуществляется через систему патрубков с размерами  $h, l \ll R$  (рис. 10), то момент количества движения, сохраняющийся вверх по струе [10], составляет примерно

$$M = \rho \, \frac{G_g^2 R}{\pi h \sqrt{2lR}} \tag{19}$$

и растет квадратично с увеличением прокачки.

Конкретное воздействие центробежного механизма может проявляться в виде следующих двух эффектов: 1) центробежное смещение границы проточной и областей замкнутого течения газа к стенкам камеры, за счет этого относительный размер области замкнутого движения и связанный с ним захват образовавшихся фуллеренов обратно в камеру могли бы уменьшиться; 2) дополнительный вынос фуллеренов из камеры в выходную щель при развороте части потока газа вдоль стенок.

Первый эффект может быть оценен из поперечного уравнения движения газа в струе в цилиндрической системе координат, адекватной веерной струе [10],

$$u\frac{\partial w}{\partial x} + V\frac{\partial w}{\partial z} + \frac{uw}{x} = -\frac{\partial P}{\partial z} + v\frac{\partial^2 V}{\partial z^2}$$
(20)

(в турбулентном случае сдвиговая вязкость v меняется на турбулентную вязкость  $v_T$ , определенную тем или



**Рис. 10.** Выход потока газа из камеры через систему патрубков с размерами  $h, l \ll R$ .

иным эмпирическим способом). В приближении пограничного слоя из (20) следует, что P = const.

Таким образом, в отличие от аналогичного уравнения осесимметричной струи

$$-w^{2}/y = -\partial P/\partial y + \nu \left(\partial^{2} V/\partial y^{2}\right)$$
(21)

в сферической системе координат [11] (координата у показана на рис. 1) скорость V в (20) "не чувствует" вращения. Соответственно понижения давления в центре струи не возникает (вернее, оно оказывается малой более высокого порядка, чем в осесимметричном случае). Не возникает и относительно медленно спадающей поправки к поперечной скорости порядка  $1/x^2$ . Что касается поправки порядка  $1/x^3$ , то, как показано в Приложении 4, она локализована в центральной части струи и не ощущается на ее границе. Таким образом, вращение не влияет на поперечную к струе скорость газа на границе струи.

Второй эффект — центробежная сепарация тяжелой компоненты в области выноса газа может быть оценен из уравнения диффузии примеси относительно потока газа, записанного в виде  $D\Delta n_C = \text{Div}(n_C \mathbf{V})$  (уравнение (15) без правой части).

В отсутствии зависимости от угла вид этого уравнения в закрученном и незакрученном случаях идентичен, так как угловая скорость выпадает. Следовательно, перенос тяжелой компоненты в струе также не чувствует закрутки газа.

Таким образом, тангенциальная закрутка газа не дает преимуществ с точки зрения производства фуллеренов. Другое возможное изменение геометрии камеры, связанное с двухсторонней подачей газа в камеру (как через анодную, так и катодную часть), а также переход к трехмерной геометрии будут рассмотрены нами в следующей работе. Необходимость рассмотреныя трехмерной задачи связана с тем, что наиболее простой с технической точки зрения вариант вывода газа из камеры — через отверстие в боковой стенке. Основываясь на приведенных выше результатах расчета, можно показать, что такой вариант может привести лишь к уменьшению выхода фуллеренов. Вопрос состоит лишь в том, насколько значительно это уменьшение.

### Выводы

1. Принципиальную роль в формировании газодинамической картины в камере играет турбулентная веерная струя, формируемая истечением углерода из газоразрядного зазора.

2. При умеренной величине прокачки газа в направлении от анода к катоду в анодной (прокачной) части камеры формируется характерная структура потоков газа с обратным током газа вдоль стенок камеры.

3. В широком диапазоне скоростей прокачки доля выносимых из камеры фуллеренов Г (по отношению к количеству произведенных фуллеренов) растет с ростом прокачки газа  $G_g$ . Однако для каждого размера камеры существует величина прокачки, приводящая к срыву дуги.

4. Пороговая прокачка резко растет с ростом радиуса камеры, однако доля выносимых фуллеренов растет при этом гораздо медленнее, поэтому технически оптимальным вариантом представляется камера небольшого радиуса, работающая при прокачке, близкой к пороговой.

5. Переход к камере с симметричной тангенциальной закруткой газа на входе и выходе из камеры не приводит к существенному увеличению относительного выхода фуллеренов. Структура газодинамической картины в камере принципиально не меняется, лишь закручиваясь как единое целое.

### Приложение 1

# Зависимости параметров струи от расстояния до стенок камеры

Формулы для внутреннего осесимметричного истечения струи из веерного источника известны и даны в [10]. Однако в силу условия  $h \ll R$  и того, что сама рассматриваемая область не превышает (как показал дальнейший расчет) половины радиуса камеры, можно использовать известные результаты для основного участка плоской струи с начальной скоростью V' и начальной шириной  $2b_1 = h$  [11,12]

$$u_m = V' \cdot 1.2\sqrt{b_1/ay},\tag{22}$$

$$V_m = V' \cdot 0.6a \sqrt{b_1/ay},\tag{23}$$

где у — расстояние до источника струи.

Накачка газа составляет в расчете на единицу длины щели

$$G' = 2.4 \cdot V' \sqrt{ab_1 y}. \tag{24}$$

### Приложение 2

# Определение положения точки смены знака поперечной скорости на границе струи

Применительно к рассматриваемой задаче поток газа в камеру из формируемой на выходе камеры струи составляет в расчете на полную длину щели  $2\pi R$  величину

$$2.4 \cdot V' \sqrt{ab_1(R-x_T)} \cdot 2\pi R.$$

Тогда баланс газа в анодной части камеры, учитывающий проточную часть струи с радиусом  $x_{\rm Fl}$  и область питания зоны замкнутого течения газа у стенок камеры шириной  $R - x_T$ , имеет вид

$$2\pi n(x_T - x_{\rm Fl}) = \frac{1}{2} 2.4 \cdot V' \cdot 2\pi R \sqrt{ab_1(R - x_T)},$$

где V' — скорость истечения газа из кольцевой щели камеры,  $x_{\rm Fl}$  определяется сохранением потока газа в камере

$$2\pi n x_{\rm Fl} = G_g = 2\pi R \cdot 2b_1 V'$$

Отсюда  $x_T$ , рассчитанный в анодной (прокачной) части камеры, должен определяться из квадратного уравнения

$$x_T - x_{\rm Fl} = 0.6 x_{\rm Fl} \sqrt{a(R - x_T)/b_1}.$$

Легко показать, что для катодной половины камеры

$$x_T = 0.6 x_{\rm Fl} \sqrt{a(R - x_T)/b_1}.$$

Взяв полусумму этих значений, легко получить (10).

Существенно, что в ходе решения мы использовали формулы (5) и (24) для скорости накачки газа в струю, приближенно справедливые и на начальном участке струи. Если бы мы пытались использовать соотношения типа (2) для геометрической формы струи, верные лишь на основном ее участке, положение точки  $x_T$  было бы определено раз и навсегда геометрическим соотношением 2.4 $ax_T = 2.4a(R - x_T)$  при любой прокачке газа и вся содержательная информация была бы потеряна.

### Приложение 3

### Граничные условия к уравнению диффузии примеси на границе струи и задание скорости гибели фуллеренов в результате "засветки"

1) Очевидно, что задача о диффузии фуллеренов из области их рождения  $x \sim x_1$  должна ставиться при  $x_1 < x < R$  в пределах всей камеры. Однако при этом появляется дополнительная сложность в задании турбулентного коэффициента диффузии фуллеренов в пределах струи. Поэтому, учитывая линейный характер задачи и естественное граничное условие  $n_C = 0$  на стенках камеры (условие "черной стенки"), можно пытаться задавать  $n_C(x)$  на границе струи в модельном виде

$$n_C = n_C(x_1) \frac{x_1}{x} \left(\frac{R-x}{R-x_1}\right)^{\Pi}, \quad \Pi > 1.$$

Потоки  $F_1$ ,  $F_2$ ,  $F_1'$ ,  $F_2'$  в (14) определяются как производные —  $D \cdot \partial n/dx$  на внешних границах струи.

2) Результаты, касающиеся гибели фуллеренов под воздействием ультрафиолетового излучения, весьма противоречивы. Так, в отличие от [14] эксперименты по хранению сажи на свету и в темноте [3] не выявили существенного влияния излучения по крайней мере на уровне яркости дневного фона (до 1 сD/cm<sup>2</sup>). В любом случае, однако, верхнюю оценку влияния излучения можно сделать следующим образом. Известно, что в оптимальных условиях получения фуллеренов в непрокачной камере их процент не превышает 10–12. Если предположить, что влияние "засветки" гибельно для фуллеренов, столь высокий их процент на стенках возможен лишь в том случае, если за характерное время "засветки"  $\tau$  осевшие на стенки фуллерены заносятся по

крайней мере одним монослоем сажевых частиц. Такая оценка дает

$$\tau = \frac{2\pi RH}{dm/dt} \rho_t \langle r_s \rangle,$$

где H — характерная ширина сажевого слоя на стенках камеры; dm/dt — количество сажи, оседающее в пределах этого слоя в единицу времени;  $\rho_s$  — плотность сажи.

Зависимость времени гибели фуллеренов от расстояния до разрядного зазора можно оценить из условия сохранения потока излучения внутри веерного конуса, задаваемого геометрией зазора

$$1/ au = \left(r_{UV}^2/r^2
ight)\cdot (1/ au_{UV}),$$

где отношение реперных значений  $r_{UV}^2/\tau_{UV}$  зависит лишь от выбранного режима горения дуги.

#### Приложение 4

### Вращательная поправка к поперечной скорости веерной струи, связанная с закруткой

Как видно из (20), поперечная разность давлений между осью струи и ее границей никак не связана с закруткой и должна полагаться равной нулю (как и в отсутствии закрутки). Следовательно, система уравнений движения и непрерывности не отличается от системы, рассмотренной в [10],

$$u\frac{\partial u}{\partial x} + V\frac{\partial u}{\partial z} - \frac{w^2}{x} = v\frac{\partial^2 u}{\partial z^2},$$
(25)

$$u\frac{\partial w}{\partial x} + V\frac{\partial w}{\partial z} + \frac{uw}{x} = v\frac{\partial^2 w}{\partial z^2},$$
 (26)

скорости u, V выражаются через функцию тока  $\Psi$  соотношением (11).

Решение ищется в [10] в виде

$$\Psi = Ax + \frac{a_1}{x} \dots, \quad w = \frac{b_2}{x^2} + \frac{b_4}{x^4} \dots$$

В нулевом приближении коэффициент *A*, полученный в [10], имеет вид

$$A = \alpha \operatorname{th} \frac{\alpha \Lambda}{2u},$$

где  $\Lambda = y/x$ ,

$$b_2 = C/\mathrm{ch}^2 \frac{\alpha \Lambda}{2\nu}$$

Следующее приближение, как нетрудно получить из (26), определится из уравнения

$$a_1 A'' - a_1'' A - 4a_1' A' - b_2^2 = \nu \cdot a_1^{(3)}.$$
 (27)

Так как нас интересует лишь скорость на границе струи, где  $\alpha \Lambda/2\nu \gg 1$ , поправку  $a_1$  можно искать в виде разложения

$$a_1 = p + m \exp\left(-\frac{\alpha\Lambda}{2\nu}\right) + n \exp\left(-\frac{\alpha\Lambda}{2\nu}\right),$$
 (28)

Журнал технической физики, 2005, том 75, вып. 12

аналогичного асимптотике функции А. Подставляя (28) в (27), получаем

$$a_1 = p\left(1 - \exp\left(-\frac{\alpha\Lambda}{2\nu}\right)\right) + \frac{4C^2\nu^2}{\alpha^3}\exp\left(-\frac{\alpha\Lambda}{\nu}\right).$$
 (29)

Первый член разложения в (29) никак не связан с закруткой. Второй член пропорционален моменту количества движения струи, однако локализован в ее осевой части и никак не проявляется на границе струи.

### Список литературы

- [1] Kratschmar W., Lalb L.D., Fostiroupolos K., Huffman D.R. // Nature. 1990. Vol. 347. P. 354–360.
- [2] Афанасьев Д.В., Богданов А.А., Дюжев Г.А., Кругликов А.А. // ЖТФ. 1994. Вып. 10. С. 76–84.
- [3] Афанасьев Д.В., Богданов А.А., Блинов И.О., Дюжев Г.А. // ЖТФ. 1997. Вып. 2. С. 125–130.
- [4] Churilov G., Fedorov A., Taranko V. et al. // Carbon. 2003.
   Vol. 41. N 1. P. 173–178.
- [5] Churilov G., Novikov P., Taranko V. et al. // Carbon. 2002. Vol. 40. N 6. P. 891–896.
- [6] Афанасьев Д.В., Дюжев Г.А., Каратаев В.И. // Письма в ЖТФ. 1999. Т. 25. Вып. 5. С. 35–40.
- [7] Алексеев Н.И., Дюжев Г.А. // ЖТФ. 2005. Т. 75. Вып. 11. С. 000.
- [8] Dyuzhev G.A., Basargin I.V., Filippov B.M., Alekseyev N.I. et al. Int. Appl. Publ. Under PCT. WO 02/096800. PCT/RU 02/00083.
- [9] Алексеев Н.И., Chibante F., Дюжев Г.А. // ЖТФ. 2001. Т. 71. Вып. 6. С. 122–130.
- [10] Лойцянский Л.Г. // Труды ЛПИ. 1953. № 5. С. 5–14.
- [11] Абрамович Г.Н. Теория турбулентных струй. М.: Наука, 1984. 717 с.
- [12] Гиневский А.С. Теория турбулентных струй и следов. М.: Машиностроение, 1969. 299 с.
- [13] Дюжев Г.А., Каратаев В.И. // ФТТ. 1995. Т. 36. Вып. 9. С. 2795–2799.
- [14] Tailor R., Parsons J.P., Avent A.G. et al. // Nature. 1991. Vol. 351. P. 271.
- [15] Дюжев Г.А., Ойченко В.М., Фурсей Г.Г. н др. // ЖТФ. 2000.
   Т. 70. Вып. 11. С. 118–122.