07;12 Двухпроходный лазерный усилитель на парах меди с высокой пиковой мощностью

© В.Т. Карпухин, М.М. Маликов

Объединенный институт высоких температур РАН, 125412 Москва, Россия e-mail: mmalikov@oivtran.iitp.ru

(Поступило в Редакцию 12 января 2005 г.)

Приводятся новые результаты исследования двухпроходного усилителя, выполненного по особой схеме [1,2], позволившей существенно увеличить пиковую мощность лазерных импульсов [3] при сохранении средней мощности излучения и мощности накачки на прежнем уровне. В данной работе достигнута пиковая мощность импульсов излучения 305 kW при средней мощности излучения лазерной системы ~ 25 W. Обсуждаются физические вопросы, связанные с работой такого усилителя, и его перспективы.

Введение

Создание лазерных систем на самоограниченных переходах с высокой пиковой мощностью излучения является актуальной задачей для ряда практических приложений, таких как преобразование частоты излучения с помощью нелинейных кристаллов, накачка лазеров на красителях, микрообработка некоторых материалов и др. Ранее [1,2] нами предлагалось использовать для увеличения пиковой мощности излучения лазера на парах меди схему многопроходного усилителя. За счет особого его исполнения можно повысить пиковую мощность в несколько раз при тех же энерговкладах в активную среду и энергосхемах.

Эффект достигается путем многократного прохождения через активную среду усилителя лазерного импульса задающего генератора (ЗГ) с достаточно крутыми фронтами и с длительностью τ_{0s} , более короткой, чем время существования инверсии τ_{inv} в активной среде усилительного каскада. Как показано экспериментально в [3], короткий входной импульс отбирает от активной среды и аккумулирует в себя примерно столько же энергии, что и длинный входной импульс с $au_{0s} \geq au_{inv}$ в однопроходной схеме (с одинаковым объемом активной среды), и поэтому имеет более высокую амплитуду, приблизительно в τ_{inv}/τ_{0s} раз. Из качественных соображений в [3] получены также соотношения, устанавливающие оптимальную взаимосвязь параметров τ_{0s} , τ_{inv} , длины активной среды усилителя — $L_{\rm amp}$ и времени задержки луча au_{del} в блоках разворота луча многопроходного усилителя на парах меди (МУПМ). В данной работе уделено внимание экспериментальной проверке этих отношений и осуществлено техническое совершенствование схемы МУПМ. Получены более высокие параметры излучения.

Описание эксперимента

В экспериментах использовалась простейшая схема двухпроходного усилителя на парах меди со встречным ходом и с поляризационной развязкой лучей (рис. 1). Система состояла из задающего генератора *1*, коллиматора *2*, поляризационного разветвителя (призма Глана) *3*, усилительного какада *4* и блока возврата лучей *5*, включающего в себя четвертьволновую фазовращающую пластинку *6* и плоское зеркало *7*.

Задающий генератор 1 (серийная лазерная трубка LT-1Cu [4]) был снабжен неустойчивым резонатором (зеркала 8, 9) с коэффициентом увеличения M = 5 и поляризатором (призма Глана) 11 и излучал импульсы с горизонтальной (в плоскости рисунка) поляризацией электрического вектора E_{\parallel} с длинами волн 0.51 и 0.578 μ m и частотой следования 10 kHz. Телескопический коллиматор 2, состоящий из двух вогнутых сферических зеркал 8, 9, увеличивал диаметр луча задающего генератора до 20 mm и частично задерживал его су-перлюминесцентный фон, выделяя с помощью диафрагмы 10 из пучка излучения ядро с расходимостью φ_{in} , равной примерно пяти дифракционным расходимостям. Мощность излучения ЗГ на входе в усилительный кас-

Рис. 1. Схема эксперимента: 1 — задающий генератор; 2 — коллиматор; 3 — поляризационный разветвитель; 4 — усилительный каскад; 5 — блок возврата луча; 6 — фазовращающая пластинка; 7 — плоское зеркало; 8, 9 — зеркала; 10 — диафрагма коллиматора; 11 — поляризатор ЗГ; 12, 13 — зеркала резонатора ЗГ; 14, 15 — окна усилительного каскада.

кад $W_{\rm in}$ составили 0.3 W, а длительность $\tau_{0s} \sim 12-13$ ns по основанию. Дополнительно в ряде экспериментов в качестве ЗГ использовалась более мощная серийная лазерная трубка LT-3 Cu [4], позволившая довести уровень мощности $W_{\rm in}$ до 0.7–0.9 W при M = 230. Длительность τ_{0s} в этом случае имела величину ~ 17 ns, а величина $\varphi_{\rm in}$ равнялась трем дифракционным расходимостям.

Отметим, что в отличие от [3] применение в данной работе неустойчивого резонатора ЗГ, зеркального коллиматора с пространственной фильтрацией, качественных оптических окон, зеркал и модернизация источника накачки ЗГ позволили получить на входе в усилительный каскад луч со значительно меньшей расходимостью и большей мощностью. Кроме того, существенно уменьшились хроматические аберрации и астигматизм луча на входе в усилительный каскад и выходе из него.

Усилительный каскад 4 выполнен на базе трубки ГЛ-201 с длиной рабочей камеры $L_{\rm amp} = 80$ сm, диаметром 20 mm. Величина $\tau_{\rm inv}$ составляла ~ 35 ns (по основанию) при типовой средней мощности накачки в 3.0-3.2 kW, на частоте следования импульсов 10 kHz. Луч J^+ с горизонтальной поляризацией входил в активную среду усилителного каскада 4 через сечение A и поступал в блок возврата 5. Луч J^- , идущий в обратном направлении, приобретал ортогональную поляризацию вектора E_{\perp} , поэтому он не интерферировал с лучом J^+ и выводился из системы поляризационным разветвителем 3 в сторону.

Величина τ_{del} и соответственно ей расстояние L_{del} от сечения *B* разрядной камеры с активной средой усилительного каскада до зеркала 7 выбирались такими, чтобы удовлетворить приведенным в [3] соотношениям для двухпроходной схемы при заданной величине τ_{0s} . Отношение τ_{inv}/τ_{0s} менялось в экспериментах от двух до трех.

Средняя по частоте следования мощность W_{in} излучения перед входом в усилительный каскад 4 и средняя мощность усилительного излучения W_{out} измерялись калориметрическим прибором ИМО-4С. Соответствующие им формы импульсов излучения $U_{in}(t)$, $U_{out}(t)$ регистрировались с помощью фотоэлементов ФЭК-22спу и стробоскопического осциллографа (с полосой 3.7 GHz). Осциллограммы импульсов излучения привязывались к оси времени с учетом задержек в оптических измерительных трактах и для двухпроходного варианта соответствуют положению импульсов $U_{in}(t)$, $U_{out}(t)$ в сечении A.

Для сравнения использовались результаты экспериментов с однопроходным усилителем, полученные в [3,5] на этом же усилительном каскаде при тех же мощностях накачки. При этом использовался 3Г, излучающий импульсы с длительностью, равной длительности инверсной заселенности в усилительном каскаде ~ 35 пs. Максимальные величины для однопроходного усилителя составляли $W_{out} = 23$ W и $U_{out} = 136$ kW соответственно.

Результаты экспериментов и обсуждение

Осциллограммы импульсов $U_{in}(t)$ от ЗГ на базе трубок LT-1 Си и LT-3 Си и соответствующие им импульсы на выходе двухпроходного усилителя $U_{out}(t)$ представлены на рис. 2, *a*, *b* и рис. 3, *a*, *b*. Для обоих вариантов подбиралась своя оптимальная величина L_{del} (соответственно τ_{del}). Как видно из рис. 3, *a*, форма импульса задающего генератора LT-3 Си на входе в усилитель не была гладкой, а состояла из трех "горбов", величина τ_{0s} составила ~ 17 пs. Длительность импульсов на выходе двухпроходного усилителя немного выросла, примерно на 2–3 пs в обоих вариантах. Наибольшее увеличение пиковой мощности получено с более коротким и гладким импульсом $\tau_{0s} \approx 12.5$ пs. Как видно из осциллограмм (рис. 2, *b*), пиковая мощность *1* на выходе усилителя, суммарная по

Рис. 2. a — импульсы 3Γ —LT-1 Cu на входе в усилитель. $W_{in} = 0.3$ W. b — импульсы излучения на выходе усилителя. l — суммарный по длинам волн, $2 - \lambda = 0.51$, $3 - 0.578 \, \mu$ m. 3Γ —LT-1 Cu.

Журнал технической физики, 2005, том 75, вып. 10

Рис. 3. a — импульсы 3Γ —LT-3 Cu на входе в усилитель. $W_m = 0.7$ W. b — импульсы излучения на выходе усилителя. l — суммарный по длинам волн, $2 - \lambda = 0.51$, $3 - 0.578 \, \mu$ m. 3Γ —LT-3 Cu.

длинам волн, достигла 305 kW при средней мощности 25 W (2 относится к зеленой, $3 - \kappa$ желтой линии генерации). При использовании задающего импульса от LT-3 Cu максимальная пиковая мощность (рис. 3, *b*) на выходе двухпроходного усилителя составила 210 kW, что ниже результата, полученного в [3] — 240 kW при такой же длительности (17 ns) входного импульса, но гладкой формы. Это свидетельствует о заметном влиянии формы и крутизны фронтов импульса задающего генератора на повышение пиковой мощности.

Отметим, что во всех случаях пиковая мощность двухпроходного усилителя, выполненного по схеме [2], превышала в 1.5–2.2 раза пиковую мощность (136 kW) усилителя в обычном однопроходном режиме работы при одинаковых средних мощностях излучения, накачки и объеме рабочей среды.

Из приведенных выше результатов следует, что при переходе от однопроходного усиления к двухпроходному усилению энергосъем существенно не изменился. Длительность импульса на входе двухпроходного усилителя осталась приблизительно равной длительности входного импульса и вдвое короче импульса суперлюминисценции.

На рис. 4 представлены результаты оптимизации двухпроходного усилителя по пиковой мощности от величин задержки τ_{del} и длительности импульса τ_{0s} при неизменном режиме возбуждения усилительного каскада ($\tau_{inv} = 35-40$ ns). Использовались и результаты [3]. Как видно из рисунка, для каждого τ_{0s} имеется оптимальное значение τ_{del} . Сравнивая кривые 1 и 2, полученные с использованием импульсов ЗГ разной длительности 12.5 и 17 ns (но оба гладкой формы), можно сделать вывод, что такая зависимость соответствует смыслу оптимизационных соотношений [3], которые для двухпроходного усилителя можно записать как:

$$au_{0s} \approx au_{
m inv} - rac{2 \cdot L_{
m amp}}{c} - au_{
m del}, aga{1}$$

$$\tau_{0s} \ge \left(\frac{2 \cdot L_{\rm amp}}{c} + \tau_{\rm del}\right). \tag{2}$$

Выражение (1) получено из требования полного перекрытия одним импульсом ЗГ за два прохода временно́го интервала, в течение которого существует инверсная заселенность в усилительном каскаде. Выражение (2) отражает требование полного заполнения импульсом ЗГ объема с инверсной средой усилительного каскада в течение всего времени существования инверсии. Для заданного τ_{0s} при τ_{del} , существенно меньших, чем те которые удовлетворяют указанным формулам, импульс

Рис. 4. Зависимость пиковой мощности импульсов излучения усилителя от задержки τ_{del} при: $I - \tau_{0s} \approx 12.5$ ns и $U_{0s} = 5.7$ kW; $2 - \tau_{0s} \approx 17.5$ ns, $U_{0s} = 6-9$ kW; $3 - \tau_{0s} \approx 17$ ns, $U_{0s} = 3$ kW [3].

задающего генератора не будет полностью перекрывать временной интервал существования инверсной заселенности и пространство рабочего объема усилителя, в результате чего часть энергии возбуждения не используется. При τ_{del} , много бо́льших оптимального значения, задний фронт импульса не успеет выйти из канала до окончания инверсии и часть энергии импульса будет поглощена. В обоих случаях происходит снижение амплитуды импульса мощности излучения на выходе двухпроходного усилителя. Максимум на кривых (рис. 4) соответствует оптимальным значениям τ_{del} . С другой стороны, при использовании ЗГ с более коротким импульсом, согласно (2), необходимо уменьшить оптимальную величину τ_{del} , что и наблюдается в эксперименте, сдвиг максимумов кривых на рис. 4 влево.

Следует отметить, что в (1) имеется значительная неопределенность в выборе величины τ_{inv} , поскольку она зависит от динамики усиления и плотности энергии лазерного излучения в активной среде лазеров на самоограниченных переходах. Кроме того, в (1) и (2) не учитывается некоторое увеличение длительности импульса на выходе усилителя. По всей вероятности, за максимальное значение au_{inv} можно принять длительность суперлюминесценции (в нашем случае 35-40 ns). Для хорошо развитого индуцированного излучения с плотностью энергии, на порядок и более высокой, нужно скорее ориентироваться на величину длительности импульса излучения лазера с плоским резонатором (для наших условий ~ 25-30 ns). Это подтверждается и данными на рис. 4. Так, если взять из рисунка для кривой 1 величину оптимальной задержки $\tau_{\rm del} \approx 8\,{\rm ns},~{\rm a}$ для кривой 3 — $\tau_{del} \approx 14$ ns, то, подставив в (1), получим величины $\tau_{inv} \sim 26$ и ~ 36 ns соответственно. Оценка плотности энергии электромагнитного поля усредненной по длительности лазерного импульса дает ~ 5 и $\sim 3.4\,\mu\text{J/cm}^3$, т.е. более высокой пиковой мощности усилителя соответствует меньшая длительность инверсии. Для более точного описания работы рассматриваемого многопроходного усилителя необходимо самогласованное решение кинетических уравнений для заселенности уровней, баланса энергии в плазме и уравнений переноса усиливаемого излучения.

Выводы

В данной работе за счет технического совершенствования схемы двухпроходного усилителя на парах меди и использования более короткого импульса задающего генератора по сравнению с предыдущей работой [3] достигнута пиковая мощность (305 kW) импульса выходного излучения. Это в 2.2 раза превосходит пиковую мощность однопроходного усилителя при одинаковых средней выходной мощности ~ 23–25 W, мощности накачки и одинаковом объеме активной среды усилителей. Полученные результаты подтверждают справедливость качественной физической модели, описывающей предложенный в [1] способ увеличения амплитуды импульса излучения без существенного изменения удельной средней мощности. Следует отметить, что в однопроходных усилителях при использовании импульсов ЗГ блее коротких, чем длительность инверсии в усилительном каскаде, также достигается высокая мощность, однако существенно снижается средняя мощность из-за неполного использования всей энергии инверсии. Так, в [6] с использованием трубок в 2–4 раза большего объема получены пиковые мощности в 600 kW при удельных средних мощностях, в 7–8 раза меньших, чем в нашей работе.

Для уточнения перспективы обсуждаемого способа необходимо дальнейшее проведение как расчетных работ, так и экспериментальных, в частности, с увеличенным числом проходов в усилительном каскаде. Создание таких усилителей позволит эффективно использовать небольшие и поэтому более дешевые лазерные активные элементы [4] со средней мощностью излучения на уровне 10–20 W вместо более дорогих с мощностью в десятки–сотни ватт в технологических системах, где требуется высокая пиковая мощность импульсов излучения.

В заключение авторы выражают благодарность Н.А. Лябину, А.Д. Чурсину и С.А. Угольникову за техническое содействие при создании экспериментального лазерного усилителя на парах меди.

Список литературы

- [1] Карпухин В.Т., Маликов М.М. А.С. № 2197042. 20.02.2001. БИ. 2003. № 2.
- [2] Карпухин В.Т., Маликов М.М. А.С. № 19612. 24.04.2001. БИ. 2001. № 25.
- [3] Карпухин В.Т., Маликов М.М. // Квантовая электрон. 2003.
 Т. 33. № 5. С. 411.
- [4] Лябин Н.А., Чурсин А.Д., Угольников С.А., Королева М.Е., Казарян М.А. // Квантовая электрон. 2001. Т. 31. № 3. С. 191–202.
- [5] Карпухин В.Т., Конев Ю.Б., Маликов М.М. // Изв. АН. Сер. физ. 2002. Т. 66. № 7. С. 934–938.
- [6] Евтушенко Г.С., Кириллов А.Е., Кругляков В.Л., Полунин Ю.П., Солдатов А.Н., Филонова Н.А. // ЖПС. 1988. Т. 49. № 5. С. 745.