03;08 Релаксация объемной и сдвиговой вязкостей в диэтилсилоксане и этилоктилсилоксане

© В.В. Сурнычев, В.И. Коваленко, А.С. Лагунов, В.В. Беляев

Московский государственный областной университет, 107005 Москва, Россия e-mail: conrad@nm.ru

(Поступило в Редакцию 10 февраля 2005 г.)

Выполнены экспериментальные исследования температурной и частотной зависимостей скорости и коэффициента поглощения ультразвука в диэтилсилоксане и этилоктилсилоксане в диапазоне частот от 4 до 63 MHz и интервале температур от 293 до 348 К импульсно-фазовым методом переменного расстояния. На основе обработки экспериментальных данных установлена частотная зависимость коэффициентов объемной и сдвиговой вязкостей. Определены значения коэффициентов объемной и сдвиговой вязкостей, а также времени релаксации обнаруженных релаксационных процессов.

К органосилоксанам относят вещества, молекулы которых состоят из основной неорганической силоксановой цепочки, содержащей [Si–O] звенья, и органических заместителей при кремнии [1,2], некоторые физические свойства которых до настоящего времени мало изучены. Особый интерес представляет изучение релаксации вязкоупругих свойств рассматриваемого типа веществ методом акустической спектроскопии. Полученные при этом данные по скорости и коэффициенту поглощения ультразвука являются ценными как в прикладном плане, так и в плане оценки применимости феноменологических теорий вязкоупругих сред. Деформации сжатия и сдвига, возникающие при распространении упругих волн, приводят к изменению порядка в расположении молекул и их комплексов, т.е. к перестройке структуры, а следовательно, к изменению всех структурно чувствительных свойств, которые носят релаксационный характер. Согласно [3],

$$\frac{\alpha}{f^2} = \frac{2\pi^2}{\rho c_0^3} \left(\frac{4}{3}\eta_S + \eta_V\right),\tag{1}$$

где η_S и η_V — сдвиговая и объемная вязкости. При $\eta_V = 0$ получаем соотношение

$$\left(\frac{\alpha}{f^2}\right)_s = \frac{2\pi^2}{\rho c_0^3} \frac{4}{3} \eta_s,\tag{2}$$

описывающее потери, связанные со сдвиговой вязкостью ("стоксовское" поглощение). Величину $(\alpha/f^2) - (\alpha/f^2)_S$ называют сверхстоксовским погло-

Рис. 1. Частотные зависимости для ДЭС (*a*) и ЭОС (*b*) экспериментальных значений коэффициента поглощения α/f^2 (*1*-4) в сравнении с теоретическими расчетами (9–12) по (3) и коэффициентом поглощения (α/f^2)_S (5–8), рассчитанным по (2). *T* = 30 (*1*, *5*, *9*), 45 (*2*, *6*, *10*), 60 (*3*, *7*, *11*), 75°С (*4*, *8*, *12*).

Puc. 2. Температурная зависимость коэффициента поглощения ультразвука α/f^2 в ДЭС (*a*) и ЭОС (*b*) (*I*-5) при f = 4.2, 9.6, 27.3, 45, 63 MHz соответственно в сравнении с коэффициентом поглощения $(\alpha/f^2)_s$ (*b*), рассчитанным по (2). *I* — область с $\alpha/f^2 > (\alpha/f^2)_s$, *II* — область с $\alpha/f^2 < (\alpha/f^2)_s$.

щением. Это поглощение, а следовательно, и объемная вязкость η_V могут быть обусловлены факторами как структурной, так и термической релаксации [3–5].

В качестве объектов исследования были выбраны диэтилсилоксан (ДЭС) и этилоктилсилоксан (ЭОС) (общие формулы $(C_2H_5)_3SiO[(C_2H_5)_2SiO]_4Si(C_2H_5)_3$ и $(C_2H_5)_3SiO[C_2H_5C_8H_{17}SiO]_{18}Si(C_2H_5)_3$ соответственно) (ГНИИХТЭОС, Россия) с концевыми триэтилсилоксан звеньями. Такие объекты используются в качестве смазочных материалов и биологических жидкостей. Молярные массы ДЭС и ЭОС составляют 0.65 и 3.5 kg/mol.

Скорость и коэффициент поглощения ультразвука измерялись импульсно-фазовым методом переменного расстояния [6,7]. Теплофизические свойства ДЭС изучены в [8]. Результаты измерения представлены на рис. 1. Видно, что при некоторых температурах значения стоксовского поглощения $(\alpha/f^2)_S$ превышают экспериментальные значения (α/f^2) , что соответствует области II на графиках температурных зависимостей (рис. 2). Аналогичные процессы ранее наблюдались в сильновязких жидкостях [9,10]. Этот факт указывает на то, что в данных веществах в области низких температур происходит релаксация как объемной, так и сдвиговой вязкости. Кроме того, кривые частотной зависимости коэффициента поглощения при всех температурах монотонно уменьшаются без ясно выраженных перегибов, наличие которых свидетельствовало бы о существовании ряда дискретных значений времен релаксации, достаточно далеко отстоящих друг от друга. Таким образом, в ДЭС и ЭОС наблюдается наложение нескольких процессов, связанных с релаксацией как объемной, так и сдвиговой вязкости.

Согласно релаксационной теории, в рамках модели с одним релаксационным процессом частотная зависи-

мость коэффициента поглощения описывается выражением

$$\frac{\alpha}{f^2} = \frac{A}{1+\omega^2\tau^2} + B. \tag{3}$$

Анализ результатов частотной зависимости коэффициента поглощения с помощью соотношения (3) дает значения релаксационных параметров A, B, τ_{α} (время релаксации); $B/(\alpha/f^2)_S$ (табл. 1).

Таблица 1. Значения релаксационных параметров ДЭС и ЭОС

$t,^{\circ}C$	Α	В	A_S	B_S	$ au_{lpha}$	τ_S	τ_{α}/τ_{S}	$(\alpha/f^2)_s$	$B/(\alpha/f^2)s$		
	$\cdot 10^{12},\ m^{-1}\cdot s^2$				·10 ⁹	', s		$\cdot 10^{12}, \ m^{-1} \cdot s^2$			
ДЭС											
0	0.28	0.61	0.37	0.58	8.2	6.4	1.28	1.02	0.60		
5	0.27	0.59	0.28	0.58	7.9	6.1	1.30	0.90	9.65		
10	0.25	0.57	0.25	0.56	7.5	5.7	1.31	0.80	0.71		
15	0.24	0.55	0.2	0.55	7.1	5.3	1.35	0.72	0.77		
25	0.22	0.51	0.14	0.52	5.7	4.2	1.35	0.58	0.87		
45	0.18	0.43			4.3			0.4	1.00		
60	0.15	0.37			3.4			0.4	1.02		
75	0.13	0.30			2.7			0.3	0.95		
ЭОС											
0	1.81	1.16	2.2	0.9	12.2	6.9	1.77	3.0	0.39		
5	1.60	1.07	1.72	0.87	10.6	6.4	1.67	2.6	0.41		
10	1.45	0.98	1.5	0.83	9.4	6.1	1.53	2.3	0.43		
15	1.28	0.90	1.15	0.79	8.4	5.5	1.53	2.0	0.45		
30	0.91	0.68	0.75	0.64	6.2	4.1	1.51	1.4	0.50		
45	0.66	0.53			4.0			1.0	0.55		
60	0.50	0.41			3.7			0.7	0.58		
75	0.40	0.36			2.8			0.5	0.66		

	$\eta_V \cdot 10^2$, Pa · s			$\eta_S \cdot 10^2$, Pa \cdot s				η_V/η_S							
t°C	f, MHz														
	4.2	9.2	27.3	45	63	4.2	9.2	27.3	45	63	4.2	9.2	27.3	45	63
	ДЭС														
0	3.5	2.3	1.2	0.6	0.2	10	9.1	8.2	7.4	7.0	0.34	0.25	0.15	0.080	0.028
5	3.2	2.2	1.2	0.6	0.2	9.5	8.4	7.6	6.9	6.5	0.34	0.25	0.16	0.087	0.034
10	2.9	2	1.2	0.6	0.2	8.0	7.8	7.0	6.4	6.0	0.36	0.26	0.16	0.095	0.041
15	2.65	1.9	1.1	0.6	0.3	6.9	6.9	6.4	5.9	5.6	0.39	0.28	0.17	0.104	0.048
20	2.4	1.7	1.1	0.6	0.3	5.9	5.9	5.9	5.4	5.1	0.41	0.30	0.18	0.111	0.057
25	2.2	1.6	1.0	0.6	0.3	5.1	5.1	5.1	5.0	4.7	0.43	0.32	0.20	0.120	0.065
	ЭОС														
0	22	19	8.1	2.4	0.8	30	27	18	13	11	0.74	0.69	0.45	0.18	0.07
5	20	17	7.3	2.5	1.2	25	23	16	12	10	0.79	0.71	0.46	0.21	0.12
10	17	15	6.5	2.6	1.4	21	20	14	11	10	0.82	0.71	0.47	0.24	0.15
15	16	13	5.8	2.6	1.5	18	16	12	10	9	0.88	0.79	0.47	0.27	0.17
20	14	11	5.3	2.7	1.5	15	14	11	8.9	8.0	0.92	0.80	0.49	0.30	0.18
25	12	10	4.7	2.6	1.6	13	12	10	8.1	7.4	0.95	0.86	0.48	0.32	0.22
30	11	8.9	4.4	2.7	1.9	11	11	8.6	7.4	6.8	0.99	0.85	0.51	0.37	0.28
35	9.3	7.8	4.0	2.7	2.0	9.1	10	7.7	6.7	6.2	1.02	0.82	0.52	0.40	0.32

Таблица 2. Значения η_V , η_S и их отношение η_V/η_S при различных температурах и частотах в ДЭС и ЭОС

Таблица 3. Значения энергии активации для ДЭС и ЭОС в kJ/mol

ΔE_{lpha}	ΔE_S	ΔE_{η}	ΔE_{lpha}	ΔE_S	ΔE_{η}	
	ДЭС			ЭОС		
13.1	11.8	17.8	15.3	16.6	24.6	

Анализ зависимостей τ_{α} выполнен по формуле Аррениуса с энергией активации ΔE_{α} , значения которой приведены в табл. 3.

Скорость ультразвука в обоих веществах имеет довольно значительную дисперсию. При изменении частоты ультразвука от 4.2 до 63 MHz температуре 303 K скорость ультразвука изменяется от 1214 до 1219 m/s в ДЭС и от 1309 до 1330 m/s в ЭОС; при T = 348 K от 1078 до 1102 и от 1180 до 1240 m/s соответственно. Температурная зависимость скорости ультразвука в исследуемом температурном диапазоне в пределах погрешности описывается линейной функцией.

Из полученных результатов рассчитывают объемную вязкость η_V по формуле

$$\eta_V = \frac{\rho c^3}{2\pi^2} \left[\left(\frac{\alpha}{f^2} \right) - B \right]. \tag{4}$$

Значения η_V для некоторых температур и частот приведены в табл. 2.

Поскольку в области II (рис. 2) $\eta_V = 0$, то поглощение ультразвука определяется только величиной η_S , т.е. величина $(\alpha/f^2)_S$ становится функцией частоты. Анали-

зируя значения (α/f^2) для области II при помощи соотношения (2) и полагая при этом, что $A_s + B_s = (\alpha/f^2)_s$, получим параметры, характеризующие процесс релаксации классического поглощения A_s , B_s , τ (табл. 1), а также значение энергии активации ΔE_s (табл. 3). Полученные данные используем при вычислении значения величины η_s при различных температурах и частотах (табл. 2)

$$\eta_S = \frac{3\rho c^3}{8\pi^2} \left[\left(\frac{\alpha}{f^2} \right) - B_S \right]. \tag{5}$$

В табл. 2 представлены также значения величины η_V/η_S для ряда температур и частот, а в табл. 1 значения τ_{α}/τ_S . Видно, что в обоих веществах величина $\eta_V/\eta_S < 1$ и $\tau_{\alpha}/\tau_S = 1.3-1.7$. Обе величины слабо зависят от температуры. Это позволяет сделать вывод, что в данных веществах неблюдается процесс структурной релаксации. Тот факт, что времена релаксации объемной и сдвиговой вязкостей незначительно отличаются одно от другого, а значения энергий активации ΔE_{α} , ΔE_S и энергии активации вязкого течения ΔE_{η} , полученного из анализа температурной зависимости коэффициента сдвиговой вязкости, достаточно близки (табл. 3), позволяет сделать вывод в пользу того, что механизмы возникновения как объемной, так и сдвиговой вязкости имеют одинаковую природу.

При сравнении данных по релаксационным свойствам и вязкости ДЭС и ЭОС видно, что как коэффициенты поглощения ультразвука, так и обе вязкости η_V и η_S , а также энергия активации ΔE_{η} имеют большее значение у ЭОС как у вещества, состоящего из более длинных и гребнеобразных молекул.

Список литературы

- [1] Андрианов К.А. Методы элементо-органической химии (кремний). М.: Наука, 1968. 34 с.
- [2] Соболевский М.В., Скороходов И.И., Гриневич К.П. Органосилоксаны. Свойства, получение, применение. М.: Химия, 1985.
- [3] Михайлов М.В., Соловьев В.А., Сырников Ю.С. Основы молекулярной акустики. М.: Наука, 1964. 514 с.
- [4] Каграманян Л.С., Бадалян А.Л. // Ультразвук и термодинамические свойства вещества. Курск, 1981. С. 131–138.
- [5] Яковлев В.Ф. Канд. дис. М., 1952. 187 с.
- [6] Литовиц Т., Дэвис К. // Физическая акустика / Под ред. У.М. Мезона. М.: Мир, 1968. Т. 2А. С. 298–370.
- [7] Лэмб Дж. // Там же. С. 222–297.
- [8] Кононенко В.С. Докт. дис. Ташкент, 1995. 300 с.
- [9] Худайбердыев В.Н., Аманов З.Н., Карабаев М.К. и др. // Изв. АН УзССР. Сер физ.-мат. наук. 1979. № 1. С. 53–56.
- [10] Михайлов И.Г., Савина Л.И. // Применение ультраакустики к исследованию вещества. М.: МОПИ, 1957. С. 85–93.