01;09;10 Ускорение и фокусировка интенсивных ионных пучков в высокочастотных структурах с использованием ондуляторов

© Э.С. Масунов, С.М. Полозов

Московский инженерно-физический институт (государственный университет), 115409 Москва, Россия e-mail: masunov@dinus.mephi.ru

(Поступило в Редакцию 28 июня 2004 г.)

Рассматриваются особенности группировки, ускорения и поперечной фокусировки интенсивных ионных пучков в линейном ондуляторном ускорителе (ЛОУ). Особенностью данного типа ускорителя является отсутствие в системе синхронной с пучком пространственной гармоники ВЧ поля. В гладком приближении получено трехмерное уравнение движения в гамильтоновой форме, сформулированы в общем виде условия ускорения и поперечной фокусировки ионных пучков в ЛОУ. Основные результаты аналитического исследования сравниваются с результатами численного моделирования динамики пучка в полигармоническом поле ускоряющего резонатора.

Введение

Одной из важнейших задач современной ускорительной физики является создание линейных ускорителей ионов на малые энергии с повышенной интенсивностью пучков. Такие ускорители необходимы как для научных исследований, так и для применения в промышленности и энергетике. Наибольшую сложность представляет разработка ускорителя-группирователя, предназначенного для формирования и ускорения легких ионов в диапазоне энергий от 50-150 keV до 1-3 MeV с током пучка в несколько десятков или сотен миллиампер при коэффициенте токопрохождения, близком к единице. При ускорении пучков высокой интенсивности существенно влияние собственного поля объемного заряда пучка, особенно при небольших энергиях, и основная трудность состоит в обеспечении эффективной поперечной фокусировки. Использование внешних фокусирующих элементов при малой скорости частиц затруднено, поэтому поперечная и продольная устойчивость пучка должны обеспечиваться только за счет выбора специальной конфигурации полей в системе. В настоящее время широко распространены ускорители-группирователи с пространственно однородной квадрупольной фокусировкой (ПОКФ) [1] и с другими видами высокочастотной фокусировки (ВЧФ) [2,3]. В ускорителях с ПОКФ, разработанных в России и за рубежом, достигнуты максимальные для резонансных ускорителей токи пучка — 100-150 mA.

Дальнейшее увеличение тока в традиционных ВЧ ускорителях представляет большую сложность. Для этого требуется либо повышать предельную плотность тока пучка, что практически невозможно, либо увеличивать диаметр пучка, что в свою очередь требует увеличения апертуры канала. В качестве альтернативы традиционным системам могут служить ускорителя ленточных пучков. У таких пучков размер в одном из поперечных направлений много больше размера в другом. Это позволяет, увеличив поперечное сечение пучка, снизить плотность тока без уменьшения интенсивности, что облегчает транспортировку сильноточного пучка в канале ускорителя.

Ранее было предложено и исследовано несколько типов ускорителей ленточных пучков (см. например, работы [4,5]), основанных на использовании различных типов высокочастотной фокусировки. Однако эти ускорители имеют ряд существенных недостатков, таких, например, как невысокая предельная плотность тока, необходимость использования очень больших (до 300 kV/cm) напряженностей ВЧ поля. В качестве другого варианта ускорения ленточных пучков было предложено использовать линейные ондуляторные ускорители (ЛОУ) [6–8]. В ЛОУ ускорение и фокусировку пучка можно реализовать в суммарном поле двух электромагнитных волн, несинхронных с пучком (в поле двух ондуляторов). Для ускорения ленточных пучков оказались пригодны ЛОУ с электростатическим ондулятором (UNDULAC–E) и

Рис. 1. Схема ЛОУ с высокочастотным ондулятором.

Целью данной работы являются подробный анализ трехмерной динамики ленточного пучка в высокочастотном ондуляторном ускорителе и изучение возможности ускорения сильноточных пучков в новом типе ускорителя.

Уравнение движения в гладком приближении

Детальное исследование динамики в полигармоническом поле является сложной задачей. Наличие быстрых осцилляций и сильная зависимость компонент ВЧ поля от поперечных координат в ускорителе ленточного пучка не позволяет использовать обычное линейное приближение в разложении поля в приосевой области. По этой причине важной представляется разработка аналитических методов исследования динамики. Ранее в работах [6,7] было предложено исследовать динамику частиц в быстро осциллирующих полях аналитически с использованием метода усреднения (так называемое гладкое приближение). Там же были сформулированы необходимые условия применимости гладкого приближения при решении данной электродинамической задачи. Аналогично тому, как это было сделано в работе [7], представим ВЧ поле в плоской периодической резонаторной структуре в виде разложения по пространственным гармоникам, предполагая, что период структуры является медленно меняющейся функцией продольной координаты. В квазистатическом приближении потенциал ВЧ поля в щелевом канале можно представить в виде

$$U = \sum_{n=0}^{\infty} U_n(x, y) \cos\left(\int h_n dz + \alpha\right) \cos(\omega t), \quad (1)$$

где $h_n = (\mu + 2\pi n)/D$ — продольное волновое число для *n*-й гармоники ВЧ поля, μ — вид колебаний, D — период структуры.

Функция $U_n(x, y)$ удовлетворяет уравнению

$$\Delta_{\perp} U_n = h_n^2 U_n \tag{2}$$

и определяет зависимость потенциала от поперечных координат. Здесь возможны два вида решений. Если функция $U_n(x, y) \sim ch(h_{n,x}x)ch(h_{n,y}y)$, то на оси канала ускорителя присутствует только продольная компонента напряженности электрического поля (продольный ондулятор, $\alpha = 0$). Если $U_n(x, y) \sim ch(h_{n,x}x)sh(h_{n,y}y)$, то на оси канала ненулевыми являются только поперечные компоненты напряженности электрического поля

(поперечный ондулятор, $\alpha = \pi/2$). Здесь $h_{n,x}$ и $h_{n,y}$ поперечные волновые числа, $h_{n,x}^2 + h_{n,y}^2 = h_n^2$. Отношение $h_{n,x}/h_{n,y}$ определяет форму поперечного сечения канала ускорителя. Зависимости компонент напряженности ВЧ поля от поперечных координат легко найти, используя соотношение $E_n = -\nabla U_n$.

Будем считать, что скорость пучка β сильно отличается от фазовой скорости всех гармоник поля $\beta_n = \omega/ch_n (n = 0, 1, ...)$, но близка к скорости комбинационной волны, полученной при сложении *n*- и *p*-й гармоник $\beta \approx \beta_v = 2\omega/c (h_p \pm h_n)$. Тогда решение уравнения движения удобно искать в виде сумм медленно меняющейся и быстро осциллирующей функций. Предполагая, что амплитуда быстрых осцилляций скорости \tilde{v} много меньше, чем медленно меняющейся составляющей скорости v, уравнения движения может быть записано в гладком приближении, аналогично тому, как это сделано в работах [6,7],

$$\frac{d^2R}{d\tau^2} = -\nabla U_{\rm ef},\tag{3}$$

где $U_{\rm ef}$ имеет смысл эффективной потенциальной функции, описывающей взаимодействие частиц с полигармоническим полем резонатора. Эта функция зависит только от медленно меняющихся поперечных координат $R_{\perp} = (\rho, \eta), \ \rho = 2\pi x/\lambda, \ \eta = 2\pi y/\lambda$ и медленно меняющейся фазы частицы в поле комбинационной волны $\varphi_x = \int h_v dz - \omega t$, где $h_v = (h_p \pm h_n)/2$ — продольное волновое число для комбинационной волны, возникающей при сложении полей *n*-й и *p*-й гармоник. Далее введем безразмерные амплитуды гармоник ВЧ поля $e_i = e\lambda E_i/2\pi W_0$, безразмерное время $\tau = \omega t$, безразмерную продольную координату $\xi = 2\pi z/\lambda$ (λ и ω — длина волны и частота ВЧ поля, W_0 — энергия покоя ускоряемого иона, e — заряд частицы). Тогда эффективная потенциальная функция имеет следующий вид [7]:

Член

$$U_1(
ho,\eta) = rac{1}{16} \sum_n e_n^2 ((\Delta_{n,y}^-)^{-2} + (\Delta_{n,v}^+)^{-2})$$

 $U_{\rm ef} = U_1 + U_2 + U_3.$

в уравнении (4) отвечает за поперечную фокусировку, а слагаемые

$$U_{2} = \frac{1}{16} \left(\sum_{h_{p}-h_{n}=2h_{v}} e_{n} e_{p} (\Delta_{p,v}^{-})^{-2} + \sum_{h_{n}-h_{p}=2h_{v}} e_{n} e_{p} (\Delta_{n,y}^{-})^{-2} \right) \cos(2\varphi_{v})$$

И

$$U_{3} = \frac{1}{16} \sum_{h_{p}+h_{n}=2h_{v}} (e_{z,n}e_{z,p} - e_{\perp,n}e_{\perp,p}) (\Delta_{n,v}^{-})^{2} \cos(2\varphi_{v} + 2\alpha_{n})$$

— за ускорение частиц в продольном направлении и поперечную дефокусировку пучка. Здесь $\Delta_{n,v}^{\pm} = (h_n \pm h_v)/h_v$.

(4)

Полученное выражение для эффективной потенциальной функции позволяет нацти гамильтонианы системы "пучок-комбинационная волна" в гладком приближени

$$\frac{1}{2}\left(\frac{dR}{d\tau}\right)^2 + U_{\rm ef} = H.$$
(5)

Уравнение движения, записанное в форме (3) позволяет достаточно просто провести анализ как продольного, так и поперечного движения частиц, найти условия поперечной фокусировки, частоты поперечных и фазовых колебаний частиц пучка, а также связь продольного и поперечного движений. Заметим, что интересной особенностью ЛОУ с ВЧ ондулятором является то, что период модуляции пучка в два раза меньше периода ВЧ поля.

Анализ динамики ионного пучка в ЛОУ с продольным полем

Как уже было сказано выше, гладкое приближение можно использовать, если мало́ отношение амплитуды быстрых осцилляций скорости к медленно меняющейся скорости частицы. Для низкоэнергетических ионных пучков это условие всегда выполняется. Эффективное ускорение пучка возможно, если медленно меняющаяся скорость частиц близка к фазовой скорости комбинационной волны, но существенно отличается от фазовой скорости ближайшей гармоники ВЧ поля.

Рассмотрим простейший случай, когда в системе присутствует только две пространственные гармоники ВЧ поля (n = 0 и n = 1). В дальнейшем удобно ввести понятие равновесной частицы, у которой усредненная скорость β_x равна скорости β_v . В ЛОУ с полем для колебаний $\mu = \pi$ продольные волновые числа равны $h_0 = \pi/D$, $h_1 = 3\pi/D$, $h_s = 2\pi/D$, скорость $\beta_v = D/\lambda$, а $U_{\rm ef}$ в системе координат, движущейся со скоростью β_v , можно записать в следующем виде:

$$U_{\rm ef} = 1/4 \Big\{ 10/9e_0^2 + 26/25e_1^2 + 2(e_{0z}e_{1z} - e_{0\perp}e_{1\perp}) \\ \times \big[\sin(2\varphi_s + 2\psi + 2\alpha) + 2\psi\cos(2\varphi_s) \big] \Big\}.$$
(6)

Здесь φ_s — фаза равновесной частицы, а $\psi = \varphi - \varphi_x$. В резонаторе с продольным ВЧ полем для колебаний $\mu = 0$ волновые числа основной и первой гармоник ВЧ поля и комбинационной волны равны соответственно $h_0 = 0, h_1 = 2\pi/D, h_v = \pi/D$. В этом слчае $\beta_v = 2D/\lambda$. Соответственно эффективная потенциальная функция может быть записана так:

$$U_{\rm ef} = 1/8 \Big\{ e_0^2 + 5/9e_1^2 + e_0 e_1 \big[\cos(2\varphi_s + 2\psi) \\ + 2\psi \sin(2\varphi_s) \big] + (e_{0z} e_{1z} - e_{0\perp} e_{1\perp}) \\ \times \big[\cos(2\varphi_s + 2\psi + 2\alpha) + 2\psi \sin(2\varphi_s) \big] \Big\}.$$
(7)

Аналогично можно найти U_{ef} для ВЧ ондуляторов с поперечным полем.

Используя найденные выражения для эффективных потенциальных функций (6) или (7), приходим к уравнению для определения прироста скорости для осевых частиц в поле комбинационной волны

$$\frac{d\beta}{d\tau} = e_{\rm ef} \sin 2\varphi, \qquad (8)$$

где $e_{\rm ef} = v \cdot e_0 \cdot e_1 / \beta_s$ — эффективная амплитуда в поле комбинационной волны, v = 1 при $\mu = \pi$ и v = 1/2 при $\mu = 0$.

Рассмотрим вначале динамику в ЛОУ с продольным полем для колебаний $\mu = \pi$. Будем полагать, что амплитуды гармоник ВЧ поля e_0 и e_1 , а также фаза равновесной частицы в поле комбинационной волны φ_s являются функциями продольной координаты. Для обеспечения эффективной группировки и ускорения пучка ЛОУ должен состоять из двух участков: группировки и ускорения. Для простоты фазу равновесной частицы в поле комбинационной волны φ_s на участке группировки выберем линейно спадающей от значения $\pi/2$ до $3\pi/8$, а амплитуды гармоник ВЧ поля — нарастающими по синусному закону от некоторого начального значения $E_{0,1}^{\varepsilon} = E_{0,1}(z = 0)$. На участке ускорения φ_s , E_0 и E_1 постоянны. Закон изменения скорости равновесной частицы в поле комбинацонной волны вдоль оси ускорителя определяется из уравнения

$$\frac{d\beta_s^2}{d\tau} = 2e_0(\xi)e_1(\xi)\sin 2\varphi_s(\xi). \tag{8a}$$

Решая это уравнение, можно легко найти закон изменения периода структуры $D = \beta_s \lambda$ и фазовых скоростей нулевой $\beta_{0,s} = 2\beta_s$ и первой $\beta_{1,s} = 2\beta_s/3$ гармоник ВЧ поля в резонаторе.

На рис. 2 показаны графики зависимости фазы равновесной частицы φ_s (рис. 2, *a*), а также амплитуд E_0 и E_1 гармоник ВЧ поля и амплитуды комбинационной волны $E_{\rm ef}$ (рис. 2, *b*) от продольной координаты. Расчет проводился для пучка ионов дейтерия при следующих параметрах: $E_0 = 150 \, {\rm kV/cm}$, $\chi = E_1/E_0 = 0.3$, энергия инжекции $W_{\rm in} = 150 \, {\rm keV}$ ($\beta_{s,\rm in} = 0.013$), длина ускорителя $L = 2.5 \, {\rm m}$, длина участка группировки $L_{\rm gr} = 1 \, {\rm m}$.

Если бы скорость пучка была близка к фазовой скорости нулевой гармоники, то в поле этой гармоники синхронная фаза была бы равна $\varphi_{0,s}$. В другом крайнем случае, когда скорость пучка близка к $\beta_{1,s}$, синхронная фаза частицы в поле первой гармоники была бы равна $\varphi_{1,s}$. Как видно из рис. 2, величины $\varphi_{0,s}$ и $\varphi_{1,s}$ слабо меняются в зависимости от z.

Уравнение (8) позволяет найти сепаратрису для осевых частиц и тем самым определить границу возможных скоростей частиц, которые могут быть захвачены в режим ускорения,

$$(\beta - \beta_s)^2 = e_0 \cdot e_1 \cdot v \cdot \left(-(\cos 2\varphi + \cos 2\varphi_s) + (m\pi - 2\varphi_s - 2\varphi) \sin 2\varphi_s \right).$$
(9)

Отметим, что для комбинационной волны следует рассматривать два диапазона фаз: $-\pi < \varphi < 0$ и $0 < \varphi < \pi$.

Рис. 2. Зависимости фазы равновесной частицы и синхронных фаз гармоник ВЧ поля (a), а также амплитуд гармоник ВЧ поля и комбинационной волны (b).

При этом для фаз в диапазоне $0 < \varphi < \pi$ m = 1, а в диапазоне $-\pi < \varphi < 0$ m = 3.

При увеличении амплитуды комбинационной волны и уменьшении φ_s вертикальный (по β) и горизонтальной (по ϕ) размеры сепаратрисы меняются. На рис. 3 приведено изменение максимального вертикального размера сепаратрисы комбинационной волны в гладком приближении в зависимости от продольной координаты z (кривая 1) для двух случаев, когда $\chi = 0.3$ (*a*) и 0.6 (b). Здесь же показаны аналогичные кривые, полученные при условии взаимодействия пучка только с нулевой гармоникой ВЧ поля (т.е. в предположении, что скорость β близка к $\beta_{0,s}$; кривая 2) и при условии, что β близка к $\beta_{1,s}$ (кривая 3). На рис. 3 кривая 4 показывает зависимость продольной скорости частицы пучка от z, рассчитанной в гладком приближении. Следует отметить, что в гладком приближении фазовые траектории всех частиц, захваченных в режим ускорения, всегда находятся внутри сепаратрисы комбинационной волны. Потери небольшого числа частиц и выход их из режима ускорения могут быть связаны только с нарушением условий адиабатичности при быстром изменении фазовой скорости и амплитуды комбинационной волны в процессе группировки пучка. Однако реальные потери частиц могут быть вызваны и другими причинами. Из рисунка видно, что при большой амплитуде первой гармоники (при $E_0 = 150 \,\text{kV/cm} \chi$ должно быть больше 1/3) в средней части участка группировки могут возникать условия, при которых происходит частичное или полное перекрытие сепаратрис комбинационной волны и первой гармоники ВЧ поля. При малых отношениях амплитуд основной и первой гармоник ВЧ поля ($\chi < 0.3$) быстрые колебания продольной скорости частиц могут значительно превышать вертикальный размер сепаратрисы (рис. 4, кривые 1-3). На рис. 4 показаны продольная скорость с учетом быстрых осцилляций (кривая 4) и результат ее усредненная (кривая 5). Если даже сепаратрисы не перекрываются, в некоторый момент времени фазовая траектория частицы может оказаться внутри сепаратрисы первой гармоники ВЧ поля. Два описанных выше эффекта могут приводить к тому, что при некоторых z скорость частицы станет близка к фазовой скорости первой гармоники ВЧ поля. В этом случае метод усреднения, строго говоря, уже применять нельзя. Интересно отметить, что когда скорость частицы окажется близкой к фазовой скорости первой гармоники ВЧ поля, частица может быть перезахвачена и ускоряться уже в поле

Рис. 3. Изменение вертикальных размеров сепаратрис.

Рис. 4. Влияние первой гармоники ВЧ поля на динамику пучка.

первой гармоники и даже выйти из режима ускорения. Если учесть, что описанные эффекты проявляются при разных величинах χ , то должно существовать некоторое оптимальное отношение амплитуд гармоник, при котором потери ускоряемых ионов будут минимальны.

Более детальное сравнение результатов расчета динамики в гладком приближении и при точном численном моделировании в полном поле с последующим усреднением полученных результатов показало, что, хотя амплитуды медленных фазовых колебаний в этих двух случаях близки, при точном расчете их период всегда немного больше периода в гладком приближении. В связи с этим величина полного набега фазы продольных колебаний в гладком приближении отличается от реальной величины. Чем больше длина ускорителя, тем больше различие в набегах фаз. Причем если эта разница приближается к некоторой критической величине, то наблюдается быстрый выход частиц из режима ускорения.

Аналогичным образом можно рассмотреть динамику пучка и проанализировать фазовое движение частиц в ВЧ поле для колебаний $\mu = 0$. Фазовые скорости комбинационной волны и гармоник ВЧ поля в этом случае равны $\beta_s = 2D/\lambda$, $\beta_{0,s} = \infty$, $\beta_{1,2} = \beta_s/2$. Так же как и для вида колебаний $\mu = \pi$, при малой величине χ амплитуда быстрых осцилляций скорости частицы значительно превышает размер сепаратрисы, рассчитанной в гладком приближении. При этом величина скорости не достигает сепаратрисы первой гармоники ВЧ поля. Так как разность между фазовыми скоростями комбинационной волны и первой гармоники ВЧ поля больше, чем при $\mu = \pi$. При больших χ сепаратрисы оказываются перекрыты, хотя амплитуда осцилляций продольной скорости частиц при этом сравнительно невелика. Поэтому можно предположить, что влияние первой гармоники ВЧ поля на продольное движение меньше при тех же χ , чем в поле для колебаний $\mu = \pi$.

Полученное выше выражение для трехмерной эффективной потенциальной функции позволяет найти в гладком приближении и условия поперечной устойчивости частиц в ЛОУ. Действительно, наличие абсолютного минимума Uef соответствует реализации условий одновременно продольной и поперечной устойчивости пучка. В простейшем приосевом приближении ($h_x^* x \ll 1$ и $h_{y}y \ll 1$) условия поперечной фокусировки можно получить аналитически. При этом не сложно показать, что для ЛОУ с полем на виде колебаний $\mu = \pi$ абсолютный минимум существует при любом отношении амплитуд гармоник х. В то же время для ЛОУ с ВЧ полем на виде колебаний $\mu = 0$ фокусировка частиц вблизи оси имеет место только при $\chi \ge 2$. Последний результат связан с тем, что в этом случае за поперечную фокусировку частиц отвечает только первая гармоника ВЧ поля. Если рассматривать динамику при больших поперечных размерах пучка в нелинейном приближении, поперечную фокусировку пучка можно реализовать и при меньших величинах χ .

На рис. 5 для ЛОУ с ВЧ полем на виде колебаний $\mu = \pi$ показаны сечения $U_{\rm ef}(0, 0, \psi)$ при x = 0, y = 0(кривая 1), $U_{\rm ef}(0, y, 0)$ при $x = 0, \psi = 0$ (кривая 2), $U_{\rm ef}(x, 0, 0)$ при $y = 0, \psi = 0$ (кривая 3). Рисунок построен при $E_0 = 150$ kV/cm, $\chi = 0.6, \varphi_s = \pi/2, \beta_s = 0.013$,

Рис. 5. Сечения эффективной потенциальной функции.

 $h_x/h_y = 1/23$, что соответствует началу участка группировки (*a*) и $\varphi_s = 3\pi/8$, $\beta_s = 0.018$ (*b*), т.е. в конце группирователя. Видно, что в начале участка группировки $U_{\rm ef}$ имеет два локальных минимума и один максимум по оси *x*. В дальнейшем с ростом скорости частиц эти особенности сглаживаются и $U_{\rm ef}$ имеет абсолютный минимум. Присутствие промежуточного максимума не приводит к существенному перераспределению плотности частиц в пучке, так как поперечные колебания частиц в направлении ширины ленты совершаются с малой частотой: при длине ускорителя 2.5 m происходит менее одного колебания.

Более подробные исследования показали, что поперечная фокусировка в ЛОУ с продольным ондулятором на виде колебаний $\mu = 0$ является менее эффективной, чем при $\mu = \pi$, и поэтому не представляет реального интереса.

Анализ динамики ионного пучка в ЛОУ с поперечным полем

Отличительной особенностью ЛОУ с поперечным высокочастотным ондулятором является то, что продольное ускорение здесь реализуется при наличии на оси ускорителя только поперечных ВЧ полей. В этом случае нельзя рассматривать динамику пучка только в приосевой области. Эффективный потенциал $U_{\rm ef}$ по виду аналогичен предыдущему случаю. Гамильтониан в четырехмерном фазовом пространстве (пренебрегая движением частиц в направлении плоскости ленты x) определяет связь между продольной и поперечной скоростями и координатами частиц

$$(\beta - \beta_s)^2 + \beta_y^2 = v/4(k_0 e_0^2 + k_1 e_1^2) + e_0 \cdot e_1 \cdot v \cdot (2ch(2h_y y) cos(2\varphi_s + 2\psi) + 2\psi sin(2\varphi_s)).$$
(10)

Здесь $k_0 = 1$, $k_1 = 5/9$ для вида колебаний $\mu = 0$; $k_0 = 10/9$, $k_1 = 26/25$ для вида колебаний $\mu = \pi$. В предположении, что $\beta_y \ll |\beta - \beta_s|$, легко найти проекцию четырехмерного фазового объема на фазовую плоскость (β, φ) и определить условия захвата частиц в режим ускорения. Оценки показывают, что амплитуды быстрых осцилляций продольной скорости и фазы малы по сравнению с аналогичными величинами в продольном ондуляторе. При рассмотрении продольного движения в поперечном ВЧ ЛОУ достаточно ограничиться гладким приближением. Из расчета следует, что коэффициент токопрохождения для обоих видов колебаний составляет в гладком приближении 85–90%. Все потери частиц в этом случае вызваны нарушением условия адиабатичности.

Условия поперечной фокусировки в гладком приближении и особенности поведения U_{ef} для ЛОУ с поперечным полем для обоих видов колебаний аналогичны найденным выше для ЛОУ с продольным полем. Из-за поперечного характера взаимодействия частиц с полем в данном типе ЛОУ быстрые осцилляции скоростей и координат частиц оказывают большое влияние на поперечное движение пучка. Они приводят к увеличению эффективного приведенного поперечного эмиттанса пучка при ускорении (примерно в три-четыре раза), что при ограниченном размере апертуры канала снижает коэффициент токопрохождения пучка.

Результаты численного моделирования динамики в ЛОУ

Для проверки результатов аналитического исследования динамики пучка в ЛОУ с высокочастотным ондулятором и для нахождения предельного тока пучка было проведено численное моделирование динамики с учетом влияния собственного поля пучка. Основные параметры ускорителя и результаты численного моделирования динамики в ЛОУ с высокочастотным ондулятором приведены в таблице.

Рассмотрим вначале результаты расчетов в ЛОУ с продольным ВЧ полем для колебаний $\mu = \pi$. Численное моделирование динамики ионов дейтерия в гладком приближении показало, что при длине ускорителя $L = 2.5 \,\mathrm{m}$ и эффективной амплитуде комбинационной волны равна $E_{\rm ef} = e\lambda E_0 E_1/(2\pi W_0 \beta_{\rm in}) = 30 \, {\rm kV/cm},$ энергия пучка на выходе ускорителя составляет 1.3-1.5 MeV, а коэффициент токопрохождения может достигать $K_T = 90\%$. Потери частиц вызваны нарушением условий адиабатичности и могут быть уменьшены путем специального выбора функций изменения $\varphi_s(\xi)$ и амплитуды комбинационной волны в процессе группировки пучка. На одном периоде ВЧ поля образуются два сгустка, это было видно и из рис. 3. При моделировании динамики пучка в полном поле найдено, что коэффициент токопрохождения пучка К_Т значительно снижается из-за быстрых осцилляции скоростей и координат частиц. Оказалось, что максимальное значение $K_T = 60\%$. При этом K_T существенно зависит от отношения амплитуд основной и первой гармоник ВЧ поля χ . Этот результат подтверждает сделанный при аналитическом исследовании вывод о существовании оптимальной величины χ . В рассматриваемом варианте оптимальное значение $\chi = 0.3 - 0.4$. Такое отношение амплитуд гармоник достаточно просто реализовать. Оптимальная длина группирователя примерно равна половине длины ускорителя.

Предельный размер сечения пучка в этом типе ЛОУ равен $5 \times 0.3 \text{ m}^2$, при этом предельный ток $I_{\text{max}} = 200-250 \text{ mA}$ (предельная плотность тока не превышает $J_{\text{max}} = 0.12 \text{ A/cm}^2$). Приведенный эффективный эмиттанс пучка при ускорении растет примерно в два раза, но этот рост меньше, чем увеличение пропускной способности на участке группировки. Поперечный размер пучка увеличивается слабо. Образования ореола не происходит. Максимальный эмиттанс пучка, рассчитанный с помощью численного моделирования, хорошо согласуется с найденной аналитически величиной аксептанса канала.

Параметры	Продольный ондулятор	Поперечный ондулятор	
Длина ускорителя <i>L</i> , m		2.5	
Энергия инжекции ионов дейтерия W_{in} , keV(β	in) 100	100(0.01)	
Амплитуда нулевой гармоники ВЧ поля E_0^1, \mathbf{k}^{V}	V/cm 200	210	
Амплитуда первой гармоники ВЧ поля E ₁ , kV	/cm 80	70	
Отношение длины участка группировки к дли	не 0.5	0.5	
ускорителя			
Размер канала ЛОУ, ст	10 imes 0.7	10 imes 0.8	
Начальный размер пучка, cm ²	5 imes 0.3	7 imes 0.3	
Отношение поперечных волновых чисел h_x/h_y	1	1/25	
Максимальный поперечный и продольный			
начальный эмиттанс ε_x , mm · mrad	30π	30π	
$\varepsilon_{y}, \text{ mm} \cdot \text{mrad}$	0.7π	0.06π	
ε_{φ} , keV · mrad	25	40	
Максимальный поперечный и продольный			
аксептанс A_x , mm · mrad	60π	60π	
A_y , mm · mrad	2π	2.5π	
$A_{\varphi}, \text{keV} \cdot \text{mrad}$	40	40	
Максимальная плотность тока J_{max} , A/cm^2	0	0.12	
Максимальный ток пучка I _{max} , А	0.2-0.25	0.3-0.35	
Коэффициент токопрохождения $K_T, \%$	60	65	
Максимальная энергия пучка W_{\max} , MeV (β_{\max}) 1.2–1.5 ($1.2 - 1.5 \ (0.034 - 0.04)$	

Основные параметры ЛОУ с высокочастотным ондулятором

Результаты численного моделирования динамики в ЛОУ с поперечным ВЧ полем и видом колебаний $\mu = \pi$ незначительно отличаются от рассмотренного выше случая. Предельный поперечный размер пучка оказался несколько больше, чем для ЛОУ с продольным ВЧ полем: $7 \times 0.3 \text{ m}^2$. При этом $K_T = 65\%$ и оптимальное значение $\chi = 0.3-0.4$. Максимальный ток пучка в этом типе ЛОУ также больше, чем в ЛОУ с продольным ВЧ полем, и составляет 300-350 mA. Интересной особенностью ЛОУ с поперечным ВЧ ондулятором является отсутствие потерь частиц из-за продольного движения при группировке пучка.

Для ЛОУ с продольным и поперечным ВЧ ондуляторами с полем для колебаний $\mu = 0$ коэффициент токопрохождения при $\chi < 1$ оказался небольшим — максимальная величина для продольного поля $K_T = 30-35\%$, для поперечного поля — не более 10%. Этот результат подтверждает вывод о недостаточной эффективности поперечной фокусировки в этом типе ЛОУ. Этот вариант ЛОУ может быть использован только при специальном выборе геометрии периода канала ускорителя, позволяющем получить $\chi > 1$. Максимальная энергия пучка составляет 0.9–1.1 МеV при длине ускорителя 2.5 m. Из-за низкого коэффициента токопрохождения оценка предельного тока для данного типа ЛОУ не проводилась.

Заключение

Подводя общий итог, связанный с анализом динамики в высокочастотном ЛОУ, следует сделать важный вывод о том, что новый тип ускорителя может быть эффективно использован для формирования, группировки и ускорения сильноточных ионных пучков. ЛОУ с полем для колебаний $\mu = \pi$ позволяет ускорять ленточные ионные пучки до энергии около 1.5 MeV при высоком темпе ускорения. Предельный ток пучка здесь может достигать 350 mA. Темп ускорения и предельный ток выше, чем в традиционном ускорителе с ПОКФ. Хотя коэффициент токопрохождения в рассматриваемом случае не превышает 65%, он может быть существенно увеличен с помощью специальных методов оптимизации функций изменения фазы равновесной частицы и амплитуды поля в группирователе.

Работа выполнена при поддержке РФФИ (грант № 04-01-16667).

Список литературы

- [1] И.М., Тепляков В.А. // ПТЭ. 1970. № 2. С. 19.
- [2] Ткалич В.С. // ЖЭТФ. 1957. Т. 32. С. 625.
- [3] Масунов Э.С., Виноградов Н.Е. // ЖТФ. 2001. Т. 71. Вып. 9. С. 79–85.
- [4] Danilov V.D., Iliin A.A., Batygin Yu.K. // Proc. EPAC'92. Vol. 1. C. 569–571.
- [5] Masunov E.S., Polozov S.M., Vinogradov N.E. // Problems of Atomic Science and Technology. 2001. N 5. P. 71–73.
- [6] Масунов Э.С. // ЖТФ. 1990. Т. 60. Вып. 8. С. 152–157.
- [7] Масунов Э.С. // ЖТФ. 2001. Т. 71. Вып. 11. С. 85–91.
- [8] Масунов Э.С., Полозов С.М. // Сб. трудов ВDO. СПб.: Издво НИИХ, 2002. С. 176–185.

118