Влияние переходного слоя на результаты эллипсометрических исследований наноразмерных слоев

© Д.И. Биленко, В.П. Полянская, М.А. Гецьман, Д.А. Горин, А.А. Невешкин, А.М. Ященок

Саратовский государственный университет им. Н.Г. Чернышевского, 410012 Саратов, Россия e-mail: GorinDA@info.sgu.ru

(Поступило в Редакцию 27 июля 2004 г.)

Представлены результаты численного моделирования структуры наноразмерная пленка-переходный слой-поглощающая подложка. Установлено влияние переходного слоя на точность определения показателя преломления и толщины наноразмерного покрытия. Показано, что введение эффективных значений показателей преломления и поглощения подложки позволяет повысить точность последующих эллипсометрических измерений параметров наноразмерных слоев. Натурными и численными экспериментами показана целесообразность замены структуры подложка-переходный слой подложкой с эффективными оптическими параметрами при определении толщины и показателя преломления наноразмерной пленки на подложке с неизвестным переходным слоем, сравнимым по толщине с пленкой. Установлено, что изменение толщины нереходного слоя незначительно влияет на точность определения толщины и показателя преломления нанесенной пленки при использовании эффективных значений показателей преломления и поглощения подложки.

Введение

01:06:07:11

В настоящее время ведутся интенсивные исследования в области разработки и создания наноразмерных электронных и оптоэлектронных устройств [1–3]. Это стало возможным благодаря развитию методов получения наноразмерных структур, к которым, в частности, относятся молекулярно-пучковая эпитаксия, получение пленок из металлоорганических соединений, метод Ленгмюра–Блоджетта [4,5], метод полиионной сборки [1]. Применение данных методов требует контроля оптических параметров и толщины получаемых структур [1–3]. Для этих целей широкой используется эллипсометрия благодаря высокой чувствительности, точности, а также возможности проведения измерений in situ [6–14].

Как известно, на точность результатов эллипсометрических исследований влияет большое число факторов, к ним прежде всего относится адекватность выбранной модели измеряемому объекту [9-12]. Нередко, определяя оптические параметры пленки, исследователи используют для расчета известные значения показателя преломления чистой подложки. Это не всегда оправдано, так как на подложках почти всегда присутствует поверхностный переходный слой, в частности, для кремниевых подложек это в основом слой естественного окисла [7,10]. Особое значение это может иметь для технологии Ленгмюра-Блоджетта поскольку 1) перенос монослоев производят на воздухе [4]; 2) часто используют гидрофобизирующие покрытия [4,5]; 3) при нанесении из водной субфазы возможно образование переходного слоя вследствие взаимодействия подложки с водой [4]. Эти факты могут существенно влиять на результаты определения свойств пленок. В связи с этим важно выяснить это влияние и возможности

его минимизации при эллипсометрических исследованиях.

Описание модели и методики расчета

В проведенных вычислительных экспериментах базовой являлась структура кремния (подложка)-переходный слой-исследуемая пленка (рис. 1).

Решались прямая и обратная задачи эллипсометрии. Как известно, основное уравнение эллипсометрии связывает поляризационные углы Ψ , Δ с коэффициентами отражения *s*- и *p*-компонент падающего излучения

$$\rho = \frac{R^p}{R^s} = \operatorname{tg} \Psi \exp(i \cdot \Delta). \tag{1}$$

Для расчета коэффициентов отражения применен матричный метод, в котором между слоями вводятся прослойки нулевой толщины с оптическими свойствами внешней среды [13,14]. Использование таких метода и модели позволяет получить следующие обобщенные формулы, дающие возможность решения прямой задачи эллипсометрии для многослойных структур с неограни-

Рис. 1. Модель структуры используемой при расчетах (*f* — пленка).

ченным числом слоев:

$$r_m^{s,p} = \left[\frac{F_m + \frac{r_{m-1} - F_m}{1 - r_{m-1} - F_m} \exp(-2i\chi_m)}{1 + F_m \frac{r_{m-1} - F_m}{1 - r_{m-1} \cdot F_m} \exp(-2i\chi_m)} \right]^{s,p}, \qquad (2)$$

-

$$\chi_m = \frac{2\pi}{\lambda} \sqrt{N_m^2 - N_c^2 \sin^2(\Theta)} \cdot d_m, \qquad (3)$$

где N_c — показатель преломления внешней среды (для воздуха $N_c = 1$), Θ — угол падения изучения на структуру, λ — длина волны, N_m и d_m — комплексный показатель преломления и толщина *m*-го слоя, F_m — коэффициенты Френеля границы раздела *m*-го слоя с внешней средой

$$F_m^p = \frac{N_m^2 \cos(\Theta) - N_c^2 \cdot \sqrt{N_m^2 - N_c^2 \sin^2(\Theta)}}{N_m^2 \cos(\Theta) + N_c^2 \cdot \sqrt{N_m^2 - N_c^2 \sin^2(\Theta)}},$$
 (4)

$$F_m^s = \frac{N_c^2 \cos(\Theta) - \sqrt{N_m^2 - N_c^2 \sin^2(\Theta)}}{N_c^2 \cos(\Theta) + \sqrt{N_m^2 - N_c^2 \sin^2(\Theta)}}.$$
 (5)

При проведении расчетов средой с *m* = 0 является подложка.

В прямой задаче рассчитывались поляризационные углы при отражении от структур кремниевая подложка-поверхностный слой окисла (Ψ_1 , Δ_1) и кремниевая подложка-переходный слой-наноразмерная пленка (Ψ_2 , Δ_2).

При моделировании были использованы следующие значеия показателей преломления n_0 и поглощения k_0 подложки кремния: $n_0 = 3.86$, $k_0 = 0.02$ при $\lambda = 632.8$ nm. Выбор именно такой длины волны обусловлен применением эллипсометра ЛЭФ-ЗМ. Расчеты производились для угла падения $\Theta = 70^\circ$, обычно используемого при эллипсометрических измерениях на кремниевых пластинах.

Значения показателя преломления окисла, использовавшегося при моделировании переходного слоя, составляли $n_{\rm tr} = 1.46$, 1.54 [10,15], толщина слоя окисла $d_{\rm tr}$ варьировалась от 0 до 23 nm. Чем меньше толщина пленки $d_{\rm fl}$, тем большее влияние переходного слоя можно было бы ожидать, поэтому толщина пленки варьировалась от 10 до 20 nm. Показатель преломления пленки $n_{\rm fl}$ изменяли в пределах от 1.05 до 1.8. Выбор показателя преломления пленки $n_{\rm fl}$ обусловлен тем, что в большинстве случаев пленки Ленгмюра—Блоджетта образованы молекулами дифильных соединений, для которых показатель преломления составляет в среднем 1.5 и определяется наличием углеводородных радикалов [4,16,17].

Сравнением результатов решения обратной задачи эллипсометрии с заданными в прямой задаче параметрами выяснялись влияние переходного слоя между пленкой и подложкой на погрешность определения показателя преломления и толщины наноразмерной пленки и возможность минимизации его влияния на определение свойств наноразмерной пленки.

Рис. 2. Алгоритм расчета прямой и обратной задачи эллипсометрии: n₀, k₀ — показатели преломления и поглощения чистой поверхности подложки (рис. 1) n_{tr}, d_{tr} — показатель преломления и толщина переходного слоя (рис. 1); Ψ_1 , Δ_1 поляризационные углы полученные от отражения излучения от поверхности структуры чистая подложка-переходный слой; n_{f1}, d_{f1} — показатель преломления и толщина нанесенной пленки (рис. 1); Ψ_2 , Δ_2 — поляризационные углы, полученные от отражения излучения от поверхности структуры чистая подложка-переходный слой-пленка; nef, kef — эффективные показатели преломления и поглощения подложки (структуры чистая подложка-переходный слой) (рис. 1); n_1, d_1 показатели преломления и поглощения пленки, рассчитанные с применением эффективных показателей преломления и поглощения подложки; n₂, d₂ — показатели преломления и поглощения пленки, рассчитанные с применением показателей преломления и поглощения чистой поверхности подложки.

При решении обратной задачи эллипсометрии использовался метод Холмса [12,18], требующий задания свойств подложки. Нами рассматривалось два случая (рис. 1): 1) подложка задается параметрами, характерными для чистой поверхности кремния, $n_0 = 3.86$, $k_0 = 0.02$, тем самым наличие и свойства переходного (поверхностного) слоя не учитываются; 2) оптические свойства подложки задаются эффективными параметрами показателя преломления $n_{\rm ef}$ и поглощения $k_{\rm ef}$, характеризующими реальную поверхность.

Расчет $n_{\rm ef}$ и $k_{\rm ef}$ производился по известным формулам [9–12]

$$N_{\rm ef} = n_{\rm ef} - ik_{\rm ef} = N_c = \sin(\Theta) \sqrt{\left(\frac{1-\rho_1}{1+\rho_1} \,{\rm tg}\,\Theta\right)^2 + 1},$$
(6)

где Θ — угол падения излучения, $\rho_1 = \operatorname{tg} \Psi_1 \exp(i \cdot \Delta)$, Ψ_1 и Δ_1 — измеренные углы поляризации структуры подложка-переходный слой.

Алгорит решения прямой и обратной задач приведен на рис. 2.

1. Результаты моделирования

Результаты проведенного моделирования иллюстрируются на рис. 3–6. Дополнительно на рис. 5,6 для сравнения показаны результаты расчета при $n_{\rm tr} = 3$. На основе анализа представленных выше зависимостей установлено следующее.

Рис. 3. Влияние толщины переходного слоя окисла $d_{\rm tr}$ на точность определения показателя преломления и толщины наноразмерной пленки (при $n_{\rm tr} = 1.46$). δ — относительная погрешность, I — без учета окисла, II — при $N_{\rm ef}$; b — фрагмент рис. 3, a.

Рис. 4. Влияние различия в показателях преломления переходного слоя $n_{\rm tr}$ и пленки $n_{\rm fl}$ на точность определения показателя преломления и толщины наноразмерной пленки при $d_{\rm fl}$, $n_{\rm tr} = 1.46$. δ — относительная погрешность, I — без учета окисла, II — при $N_{\rm ef.}$

1. Эффективный показатель преломления $n_{\rm ef}$ уменьшается, а эффективный показатель поглощения $k_{\rm ef}$ увеличивается с увеличением толщины слоя окисла $d_{\rm tr}$, моделирующего переходной слой (рис. 5). Так, при увеличении толщины окисла $d_{\rm tr}$ до 15 nm ($n_{\rm tr} = 1.46$) уменьшается эффективный показатель преломления $n_{\rm ef}$ от 3.86 до 3.57, а эффективный показатель поглощения $k_{\rm ef}$ увеличивается от 0.02 до 0.99. По величине эффективных показателей преломления и поглощения можно судить о наличии переходного слоя на поверхности подложки.

71

2. Погрешность определения толщины и показателя преломления пленки, нанесенной на подложку со слоем окисла, зависит от толщины окисла (рис. 3). С увеличением толщины переходного слоя $d_{\rm tr}$ возрастает погрешность в определении параметров пленки. При этом максимальная погрешность в толщине пленки возникает в случае пренебрежения слоем окисла и сравнима с

Рис. 5. Зависимость эффективных показателей преломления и поглощения подложки от толщины слоя окисла.

Рис. 6. Зависимость критерия применимости эффективных параметров подложки от толщины переходного слоя.

Способ обработки	КЭФ-5 [100]		КЭФ-5 [111]	
	n _{ef}	$k_{ m ef}$	n _{ef}	k _{ef}
Подложка до обработки	3.856 ± 0.002	0.210 ± 0.016	3.842 ± 0.016	0.645 ± 0.018
Обезжиривание с CCl ₄	3.858 ± 0.001	0.195 ± 0.004	3.852 ± 0.002	0.242 ± 0.025
1-е травление в HF	3.630 ± 0.103	0.608 ± 0.204	3.780 ± 0.029	0.464 ± 0.058
2-е травление в НF	3.559 ± 0.078	0.923 ± 0.148	3.711 ± 0.015	0.723 ± 0.085
Ионное травление	3.759 ± 0.005	0.788 ± 0.014	3.793 ± 0.005	0.584 ± 0.012
Вымачивание в дис-	3.760 ± 0.041	0.542 ± 0.060	3.818 ± 0.014	0.372 ± 0.036
тиллированной воде				

Влияние обработки поверхности подложки на значение эффективных показателей преломления и поглощения подложки

толщиной самого окисла (рис. 3). Так, при толщине окисла, составляющего всего лишь 5% от толщины пленки $(d_{\rm tr}/d_{\rm fl} = 5\%)$, погрешность в определении толщины пленки при использовании значений показателей преломления и поглощения чистой подложки составляет 4.5%, а при использовании эффективных показателей — всего лишь 0.4%. При сравнимых толщинах слоя окисла с толщиной пленки, например при толщине окисла 100% от толщины пленки, погрешности в определении толщины пленки составляют соответственно более 90% при пренебрежении переходным слоем и менее 6% при использовании эффективных значений показателей преломления и поглощения хначений показателей и преломления и поглощения составляют.

3. Погрешность определения толщины и показателя преломления пленки зависит от различия в показателях преломления окисла и пленки (рис. 4). Так, если показатель преломления пленки больше показателя преломления окисла в 1.13 раз $(n_{\rm f1}/n_{\rm tr} = 1.13)$, погрешность в определении толщины пленки при использовании эффективных значений показателей подложки составляет 1.3%, а при использовании значений показателей преломления и поглощения чистой подложки — более 11%. Использование эффективных показателей преломления и поглощения подложки оправдывает себя и в случае, если показатель преломления окисла меньше показателя преломления пленки (рис. 4). Так, если показатель преломления пленки меньше показателя преломления переходного слоя в 0.85 раз $(n_{\rm fl}/n_{\rm tr}=0.85)$, погрешность в определении толщины пленки приближается к 7% против 10% при использовании значений показателя преломления чистой подложки.

4. Для вышеуказанных промоделированных структур был рассчитан коэффициент применимости эффективной подложки Ф [19]. Было получено, что коэффициент применимости эффективной подложки со слоем окисла толщиной 23 nm. ($n_{\rm tr} = 1.54$) равен $\Phi = 1.01$, при этом погрешность в последующем эллипсометрическом исследовании пленки будет зависеть от отношения толщины слоя окисла и пленки и при толщине пленки, равной толщине окисла, т.е. 23 nm (рис. 3, 4), составит 6 и 5% для показателя преломления и толщины пленки соответственно.

2. Эксперимент и его результаты

Экспериментально исследовалось влияние широко применяемых обработок кремниевых пластин на значения эффективных показателей преломления и поглощения подложек с целью определения возможных диапазонов изменения этих параметров. Использовался монокристаллический кремний КЭФ-5 с кристаллографической ориентацией [111] и [100].

Эффективные показатели преломления и поглощения рассчитывались по измеренным поляризационным углам Ψ , Δ при углах падения 60 и 70°.

Измерялись пластины после длительного хранения на воздухе. После обработки кипячением в четыреххлористом углероде пластины разделялись на три группы и подвергались трем различным видам обработки: два последовательных травления в водном растворе фтористоводородной кислоты, ионное травление, выдерживание в дистиллированной воде в течение 30 min.

Измерения проводились в нескольких точках поверхности кремниевой пластины после каждой операции. В таблице приведены средние значения показателя преломления подложки после каждой операции. Пластины с ориентацией [100] характеризуются более узкими диапазонами изменения эффективных показателей преломления и поглощения: значения эффективных показателей преломления и поглощения находятся в пределах от 3.56 до 3.86 и от 0.20 до 0.92 соответственно для подложек с ориентацией [100] и от 3.71 до 3.85 и от 0.24 до 0.72 для подложек с ориентацией [111]. Установлено, что значения эффективных показателей преломления и поглощения наиболее близки к значениям чистой подложки при обезжиривании пластин. Во всех случаях критерий применимости эффективной подложки Ф [19] близок к 1. Наибольшее отклонение Ф от 1 наблюдается при травлении в фтористо-водородной кислоте и составляет 0.0035 (для 2-го травления в фтористо-водородной кислоте пластин КЭФ-5 [100]).

Полученные экспериментальные значения $n_{\rm ef}$, $k_{\rm ef}$ использованы при проведении вычислительного эксперимента, направленного на выяснения возможностей определения свойств пленок Ленгмюра—Блоджетта, нанесенных на кремниевые подложки, на основе следующей последовательности операций: эллипсометрические измерения свойств подложки перед нанесением слоя Ψ_1 , Δ_1 ; расчет эффективных показателей преломления $n_{\rm ef}$ поглощения $k_{\rm ef}$; нанесение слоя и измерение эллипсометрических параметров Ψ_2 , Δ_2 структуры; расчет показателя преломления $n_{\rm fl}$ и толщины $d_{\rm fl}$ нанесенного слоя с использованием $n_{\rm ef}$, $k_{\rm ef}$, Ψ_2 , Δ_2 ; анализ погрешностей на

основе графиков численного эксперимента (рис. 3–6). Установлено, что применение $n_{\rm ef}$, $k_{\rm ef}$ позволяет существенно повысить точность измерений параметров нанесенного слоя. В силу разных причин переходный слой может существенно измениться после нанесения на него пленки, однако даже при изменении переходного слоя, например, в четыре раза с 10% до толщины пленки до 40% (рис. 3) получаем, что при использовании эффективных значений показателя преломления и поглощения погрешность увеличивается всего на $\approx 1.8\%$.

3. Заключение

Натурными и численными экспериментами показана целесообразность замены структуры подложка—переходный слой подложкой с эффективными оптическими свойствами при определении толщины и показателя преломления наноразмерных пленок, нанесенных на подложки с неизвестными переходными слоями, сравнимыми по толщине с пленкой. Установлено, что изменение толщины переходного слоя незначительно влияет на точность определения толщины и показателя преломления нанесенной пленки при использовании эффективных значений показателей преломления и поглощения, определяемых перед нанесением пленки.

Список литературы

- [1] Плотников Г.С., Зайцев В.Б. Физически основы молекулярной электроники. М.: МГУ, 2000. 164 с.
- [2] Евтихиев В.П., Кудряшов И.В., Котельников Е.Ю. и др. // ФТП. 1998. Т. 32. Вып. 12. С. 1482–1486.
- [3] Винокуров Д.А., Капитонов В.А., Коваленков О.В. и др. // ФТП. 1999. Т. 33. Вып. 7. С. 858–862.
- [4] Petty M. Langmuir-Blodgett Films: an Introduction. Cambridge: University Press, 1996. 234 p.
- [5] Гаврилюк И.В., Казанцева З.П., Лаврик Н.В. и др. // Поверхность. 1991. № 11. С. 93.
- [6] Стащук В.С., Шкурат В.И. // Эллипсометрия метод исследования поверхности. Новосибирск: Наука, 1983. С. 35–37.
- [7] Аюпов Б.М., Сысоева Н.П., Титова Е.Ф. // Эллипсометрия: теория, методы, приложения. Новосибирск. Наука, 1987. С. 136–139.
- [8] Любинская Р.И., Мардежов А.С., Швец В.А. // Там же. С. 59–67.
- [9] Горшков М.М. Эллипсометрия. М.: Сов. радио, 1974. 200 с.
- [10] Пшеницын В.И., Абаев М.И., Лызлов Н.Ю. Эллипсометрия в физико-химических исследованиях. Л.: Химия, 1986. 152 с.

[11] Основы эллипсометрии / Под ред. А.В. Ржанова. Новосибирск: Наука, 1978. 424 с.

73

- [12] Громов В.К. Введение в эллипсометрию. Л.: Изд-во ун-та, 1986. 192 с.
- [13] Физика тонких пленок / Под ред. В.С. Хангулова. Т. 1. М.: Мир, 1967. 344 с.
- [14] Биленко Д.И., Дворкин Б.А., Дружинина Т.Ю. и др. // Опт. и спектр. 1983. Т. 55. Вып. 5. С. 885–890.
- [15] Егоров Г.А., Иванова Н.С., Потапов Е.В. и др. // Опт. и спектр. 1974. Т. 36. Вып. 4. С. 773–776.
- [16] Янклович А.И. // Успехи коллоидной химии. М.: Химия, 1991. С. 263–291.
- [17] Штыков С.Н., Климов Б.Н., Горин Д.А. и др. // ЖФХ. 2004. Т. 78. № 3. С. 503–506.
- [18] Holmes D.A. // Appl. Optics. 1967. Vol. 6. N 1. P. 168.
- [19] Швец В.А. Автореферат канд. дис. Новосибирск, 1988. 17 с.