02;10;12 Исследование состава и изотопов гелия в балтийских железомарганцевых конкрециях

© Г.С. Ануфриев,¹ Л.Н. Блинов,² Б.С. Болтенков,¹ Мохаммад Ариф²

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

² Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

(Поступило в Редакцию 30 августа 2004 г.)

Разработаны методики обработки образцов железомарганцевых конкреций Финского залива Балтийского моря. Определено содержание и соотношение в них основных компонентов. Проведены изотопные исследования гелия в указанных конкрециях, определена скорость их роста — 7.5 mm/thousand years. Показана возможность увеличения содержания космического вещества в конкрециях после их специальной химической обработки.

Введение

Железомарганцевые конкреции (ЖМК), содержащие в промышленных концентрациях Mn, Fe, Co, Ni, Cu и др. металлы, вполне могут рассматриваться как перспективные полиметаллические руды для металлургической и химической промышленности в недалеком будущем. По химическому составу конкреции различных морей и океанов существенно отличаются друг от друга. Их состав зависит от многих факторов, в частности, от географического расположения водных объектов, их солености, глубин, скоростей осадкообразования в целом и скоростей роста самих конкреций, а также окислительно-восстановительных свойств среды, взаимодействия *d*-элементов с кислород- и серосодержащей природной водой. Как правило, железо и марганец в конкрециях находятся в виде Fe^{3+} и Mn^{4+} , меньше в виде Fe^{2+} и Mn²⁺. Концентрация некоторых металлов в батийских ЖМК несколько ниже, чем в глубоководных океанических конкрециях [1-3], однако балтийские конкреции в ряде случаев более привлекательны своей доступностью в силу мелководности залегания (десятки метров от поверхности моря), близостью к промышленно развитым регионам и их технологическим базам.

Промышленное использование ЖМК предполагает предварительную оценку скорости воспроизводства конкреций в природе, что в свою очередь требует знания скорости роста конкреций. При оценке этого параметра общепринятыми методами ядерной геохронологии [4] возникают серьезные трудности, состоящие в следующем: 1) методы ядерной геохронологии возможно применять только при априорном предположении о постоянстве скорости роста конкреций, нет никаких оснований предполагать, что это условие выполняется при росте балтийских конкреций; 2) геологические признаки позволяют считать, что балтийские конкреции с размерами 2-3 ст и менее растут сравнительно быстро (≈ 1 ст/thousand years). Последнее означает, что обычно применяемые в ядерной геохронологии рациоизотопы

с периодами полураспада $\approx 10^4 - 10^6$ лет практически непригодны для определения скорости роста балтийских ЖМК. Однако предложенный "метод космического трассера" [5,6] позволяет решить эту сложную задачу определение скорости роста быстро растущих ЖМК. Метод использует явление аккреции космической пыли Землей и аккумулирование этой пыли осадочными породами [7]. Космические пылинки за время существования в открытом космосе насыщаются ионами Солнечного ветра и "транспортируют" в земные осадочные породы солнечный гелий с высоким изотопным отношением 3 He / 4 He $\approx 10^{-4}$ по сравнению с земным гелией [8]. для которого характерна величина этого отношения $\approx 10^{-8} - 10^{-7}$. В результате, как показывает анализ, концентрация изотопа ³Не в образце осадочной породы имеет в основном космическое происхождение и скорость роста (r) осадочной породы (в том числе и ЖМК) может быть найдена из соотношения [7].

$$r = F/\rho \cdot {}^{3}\mathrm{He}_{k}, \tag{1}$$

где $F = 1.2 \cdot 10^{-15} \text{ cm}^3/\text{cm}^2$ уеаг — поток изотопа ³He_k [5], $\rho = 1.6 \text{ g/cm}^3$ — плотность ЖМК, ³He_k — концентрация легкого изотопа космического гелия.

Так как балтийские конкреции растут быстро, то не весь измеренный в образце ³Не является космическим гелием. В рамках двухкомпонентной модели можно определить долю космического гелия ³Не по формуле

$$\frac{{}^{3}\text{He}_{k}}{{}^{3}\text{He}} = \frac{1 - \frac{({}^{3}\text{He}/{}^{4}\text{He})_{rad}}{({}^{3}\text{He}/{}^{4}\text{He})}}{1 - \frac{({}^{3}\text{He}/{}^{4}\text{He})_{rad}}{({}^{3}\text{He}/{}^{4}\text{He})_{k}}},$$
(2)

где $({}^{3}\text{He}/{}^{4}\text{He})_{rad} = 2 \cdot 10^{-8}$ — изотопное отношение в земном (радиогенном [8]) гелии, $({}^{3}\text{He}/{}^{4}\text{He})_{k} = 4 \cdot 10^{-4}$ — изотопное отношение в космическом (солнечном [9]) гелии, $({}^{3}\text{He}/{}^{4}\text{He})$ — измеренное значение изотопного отношения гелия.

Элемент	Содержание, mass %		Относительное содержание кислоторастворимой формы,%	
	до обработки	после обработки	до обработки	после обработки
Марганец	32.01	28.61	100	100
Железо	9.15	12.32	97.3	98.2
Кремний	5.14	4.71	14.4	5.5
Алюминий	2.7	2.4	48.1	45.8
Натрий	0.56	0.50	100	100
Кальций	1.47	1.45	88.4	89.6
Магний	1.28	0.93	93.8	93.5
Титан	0.105	0.09	38.1	44.4
Калий	0.81	0.73	100	100
Ванадий	0.012	0.004	100	100
Медь	0.010	0.016	80	44
Никель	0.03	0.03	100	100
Цинк	0.116	0.075	60.3	93.3
Свинец	< 0.01	< 0.01	-	_
Барий	0.235	0.227	97.9	96.9

Таблица 1. Содержание элементов в образце конкреции до и после химической обработки

Методика эксперимента

Для анализа образцы конкреций подготавливались следующим образом. Четыре примерно одних размеров конкреции сферической формы (в диаметре ≈ 25 mm) механически измельчались до порошка с размером зерна доли миллиметра. Далее для большего усреднения числа космических пылинок в единице объема порошок тщательно перемешивался. Общая масса порошка составила около 20 g. Из этого количества отбирались пробы (табл. 2) для анализа. Образцы конкреций обрабатывались разбавленной соляной кислотой с перекисью водорода без добавления и с добавлением плавиковой кислоты.

Химический состав конкреций определяли стандартизированным химическим методом с использованием на завершающем этапе ЭШЕЛЛЕ-спектрометра ICP, имеющем источник высокочастотной индуктивно-связанной плазмы (модель PC 1000 Leeman Labs. inc). Дополнительно применялся метод атомно-абсорбционного анализа на приборе Perkin–Elmer 216. Относительная погрешность методов не больше ±4% [10,11].

Изотопный анализ проводился при помощи магнитного резонансного масс-спектрометра высокого разрешения [12]. Выделение гелия из образцов осуществлялось путем их нагрева в вакууме с последующей геттерной очисткой от химически активных газов [13].

Результаты экспериментов и их обсуждение

Определение Fe и Mn в конкрециях Балтийского моря проводилось указанными выше инструментальными методами на пяти образцах. Среднее содержание марганца и железа в конкрециях составило 32 и 9% соответственно. Величина соотношения марганца к железу ≈ 3.5 . Последняя величина позволяет отнести [1,2] конкреции Балтийского моря к группе железомарганцевых конкреций. Для оптимизации изучения содержания в конкрециях ³Не необходимо было провести целенаправленное исследование образцов на содержание в них Mn, Fe, а также других элементов до и после химической обработки их выбранным составом реагентов. Время обработки составляло от 1 до 120 min, масса навески ~ 1 g, объем 2%-го раствора HCl + H₂O₂ 200 ml. Результаты исследования показали, что содержание ряда элементов после обработки в мелкодисперсных образцах конкреций стало относительно меньше, в некоторых больше. Для примера в табл. 1 приведены результаты исследования по содержанию элементов одного из образцов конкреций до и после обработки, полученные с помощью спектрометра РС 1000. В этой же таблице приведено содержание кислоторастворимых форм соединений этих же элементов. Из данных таблицы видно, что относительное содержание Mn, Si, Al, Mg, V в конкрециях после обработки заметно снизилось, тогда как относительное содержание Fe и Cu увеличилось. Содержание же ряда элементов не претерпело существенных изменений (Na, Ca, K, Ti, Ba). Полученные результаты помимо количественных данных, важных для разработки технологических процессов, дают определенную базу для выбора наиболее подходящих и "мягких" условий химической обработки конкреций с целью сохранения изотопа ³Не, содержащегося в космических силикатных пылинках, входящих в состав ЖМК.

Известно, что распространенность изотопа ³Не в земных породах и в атмосфере существенно меньше, чем ⁴Не [14]. Именно поэтому для обработки образцов конкреций в конечном итоге выбран раствор HCl (при комнатной температуре). Использование же ще-

№ опыта	Навеска, д	4 He $\cdot 10^{6}$, cm ³ /g	3 He $\cdot 10^{12}$, cm 3 /g	3 He / 4 He $\cdot 10^{7}$	Примечание
1	0.5435	13.7 ± 1.4	1.3 ± 0.13	0.95 ± 0.15	Исходная необработанная смесь измельченных образцов конкреций
2	0.4442	46.8 ± 4.7	10.9 ± 1.1	2.3 ± 0.34	Травление $HCl + H_2O_2$, $K = 4.35$
3	0.3229	31.8 ± 3.2	1.01 ± 0.10	0.32 ± 0.04	Травление HCl + HF, $K = 7.05$
4	0.5908	8.5 ± 0.85	1.4 ± 0.14	1.70 ± 0.25	Травление $HCl + H_2O_2$ с добавлением HNO_3 , $K = 2.05$
5	0.4011	13 ± 1.3	1.3 ± 0.13	1.00 ± 0.14	Исходный порошок ЖМК (повтор опыта 1)

Таблица 2. Данные изотопных исследований гелия и химической обработки образцов

Примечание. К — отношение начальной массы вещества конкреций к массе нерастворимого остатка, подвергаемого изотопному анализу.

лочных растворов и HF нецелесообразно, поскольку они приводят к растворению силикатов и потере ³He.

Расчеты по выражению (2) с использованием экспериментальных данных (табл. 1) показывают, что космический гелий составляет 80% от измеренного. С учетом этого из выражения (1) можно найти скорость роста исследованных нами ЖМК Финского залива Балтийского моря

$$r = 7.5 \,\mathrm{mm/thousand}$$
 years. (3)

Это первое определение скорости роста конкреций Финского залива. Случайная ошибка определения составляет величину около 10%. Известны два определения скорости роста балтийских конкреций (западная часть Балтийского моря [15,16], вблизи берегов Дании): 7 и 20 mm/thousand years, выполненные различными методами. Наше определение согласуется с этими данными, но поддерживает меньшее значение.

Вторая задача, которая решалась в этой работе, — это попытка поиска такой химической обработки вещества конкреций, которая путем перевода основных компонентов конкреций — гидрооксидов Мп и Fe в раствор повышала бы концентрацию космического вещества в нерастворимом остатке. Основная цель этой задачи получение космического материала в возможно более чистом виде для его детального исследования. Экспериментальные данные изотопных исследований гелия приведены в табл. 2.

Как видно из табличных данных, концентрация изотопа ³Не в мелководных конкрециях Финского залива практически такая же, как в глубоководных тихоокеанских ЖМК [5], что, вероятнее всего, свидетельствует о слабой зависимости потока космической пыли на Землю от географических координат.

Из данных табл. 2 следует также, что обработка конкреций соляной кислотой без добавления плавиковой кислоты дает значительно большее обогащение легким изотопом гелия ³Не нерастворимого остатка. Оптимизация данного подхода будет продолжена в последующих работах.

Результаты настоящей работы хорошо согласуются с данными [17]. Следует отметить, что в поиске оптимального метода обработки конкреций конкретным растворителем наши экспериментальные данные совпали с результатами работ [18,19], но в отличие от последних для ускорения и усиления процедуры обработки конкреций нами использовалась разбавленная соляная кислота с добавлением перекиси водорода.

Заключение

Методами физико-химического анализа установлено содержание Mn и Fe в конкрециях Балтийского моря. Впервые определена скорость роста конкреций Финского залива. Определенное соотношение элементов Fe и Mn подтверждает отнесение указанных образований к группе железомарганцевых конкреций. Разработана методика обработки этих конкреций конкретными растворами кислот, определены наиболее оптимальные ("мягкие") условия обработки. Растворитель $HCl + H_2O_2$ может быть использован на практике при извлечении, например, Mn из конкреций, а также для обогащения нерастворимого остатка легким изотопом ³He. Последнее открывает новые возможности для концентрирования космического материала и его более глубокого изучения.

Список литературы

- [1] Андреев С.И. Металлогения железомарганцевых образований Тихого океана. СПб.: Недра, 1994. 191 с.
- [2] Атлас морфологических типов железомарганцевых конкреций Мирового океана / Под ред. Б.Х. Егиазарова, В. Зыка. Брно, 1990. 211 с.
- [3] Волков И.И. // Химия океана. Т. 2. Геохимия донных осадков. М.: Наука, 1979. 536 с.
- [4] Справочник по изотопной геохимии / Под ред. Э.В. Соботовича, Е.Н. Бертенского, О.Б. Цьоня, Л.В. Кононенко. М.: Энергоиздат, 1982. 211 с.
- [5] Ануфриев Г.С., Болтенков Б.С., Волков И.И., Капитонов И.Н. // Литология и полезные ископаемые. 1996. № 1. С. 3–11.
- [6] Ануфриев Г.С., Болтенков Б.С. // Российская наука: грани творчества на грани веков. М.: Научный мир, 2000. С. 310– 321.
- [7] Ануфриев Г.С., Крылов А.Я., Павлов В.П., Мазина Т.И. // ДАН СССР. 1977. Т. 237. № 2. С. 284–287.

- [8] Ануфриев Г.С. // ДАН СССР. 1979. Т. 249. № 3. С. 1202– 1206.
- [9] Ануфриев Г.С., Болтенков Б.С., Усачева Л.В., Капитонов И.Н. // Изв. АН СССР. Сер. Физ. 1983. Т. 47. № 9. С. 1830–1837.
- [10] Блинов Л.Н., Мохаммад Ариф, Ануфриев Г.С. // Материалы VIII Всероссийской конф. Фундаментальные исследования в технических университетах. Изд-во СПбГПУ, 2004. С. 224–225.
- [11] Мохаммад Ариф, Блинов Л.Н. // Физ. и хим. стекла. 2004.
 Т. 30. № 4. С. 488–491.
- [12] Ануфриев Г.С., Афонина Г.И., Мамырин Г.А., Ненарокомова В.Т., Павленко В.А., Рафальсон А.Э. // ПТЭ. 1979. № 3. С. 244.
- [13] Ануфриев Г.С., Гартманов В.Н., Мамырин Г.А., Павлов В.П. // ПТЭ. 1977. № 1. С. 248–250.
- [14] Эмсли Дж. Элементы. Перевод с англ. М.: Мир, 1993. 256 с.
- [15] Hlawatsch S., Garde-Schonberg C.D., Lechtenberg F., Mancua A., Tamura N., Kulik D.A., Kersten M. // Chemical Geology. 2002. Vol. 182. N 2–4. P. 697–709.
- [16] Hlawatsch S., Neumann T., van den Berg C.M.G., Kristen M., Harff J., Suess. // Marine Geology. 2002. Vol. 182. N 3–4. P. 373–387.
- [17] Ануфриев Г.С., Болтенков Б.С. // Тез. докл XVI симпозиум по геохимии изотопов. М., 2001. С. 13–14.
- [18] Kanungo S.B. // Hydrometallurgy. 1999. Vol. 52. P. 313-330.
- [19] Kanungo S.B. // Ibid. P. 331-347.