05;11;12

Ферромагнитный резонанс в эпитаксиальных пленках одноосных бариевых гексаферритов

© И.В. Зависляк, В.И. Костенко, Т.Г. Чамор, Л.В. Чевнюк

Киевский национальный университет им. Т.Г. Шевченко, 01033 Киев, Украина e-mail: zav@univ.kiev.ua

(Поступило в Редакцию 22 июня 2004 г.)

Проведены исследования магнитных параметров эпитаксиальных пленок гексаферрита бария. Приведены экспериментальные результаты гистерезиса частотно-полевых зависимостей ферромагнитного резонанса (ФМР) эпитаксиальных пленок бариевого гексаферрита в области перехода из многодоменного состояния в однодоменное и обратно. Исследовано влияние толщины подложки на связь эпитаксиальной пленки с полем СВЧ.

1. Введение

Гексагональные ферриты, в частности бариевый феррит $BaFe_{12}O_{19}$, благодаря их высокой одноосной анизотропии и сравнительно небольшой ширине линии ферромагнитного резонанса (ФМР) (2 ΔH) дают возможность повысить рабочие частоты СВЧ устройств до 100 GHz и выше [1]. Использование железо-иттриевого граната (ЖИГ) в этом диапазоне частот практически невозможно из-за необходимости применения больших внешних магнитных полей.

По сравнению с объемными монокристаллами применение эпитаксиальных пленок имеет ряд преимуществ [2]. Рост пленок до толщин 2-5 микрон методом жидкофазной эпитаксии длится несколько десятков минут, благодаря чему процесс является более контролируемым по сравнению с методами выращивания объемных монокристаллов. В дальнейшем можно ожидать получения эпитаксиальных монокристаллических пленок более высокого качества. К тому же применение эпитаксиальных пленок дает возможность построения интегральных устройств спин-волновой электроники миллиметрового диапазона. По указанным выше причинам исследования магнитных СВЧ параметров эпитаксиальных пленок являются актуальными и важными для их улучшения, с одной стороны, и практического применения в устройствах миллиметрового диапазона (резонаторы, фильтры, линии задержки и др.), с другой.

Нами проведены экспериментальные исследования Φ MP нескольких десятков образцов эпитаксиальных пленок чистого гексаферрита бария и замещенного алюминием, выращенных на подложках из гексагаллата стронция SrGa₁₂O₁₉ при разных технологических режимах. Исследования проводились на стенде с измерительной линией. На фиксированной частоте измерялась зависимость коэффициента бегущей волны (КБВ), пропорционального μ'' -мнимой части магнитной проницаемости пленки, от внешнего магнитного поля, которое изменялось дискретно (по точкам). Интервал между точками выбирался произвольно и уменьшался

вблизи максимума резонансной кривой. Кроме этого, исследования проводились с применением панорамного измерителя КСВН. В этом случае мы измеряли значения КБВ, которые отражали суммарные потери в волноводном тракте, состоящие из потерь в ненагруженном образцом волноводном тракте, потерь на ФМР в пленке гексаферрита, а также из потерь, связанных с диэлектрическим резонансом в подложке. Поскольку потери в ненагруженом волноводном тракте и потери в подложке не зависят от внешнего поля H_0 , а поглощение в пленке гексаферрита зависит, то его легко выделить из суммарных потерь путем вычитания. Величину H_a определяем по формуле

$$H_a=rac{\omega_0}{\gamma}-H_0+4\pi M_0,$$

где $4\pi M_0$ — намагниченность насыщения, γ — гиромагнитное отношение, ω_0 — резонансная частота.

Значения резонансной частоты ω_0 и H_0 мы получаем с эксперимента, M_0 должно быть получено из независимых экспериментов. Нами значение M_0 взято из литературных источников, и при расчетах мы предполагали, что оно не меняется для всех эпитаксиальных пленок чистого бариевого гексаферрита. Для чистого бариевого гексаферрита M_0 равна 0.375 kGs [3].

При полях H_0 , достаточных для насыщения, резонансный пик может находиться в различных участках спектра неферромагнитных потерь, что заметно влияет на точность определения $2\Delta H$. Анализ результатов многократных измерений $2\Delta H$ показывает, что при использовании панорамного измерителя КСВН погрешность определения $2\Delta H$ не превышает 10%, а при использовании измерительной линии погрешность порядка 5%. Анализ полученных экспериментальных результатов позволяет обнаружить некоторые особенности ФМР.

В зависимости от технологии выращивания пленок одноосная анизотропия H_a изменяется от 15.3 до 17.1 kOe. Поле H_a монокристаллических объемных образцов составляет примерно 17 kOe, а $2\Delta H - 25-30$ Oe. Для большинства пленок H_a меньше, чем для монокристал-

Толщина подложки, μт	K _m	K ₀	f ₀ ,GHz	<i>H</i> ₀ , кЭ	$2\Delta f$, Hz	$2\Delta H$, Oe	H_a , Oe
500	0.91	0.10	44.87	4.00	270	96	16.73
450	0.85	0.10	44.72	4.00	230	82	16.68
400	0.67	0.08	44.60	4.00	200	71	16.63
290	0.24	0.07	44.65	4.00	170	60	16.65
190	0.13	0.05	45.49	4.23	170	60	16.72

Зависимость измеренных магнитных параметров H_a и 2 ΔH , а также поглощения в измерительном волноводе от толщины подложки для образца эпитаксиальной пленки гексаферрита бария толщиной 5 μ m прямоугольной формы

Примечание. К_т — поглощение в максимуме резонансной кривой, К₀ — поглощение в тракте вне пределов линии ФМР.

лических образцов, а $2\Delta H$ изменяется от 40 до 200 Ое. Известно, что в эпитаксиальных пленках гексаферрита бария возникает дополнительная одноосная анизотропия H'_a вызванная упругими напряжениями вследствие несоответствия параметров решетки *a* пленки и подложки [4]. Для BaFe₁₂O₁₉ $\Delta a/a$ (Δa — разница величин параметров решеток пленки и подложки) равна 1.65% [5]. По этой причине суммарное поле одноосной анизотропии $H_{a\Sigma}$ будет изменяться от пленки к пленке, а неоднородные упругие напряжения будут уширять линию ФМР. Кроме этого, в эпитаксиальных пленках гексаферрита бария в процессе эпитаксиального роста может происходить термодиффузия ионов галлия из подложки аналогично [6].

Из показанной на рисунке зависимости резонансной частоты ω_0 от внешнего поля H_0 при нормальном намагничивании эпитаксиальной пленки гексаферрита бария видны две области частот (или полей), в которых кривая $\omega_0(H_0)$ имеет существенно различный ход. В полях, меньших поля насыщения, в пленке существует доменная структура (ДС), поэтому характер зависимости $\omega_0(H_0)$ определяется типом исходной структуры. Если

Гистерезис полевой зависимости резонансной частоты в эпитаксиальной пленке гексаферрита бария. $H_a = 16.8$ kOe, $2\Delta H = 100$ Oe. 1 — зависимость при возрастании поля H_0 , 2 — при уменьшении поля.

в исходном состоянии ($H_0 = 0$) образована структура плоскопараллельных доменов, то в пластинах толщиной больше 50 µm резонансная частота почти не зависит от поля [7]. С уменьшением толщины пластинки становится заметным спад частоты ФМР с ростом поля Но. В пленках толщиной несколько микрометров этот эффект должен быть еще более значителен [7], что подтверждают измерения (см. рисунок). С увеличением поля до насыщения (стрелка указывает направление, в котором изменяется внешнее поле) частота уменьшается примерно на 3 GHz. В нашем случае поле насыщения $H_1 = 3.7$ kOe, что на 1 kOe меньше, чем $4\pi M_0$, которая равна 4.71 kOe. Для объемных монокристаллических образцов при $H_0 > H_1$ резонансные частоты ложатся на прямую $\omega_0 = \gamma (H_a + H_0 - 4\pi M_0)$. Штриховой линией показана зависимость $\omega_0(H_0)$ для случая массивной пластинки. Как видим, переход на кривую для однодоменной (насыщенной) пластинки (точка А) происходит в поле $H_1 = 4\pi M_0$. Для тонкой пленки $H_1 < 4\pi M_0$. При уменьшении внешнего поля до значений $H_0 = H_1$ наблюдается гистерезис зависимости $\omega_0(H_0)$. В поле $H_0 = H_1$ не происходит зарождения доменной структуры. С дальнейшим уменьшением Н₀ до поля, которое мы называем полем срыва Н2, пленка остается однодоменной. Явление гистерезиса, с одной стороны, возможно, объясняется особенностями магнитной анизотропии пленок, а с другой — наличием дефектов. В области полей $H_0 < 4\pi M_0$ внутреннее магнитное поле $H_3 = H_0 - 4\pi M_0 < 0$ стремится размагничивать пленку, что происходит в связи с ростом зародышей обратной намагниченности. Однако, если пленка обладает достаточным количеством дефектов, она может остаться однодоменной и в отсутствие поля. В противном случае в поле $H_2 < H_1$ резко увеличиваются в объеме домены обратной намагниченности и образец скачком переходит в многодоменное состояние. Однако, как видно из рисунка, с уменьшением H_0 в точке H_2 нет резкого скачка и кривые 1 и 2 при $H_0 < H_2$ не совпадают. Возможно, это связано с тем, что пленка не представляет собой односвязной магнитной области, а может состоять из отдельных блоков, в которых ДС зарождается при различных значениях Н₀ в интервале полей 0 < H₀ < H₂. Величина H₂ и характер кривой $\omega_0(H_0)$ в области полей $H_0 < H_2$ могут служить критерием качества пленки. Весьма важным для дальнейшего является установление возможной связи между $2\Delta H$, с одной стороны, величиной H_2 и характером кривой 2 — с другой.

Оптимальными при исследовании ФМР в объемных монокристаллических образцах были пластинки толщиной 35-45 µm, поскольку с уменьшением толщины падает интенсивность поглощения, а при толщинах меньше 25 µm волноводная методика не позволяет получать удовлетворительные результаты по всем нужным параметрам [7]. В то же время хорошая пленка $(2\Delta H = 40 \,\mathrm{Oe})$ толщиной $3\,\mu\mathrm{m}$ на подложке гексагаллата стронция толщиной 400 µm также интенсивно взаимодействует с полем СВЧ, как и пластинка толщиной 30-35 µm. Очевидно, что мы здесь имеем дело с влиянием подложки на интенсивность поглощения пленки благодаря концентрации поля в ней или других механизмов. Для того чтобы убедиться в справедливости этого предположения, был поставлен следующий эксперимент. Измерялась зависимость поглощения и резонансных частот образца в волноводном тракте от толщины подложки при ее уменьшении, толщина гексаферритовой пленки при этом оставалась неизменной. Из приведенных в таблице данных видно, что с уменьшением толщины подложки значительно уменьшается поглощение в максимуме резонансной кривой К_m. Наряду с этим уменьшается экспериментальное значение $2\Delta H$, тогда как поле анизотропии остается практически неизменным. Если уменьшение интенсивности поглощения находит адекватное объяснение, то остается неясным уменьшение $2\Delta H$ с утоньшением подложки. Данные, приведенные в таблице, получены на панорамном измерителе коэффициента стоячей волны по напряжению (KCBH).

Дополнительно мы исследовали составную структуру. К пластинке из монокристаллического гексаферрита толщиной $25\,\mu$ m прикладывалась подложка из гексагаллата стронция, при этом интенсивность взаимодействия пластинки феррита увеличивалась незначительно. Эти исследования, а также экспериментальный факт сужения ширины линии ФМР при уменьшении толщины подложки свидетельствуют о том, что в эпитаксиальных пленках бариевого гексаферрита появляются новые механизмы релаксации неприсущие объемным монокристаллам. Для выяснения этих механизмов необходимо проводить дополнительные исследования.

2. Заключение

1. Установлено, что в эпитаксиальных пленках бариевого гексаферрита величина H_a меньше, чем в объемных монокристаллических образцах, при этом корреляции между величиной H_a и шириной линии ФМР не установлено.

2. Обнаружен гистерезис частотно-полевых зависимостей ФМР в эпитаксиальных пленках бариевого гексаферрита при нормальном намагничивании при переходе из многодоменной области в однодоменную и обратно.

3. Установлено резкое увеличение интенсивности поглощения СВЧ при ФМР в эпитаксиальных пленках бариевого гексаферрита по сравнению с объемными монокристаллами.

Список литературы

- Lebedev S.V., Patton C.E., Wittenauer M.A. et al. // J. Appl. Phys. 2002. Vol. 91. N 7. P. 4426–4431.
- [2] Glass H.L. // J. Appl. Phys. 1987. Vol. 61. P. 4111.
- [3] Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике. М.: Сов. радио, 1975. 324 с.
- [4] Вонсовский С.В. Магнетизм. М.: Наука, 1971. 1032 с.
- [5] Tanasolu C., Florescu V., Rosenberg M. // Mut. Res. Bull. 1971.
 Vol. 6–8. P. 1257–1260.
- [6] Roschmann P., Lemke M., Tolksdorf W., Welz F. // Mut. Res. Bull. 1984. Vol. 19. N 3. P. 385–392.
- [7] Kostenko V.I., Sigal M.A. // Phys. Stat. Sol. (b). 1992. Vol. 170.
 P. 569–584.