01;10;12 Компьютерный анализ структуры изображения источника в трехмерных электронно-оптических системах. Электростатическая система. I

© Л.В. Бадьин, Л.Н. Зюзин, С.И. Сафронов, Ю.К. Славнов, Р.П. Тарасов

Научно-исследовательский институт импульсной техники, 115304 Москва, Россия e-mail: crabro@aport.ru

(Поступило в Редакцию 24 февраля 2004 г. В окончательной редакции 25 июня 2004 г.)

Проводится компьютерный анализ структуры изображения произвольного точечного источника в трехмерных электронно-оптических системах с электростатическими фокусирующим и отклоняющим электронные пучки полями. Исследуется структура суммарного пучка электронов протяженного источника в кроссовере. Показано, что функция рассеяния источника может служить основным счетным критерием, наиболее полно характеризующим качество передаваемого электронно-оптической системой изображения.

Введение

Исследования быстропротекающих процессов (термоядерный синтез, физика плазмы, баллистика и т.д.) в сущности базируются на импульсных электроннооптических преобразователях (ЭОП), при этом возрастающий практический интерес представляют приборы с субпикосекундным временным разрешением и минимальными искажениями изображения. Качество изображения в аналитических моделях электронно-оптических систем (ЭОС) характеризовалось возможной формой "кружка" рассеяния в соответствующем сечении элементарного пучка электронов от точечного источника (эмиттера) и распределением плотности тока в нем (функция рассеяния точечного эмиттера) [1]. Аналитические исследования ограничивались в основном параксиальными пучками осесимметричных ЭОС. Последнее означает, что функция рассеяния от точки в рамках аналитической модели не может служить надежным критерием разрешающей способности при анализе ЭОС, в которых, с одной стороны, в соответствии с современными техническими требованиями используются широкие, отнюдь не параксиальные пучки, а с другой, существенно нарушается осевая симметрия за счет систем отклоняющих пластин и диафрагм. В этом случае приемлемый анализ работы ЭОС возможен лишь в рамках непосредственного компьютерного моделирования формирующих и отклоняющих полей с последующим траекторным анализом широких пучков.

При разработке ЭОС с субпикосекундным временны́м разрешением предпочтение отдается двум классам конструкций: приборам, фокусировка и развертка изображения в которых происходит под воздействием только электрического поля, и приборам с фокусирующей магнитной линзой (развертка осуществляется электрическим полем). Количество и разнородность формы электродов таких систем приводят к необходимости решения трехмерных полевых задач, что даже в стационарном режиме сопряжено со значительными трудностями. Более того, диаметр "кружка" рассеяния элементарного пучка в фокусирующих системах может быть на несколько порядков меньше характерного размера прибора. Например, ниже рассматривается конструкция ЭОС, продольный размер которой от катода до экрана составляет 300 mm, поперечный — 60 mm, а элементарный пучок электронов в плоскости экрана можно заключить в круг диаметра $d = 0.01 - 0.2 \,\mathrm{mm}$ (в зависимости от положения точечного эмиттера, режима и потенциала развертки изображения). Поэтому для определения функции рассеяния, областью определения которой и является "кружок" рассеяния, требуется высокоточный расчет значительного числа траекторий электронов соответствующего пучка в искомом трехмерном электромагнитном поле, при этом точность решения полевой задачи должна быть согласована с точностью расчета траекторий. Кроме того, область значений функции рассеяния от точки в счетной модели дискретна, следовательно, необходима процедура сглаживания последней методами цифровой обработки двумерных дискретных сигналов. Перечисленное выше приводит к тому, что в счетных моделях от исследования функции рассеяния обычно отказываются и переходят к существенно более грубым и в недостаточной мере соответствующим практическим требованиям критериям разрешающей способности прибора, не отражающим собственной структуры изображения.

Ниже исследуется структура изображения для многоэлектродной типовой конструкции ЭОС в электростатическом режиме. Во второй части работы будут рассмотрены трехмерные ЭОС, перенос изображения в которых происходит под воздействием стационарного электромагнитного поля.

Принципиальная схема электронно-оптической системы

Работоспособность ЭОС характеризуется совокупностью протекающих в ней физических процессов, каждый

из которых в той или иной степени формирует структуру изображения прибора. В этом случае целесообразно из всего многообразия выделить наиболее существенные факторы, определяющие структуру изображения в большинстве конструкций ЭОС. К таким факторам, несомненно, относятся процессы развертки изображения, диафрагмирование и юстировка конструкции.

На рис. 1 приведены проекции принципиальной схемы конкретного класса конструкций ЭОС на две ортогональные плоскости, содержащие оптическую ось системы. Здесь (рис. 1) S_1 — катод; S_2 — ускоряющий электрод; S_3 — фокусирующий электрод; S_4 — анодная камера; S_5 — отклоняющие пластины; S_6 — затворные пластины; S_7 , S_8 и S_9 — диафрагмы со щелевыми отверстиями; S_{10} — экран. Будем полагать, что все электроды S_i (i = 1, ..., 10) — системы проводящие и находятся под заданными потенциалами. В этом случае в ЭОС индуцируется электростатическое поле.

Счетная модель электронно-оптической системы с электростатическим полем

Для электростатических систем в значительной мере общего вида [2-5] быстрые и высокоточные алгоритмы численного решения полевых задач могут быть построены в рамках метода конечных групп (МКГ), использующего локальные симметрии подсистем исходной системы и процедуру итерационной сшивки. Базовые конструкции МКГ приведены в работах [6-16], при этом разбивка литературы на группы проведена с учетом составляющих метода. Кроме того, для ЭОС с электростатическим полем в [2,3] описаны эффективные алгоритмы траекторного анализа, основу которых составляют адаптивные, сопровождающие элементарный пучок электронов пространственные расчетные сетки [17]. Отмеченное позволяет при описании счетной модели ЭОС с электростатическим полем ограничиться рассмотрением только узловых моментов.

Рассмотрим систему $\{S_i\}$ из N проводящих экранов S_i (S_i — электроды искомой ЭОС) в предположении, что (S_i) образуют многосвязную поверхность S в трехмерном пространстве R^3 ,

$$S = \bigcup_{i=1}^{N} S_i, \quad S_i \cap S_j = \emptyset, \quad j \neq j, \tag{1}$$

и считая, что каждый экран S_j находится под заданным потенциалом V_j , j = 1, 2, ..., N. Если $E = \{E_i\}$ (i = 1, 2, 3) — вектор электрического поля, индуцированного системой экранов S, то $E_i(x) = -\partial \varphi(x)/\partial x_i$, где $x = \{x_i\}$ — декартовые координаты точки x в R^3 и $\varphi(x)$ — потенциал поля E, удовлетворяющий уравнению Лапласа с условиями Дирихле на S,

$$\Delta \varphi(x) = 0, \quad \Delta \equiv \partial^2 / \partial x_1^2 + \partial^2 / \partial x_2^2 + \partial^2 / \partial x_3^2, \quad x \in \mathbb{R}^3 \setminus S,$$

$$\varphi(x) = \sum_{i=1}^{N} \chi_{S_i}(x) V_i, \quad x \in S,$$
(2)

где $\chi_{S_i}(x)$ — характеристическая функция множества точек поверхности S_i .

Решение краевой задачи (2) допускает представление в виде потенциала простого слоя

$$\varphi(x) = \int_S \frac{u(x_1)}{|x - x_1|} d\mu(x_1), \quad x_1 \in \mathbb{R}^3 \setminus S$$

с плотностью $u(x), x \in S$, удовлетворяющей граничному интегральному уравнению I рода,

$$[Au](x) = f(x), \quad [Au](x) = \int_{S} \frac{u(x_1)}{|x - x_1|} d\mu(x_1),$$
$$f(x) = \sum_{i=1}^{N} \chi_{S_i}(x) V_i, \quad (3)$$

где $d\mu(x)$ — сужение элемента евклидова объема на поверхность *S*, $|x-x_1|$ является евклидовым расстоянием между точками *x* и x_1 .

Численное решение уравнения (3) строится в рамках МКГ на основе конечных групп симметрий, разрывно действующих на S_i поверхностях, и инвариантности операторов $A_{ii} = \chi_{S_i}(x)A\chi_{S_i}(x)$ (сужение A на S_i) к преобразованиям данных групп.

Характеристики ЭОС, в том числе и фукнция рассеяния от точечного эмиттера, определяются в рамках траекторного анализа, именно траектории электронов в электростатическом поле описываются задачей Коши для системы обыкновенных дифференциальных уравнений

$$\frac{d}{dt}\left(m\frac{dr}{dt}(x,t)\right) = -e\nabla\varphi(x),\tag{4}$$

где *г* — радиус-вектор частицы массы *m* и заряда *e*, *t* — пролетное время.

В свою очередь начальные условия вылета частицы характеризуют функции распределения начальных скоростей электронов, эмиттируемых из точки, по величине и направлению. Данные распределения являются индивидуальными характеристиками катода и в основном определяются экспериментально.

Пусть P — точка вылета электронов с катода (точечный эмиттер). При моделировании традиционно полагается, что вероятность вылета частицы в телесном угле $d\omega$ под углом θ к нормали n_p пропорциональна $\cos^k \theta d\omega$, k = 1, 2, 3, ... (k = 1 соответствует закону Ламберта). Далее, если специально не оговорено, рассматриваются пучки из N равновероятных траекторий с законом распределения по углам $\cos^3 \theta$ в предположении, что все электроны имеют одинаковую энергию вылета (энергетический разброс в источнике в работе не учитывается).

Свойства изображения будем изучать на определенной поверхности s, где s может быть экраном, поверхностью изображения либо заданной секущей плоскостью, при этом электроны из точки P катода собираются на некотором сегменте ds_p поверхности s.

Пусть (τ^1, τ^2, τ^3) — система ортогональных координат, выбранная таким образом, что поверхность *s* является частью координатной поверхности $\tau^3 = \text{const.}$ В этом случае каждая траектория пучка электронов $\{\tau_i\}$, i = 1, 2, ..., N, из точки *P* катода на *s* характеризуется координатами $\{(\tau_i^1, \tau_i^2)\}$. Тогда центр рассеяния $\bar{\tau} = (\bar{\tau}^1, \bar{\tau}^2)$ элементарного пучка и среднеквадратичное отклонение σ (покоординатно $\sigma^{(\tau^k)}$, k = 1, 2) от центра тяжести определяются по формулам

$$\bar{\tau}^{k} = \frac{1}{N} \sum_{i=1}^{N} \tau_{i}^{k}, \quad \sigma^{(\tau^{k})} = \left(\frac{1}{N} \sum_{i=1}^{N} (\tau_{i}^{k} - \bar{\tau}^{k})^{2}\right)^{1/2};$$

$$k = 1, 2; \quad \sigma = \left(\frac{1}{N} \sum_{i=1}^{N} |\tau_{i} - \bar{\tau}|^{2}\right)^{1/2}, \quad (5)$$

где $|\tau_i - \bar{\tau}|$ — евклидово расстояние между точками τ_i и $\bar{\tau}$; τ_i , $\bar{\tau} \in s$.

Среднеквадратичное отклонение σ от центра тяжести $\bar{\tau}$ пучка электронов дает представление, в определенных случаях достаточно точное (осесимметричные ЭОС), только о площади пятна рассеяния (сегмента ds_p). В свою очередь форму и структуру пятна рассеяния элементарного пучка электронов характеризует функция рассеяния $S_p(\tau)$ от точечного эмиттера P, которая определяется следующим образом:

$$S_{p}(\tau) = \begin{cases} n, & \tau \in \{\tau_{k_{1}} = \ldots = \tau_{k_{n}}\}, \\ 0, & \tau \notin \{\tau_{i}\}, \ i = 1, 2, \ldots, N, \end{cases} \quad \tau \in s.$$
(6)

Введенная функция рассеяния от точки $S_p(\tau)$ непрерывного аргумента $\tau \in s$ с дискретной областью значений неудобна как для последующего анализа, так и для визуализации. Вместо $S_p(\tau)$ будем рассматривать

аппроксимирующие ее функции $S_p(i, j)$, для построения которых пятно рассеяния ds_p ($S_p(\tau) \equiv 0$ при $\tau \notin ds_p$) заключим в прямоугольник ds_p , центр которого совпадает с центром $\bar{\tau}$ рассеяния пучка электронов { τ_i }. На указанный прямоугольник наносится равномерная прямоугольная сетка

$$\Omega(\{M_1\}, \{M_2\}) = \bigcup_{i,j \in \{\{M_1\}, \{M_2\}\}} \omega_{ij},$$
(7)

где $\{M_1\}$ и $\{M_2\}$ — заданные множества целых чисел таким образом, что центром прямоугольной ячейки ω_{00} является центр рассеяния $\bar{\tau}$ пучка.

Приписывая теперь $S_p(i, j)$ значения, равные числу электронов, попавших в ячейку ω_{ij} , получим искомую аппроксимирующую функцию.

Функции рассеяния $S_p(i, j)$ в достаточной мере характеризуют пространственную структуру элементарного пучка электронов, однако выделение всей информации о структуре пучка, содержащейся в указанных функциях, возможно только при использовании сглаживающей цифровой фильтрации. Последнее станет ясно из дальнейшего изложения, в частности из представленных для визуализации значений некоторых функций рассеяния.

Ниже цифровая обработка вычисленных функций рассеяния $S_p(i, j)$ осуществляется на основе разделенных адаптивных цифровых фильтров двумерных сигналов, использующих дискретные *B*-сплайны. Сглаживающая фильтрация проводится в интерактивном режиме: вначале задается дискретный масштабирующий *B*-сплайн с последующей обостряющей цифровой фильтрацией на основе итерационного процесса. Ранее подобная сглаживающая процедура двумерных импульсных сигналов использовалась в численном анализе обратных многомерных задач нестационарной теплопроводности [18]. В дальнейшем функции рассеяния $S_p(i, j)$ после процедуры цифровой обработки будем обозначать как $\hat{S}_p(i, j)$.

При счетном анализе структуры изображения, передаваемого ЭОС, наряду с элементарными рассматриваются и суммарные пучки, включающие все электроны, эмиттируемые из заданного множества $\{P_k\}$ точек катода. Для характеристики структуры указанных суммарных пучков в полной аналогии с элементарными вводятся соответствующие функции рассеяния: $S(\tau)$, S(i, j)и $\hat{S}(i, j)$.

В заключение отметим, что функции рассеяния $S_p(\tau)$ ($S_p(i, j)$) характеризуют пространственную структуру пучка электронов и позволяют оценить именно пространственное (техническое) разрешение анализируемого прибора. В то же время в рассматриваемой счетной модели ЭОС траектории электронов являются функциями как координат, так и времени. Следовательно, от $S_p(\tau)$ ($S_p(i, j)$) можно перейти к рассмотрению функций рассеяния $S_p(\tau, t)$ ($S_p(i, j, t)$) и тем самым получить оценку временной разрешающей способности прибора. Последнее является предметом отдельного обсуждения.

Структура изображения осесимметричных ЭОС

Компьютерный анализ структуры изображения рассматриваемого класса трехмерных ЭОС предворяет численное моделирование осесимметричной ЭОС, состоящей из электродов S_1 , S_2 , S_3 и S_4 (рис. 1; электроды S_5-S_9 , заключенные в анодную камеру S_4 , из рассмотрения исключаются).

Счетная модель осесимметричных ЭОС, основанная на алгоритмах численного решения граничных одномерных интергральных уравнений теории потенциала, обеспечивающих высокую точность построения осесимметричных электростатических полей, и методах траекторного анализа могла быть построена и программно реализована после выхода в 1964 г. работы [19]. Первые реально эксплуатируемые программы указанного типа появились уже в середине семидесятых в США.

Ниже приводятся только некоторые, необходимые для дальнейшего изложения результаты счетного анализа описанной выше реальной конструкции осесимметричной ЭОС.

Результаты численного моделирования осесимметричных ЭОС в рассматриваемом классе многоэлементных трехмерных конструкций (рис. 1) представляют интерес и для оптимизации компьютерного анализа этих конструкций. Именно вычислительные эксперименты показали, что внешнее электростатическое поле, создаваемое электродами S₁, S₂, S₃ и S₄, практически не проникают в анодную камеру S₄. В свою очередь внутреннее поле анодной камеры, порождаемое пластинами S₅ и S₆, гасится в окрестности кругового отверстия камеры S₄, т.е. имеет место слабое локальное взаимодействие этих полей. Последнее позволяет провести сравнительный расчет по двум пакетам программ моделирования осесимметричных и трехмерных ЭОС, существенно упрощающий выбор множества граничных элементов искомой граничной поверхности S, образованной всеми электродами трехмерной ЭОС, и обеспечивающий эффективный контроль за точностью моделирования трехмерной конструкции. Для этого в рамках пакета счетного анализа осесимметричных ЭОС проводится моделирование конструкции, образованной электродами S₁, S₂, S₃ и S₄. Число расчетных точек на образующей поверхности вращения S_v , $S_v = \bigcup_{i=1}^4 S_i$ при решении полевой задачи и размер пространственных ячеек сопровождающей расчетной сетки при проведении траекторного анализа выбираются из условия достижения заданной погрешности вычислений ε (например, $\varepsilon = 0.1\%$). Далее, с использованием комплекса программ счетного анализа трехмерных ЭОС моделируется при заземленных $S_5 - S_9$ (электроды $S_5 - S_9$ под потенциалом анодной камеры S_4) искомая конструкция ЭОС (рис. 1), при этом множе-

ство граничных элементов поверхности *S*, $S = \bigcup_{i=1}^{9} S_i$

и соответствующая сопровождающая расчетная сетка выбираются таким образом, чтобы результаты моделирования по двум пакетам программы совпадали с погрешностью, не превышающей ε . Кроме того, множество граничных элементов и сопровождающая расчетная сетка уточняются (если это необходимо) при подаче малых значений потенциалов развертки на пластины S_5 и S_6 соответственно. Подчеркнем также, что под результатами моделирования понимаются все расчетные характеристики ЭОС от коэффициента увеличения до функции рассеяния источника.

1. Кроссовер. В фокусирующих ЭОС суммарный пучок электронов, эмиттируемых из всех точек катода, в некоторой плоскости (плоскость кроссовера) имеет минимальное сечение — кроссовер. В аналитических моделях ЭОС исследованиям положения плоскости кроссовера и плотности тока в нем уделялось значительное внимание. Так, для осесимметричных ЭОС было получено [1], что распределение плотности тока в кроссовере подчиняется закону Гаусса. Известно, что аналогичные численные и экспериментальные исследования имеют важное значение и для разработки реальных конструкций ЭОС.

Введем в рассмотрение цилиндрическую систему координат (r, ψ, z) , согласованную с декартовой *XYZ* (рис. 1). Пусть суммарный пучок электронов состоит из 6 элементарных, эмиттируемых из точек катода $(r_k, \psi = \pi/2, z = 0), r_k = kmm, k = 0, 1, ..., 5, т.е.$ все эмиттеры лежат на положительной полуоси *Y*. В свою очередь каждый элементарный пучок электронов (энергия вылета электрона $U_0 = 0.35$ eV) состоит из 512 равновероятных траекторий с законом распределения по углам вылета соз³ θ . Разность потенциалов катод (S_1) анодная камера (S_4) составляет 15 kV.

Значения функции рассеяния S(i, j) суммарного пучка электронов в кроссовере визуализованы на рис. 2, а, линии равного уровня — на рис. 2, b. График значений функции рассеяния S(i, j) визуально представляется малоинформативным (рис. 2, a); график изолиний S(i, j), приведенный на рис. 2, b, позволяет оценить форму и размеры (максимальные 0.8 × 1 mm) пятна рассеяния суммарного пучка в кроссовере. Кроме того, хорошо видно (рис. 2, b), что полного наложения элементарных пучков не произошло и именно в направлении оси У (полное наложение при большей площади кроссовера имеет место в конструкции ЭОС с магнитной фокусировкой, рассмотренной во второй части данной работы). В то же время явного представления о структуре рассматриваемого суммарного пучка в кроссовере ни график значений функции S(i, j) (рис. 2, *a*), ни график ее изолиний (рис. 2, *b*) не дают.

Структура суммарного пучка электронов в кроссовере полностью проявляется после цифровой обработки функции S(i, j) (были использованы адаптивные *B*-сплайновые фильтры), на рис. 2, *d* приведены значения, а на рис. 2, *c* — линии равного уровня функции $\hat{S}(i, j)$ (функции S(i, j) после процедуры обработки).

Рис. 2.

Поскольку точки катода, порождающие рассматриваемый суммарный пучок, лежат на одном луче, проходящем через центр катода, а решение искомой задачи инвариантно к преобразованиям из группы вращений C_{∞} , то график значений $\hat{S}(i, j)$ (рис. 2, d) позволяет утверждать, что функции рассеяния (после процедуры обработки) суммарных пучков, эмиттируемых из точек катода $(r_n, \psi_m, z = 0), r_n = nR/N, \psi_m = 2\pi(m-1)/M,$ $n = 1, 2, \ldots, N; m = 1, 2, \ldots, M,$ где R — радиус катода, в кроссовере будут иметь правильную колоколообразную форму, близкую к поверхности Гаусса. Последнее было подтверждено соответствующими численными экспериментами.

2. Структура элементарных пучков. Исследование поведения описанного выше суммарного пучка электронов в рабочей области осесимметричной ЭОС, кроме кроссовера, позволяет получить и другие, представляющие практический интерес характеристики системы. К таким характеристикам относится поверхность изображения, центры тяжести $\bar{\tau}_i$, (i = 0, 1, ..., 5) элементарных пучков, составляющих искомый суммарный, в фокусах лежат на образующей поверхности изображения. Потенциалы электродов S_2 и S_3 (потенциал S_1 и S_4 фиксирован, см. выше) были подобраны таким образом, что на экране фокусируется элементарный пучок с радиальной координатой вылета с катода $r_2 = 2 \,\mathrm{mm}$. Заметим, что поверхность изображения относительно хорошо приближается эллипсоидом вращения, при этом пучки с радиальной координатой вылета $r, r < r_2$ фокусируются за, а при $r > r_2$ до плоскости экрана. Данный факт находит свое отражение в соответствующих функциях рассеяния.

На рис. 3, а приведены значения (слева) и линии равного уровня (справа) функции рассеяния $S_{p_0}(i, j)$ точечного эмиттера $P_0 = P$ ($r_0 = 0$, $\psi = \pi/2$, z = 0) на экране. Аналогичным образом на рис. 3, b визуализованы значения и линии равного уровня на экране функции рассеяния $S_{p_2}(i, j)$ точечного эмиттера $P_2 = P$ ($r_2 = 2 \text{ mm}, \psi = \pi/2, z = 0$), а на рис. 3, c — функции $S_{p_4}(i, j), P_4 = P$ ($r_4 = 4 \text{ mm}, \psi = \pi/2, z = 0$). Далее, на рис. 4, таким же образом, как и на рис. 3, визуализованы значения и изолинии функций рассеяния $\hat{S}_{p_0}(i, j)$, $\hat{S}_{p_2}(i, j)$ и $\hat{S}_{p_4}(i, j)$ (функций $S_{p_k}(i, j), k = 0, 2, 4$, после адаптивной *B*-сплайновой цифровой фильтрации), на рис. 4, *a* приведены значения и линии равного уровня функции $\hat{S}_{p_0}(i, j)$, на рис. 4, *b* — функции $\hat{S}_{p_2}(i, j)$ и на рис. 4, *c* — фукнции $\hat{S}_{p_4}(i, j)$.

Некоторую регулярную структуру, обусловленную начальными условиями вылета электронов с катода, сохраняет только центральный пучок (рис. 3), при этом уже малое смещение (сотые доли миллиметра) эмиттера от центра катода приводит к быстрому разрушению этой структуры. В то же время функции рассеяния $\hat{S}_{p_k}(i, j), k = 0, 2, 4$, на поверхности изображения имеют ярко выраженную колоколообразную форму, которая несколько деформируется при смещении эмиттера от центра катода (рис. 4, b). В свою очередь на экране

Рис. 3.

функции рассеяния элементарных пучков, фокусы которых лежат за поверхностью экрана (r < 2 mm), имеют близкую к колоколообразной форму со вдавленной вершиной (рис. 4, *a*), а колоколообразная форма функций рассеяния пучков с фокусами до плоскости экрана (r > 2 mm) имеет существенно размытое основание — подложку (рис. 4, *c*). Таким образом, в электростатиче-

ских осесимметричных ЭОС имеет место качественная и достаточно быстрая перестройка структуры элементарных пучков до и после поверхности изображения. Следует подчеркнуть, что подобным образом ведут себя пучки и в приборах с магнитной фокусировкой, создаваемой катушкой постоянного тока (см. часть II работы).

Влияние развертки на структуру изображения

Ниже исследуется влияние полей развертки передаваемого ЭОС изображения, порожденных потенциалом отклоняющих пластин S_5 (рис. 1), на структуру элементарных пучков, составляющий рассмотренный в предыдущем разделе суммарный пучок. Потенциал развертки изображения φ на отклоняющие пластины S_5 подается в двух режимах: однофазном (несимметричном) и двухфазном (симметричном). При однофазном способе включения отклоняющих пластин одна из пластин находится под потенциалом анодной камеры (заземлена), при двухфазном разноименные по отношению к анодной камере потенциалы развертки, равные по абсолютной величине, подаются на обе пластины. Структуру в режиме развертки элементарных пучков, эммитируемых из точек катода P_k (x = 0, $y_k = kmm$, z = 0), $k = 0, 1, \ldots, 5$,

будем рассматривать как на поверхности изображения, так и на экране; при этом фокус пучка определяется по минимуму среднеквадратичного отклонения $\sigma_{\varphi}(k)$ от центра тяжести $\bar{\tau}_{\varphi}(k)$. В заключение будет проанализирована зависимость функций рассеяния $S_{p_k}^{(\varphi)}(i, j)$ $(\hat{S}_{p_k}^{(\varphi)}(i, j))$ от потенциала развертки φ .

1. Для симметричного способа включения отклоняющих пластин и значений потенциала развертки $\varphi = \pm 0$,

 $\pm 100, \pm 200, \pm 300$ V величина среднеквадратичного отклонения $\sigma_{\varphi}(k)$ и декартовы координаты $(x_k^{(\varphi)}, y_k^{(\varphi)}, z_k^{(\varphi)})$ центров тяжести $\bar{\tau}_{\varphi}(k), k = 0, 1, \dots, 5$, элементарных пучков на поверхности изображения приведены (в миллиметрах) в табл. 1.

Отметим, что в рассматриваемом случае для потенциала развертки $\varphi = \pm 0, \pm 100, \pm 200, \pm 300 \text{ V}$ значения величин, приведенных в табл. 1 и 2, остаются без

изменений (*х*-я координата (направление развертки) с точностью до знака).

Как видно из таблиц, глубина поверхности изображения по координате z (оптическая ось системы) составляет порядка ~ 22.2 mm, при этом, однако, значения $\sigma_{\varphi}(k)$ на поверхности изображения и экране для конкретных элементарных пучков (при фиксированных φ и k) в целом ($\varphi \neq 0$ V) изменяются относительно мало (значительная глубина резкости изображения). Напротив, увеличение потенциала развертки приводит к суще-

ственному падению разрешающей способности прибора как на поверхности изображения, так и по полю экрана (по краю экрана от ~ 1.5 до ~ 5 раз). Несмотря на это, моделируемая конструкция при данном режиме развертки изображения сохраняет высокую разрешающую способность.

В свою очередь среднеквадратичное отклонение $\sigma_{\varphi}(k)$ и декартовы координаты $(x_k^{(\varphi)}, y_k^{(\varphi)}, z_k^{(\varphi)}), k = 0, 1, \dots, 5$, центров тяжести элементарных пучков на поверхности изображения при однофазном режиме включения откло-

$arphi\setminus k$		0	1	2	3	4	5
0 V	$\sigma_{\varphi}(k)$	0.004	0.019	0.013	0.001	0.003	0.003
0 V	$x_k^{(\varphi)}$	0	0	0	0	0	0
	$y_k^{(\varphi)}$	0	-2.22	-4.51	-6.63	-8.71	-10.90
	$z_k^{(\varphi)}$	255.5	254.9	257.1	253.2	250.5	250.4
$+100\mathrm{V}$	$\sigma_{\varphi}(k)$	0.007	0.019	0.015	0.007	0.008	0.007
$-100\mathrm{V}$	$x_k^{(\varphi)}$	5.98	5.97	6.1	5.95	5.82	5.82
	$y_k^{(\varphi)}$	0	-2.10	-4.30	-6.31	-8.27	-10.33
	$z_k^{(\varphi)}$	245.6	245.4	248.6	244.8	241.6	241.5
$+200\mathrm{V}$	$\sigma_{\varphi}(k)$	0.012	0.021	0.020	0.013	0.015	0.015
$-200\mathrm{V}$	$x_k^{(\varphi)}$	11.81	11.84	12.17	11.85	11.53	11.50
	$y_k^{(\varphi)}$	0	-2.09	-4.29	-6.30	-8.21	-10.23
	$z_k^{(\varphi)}$	243.7	244	248.1	244.2	240.1	239.6
$+300\mathrm{V}$	$\sigma_{\varphi}(k)$	0.024	0.03	0.032	0.027	0.026	0.025
$-300\mathrm{V}$	$x_k^{(\varphi)}$	16.68	16.69	17.37	16.85	16.40	16.33
	$y_k^{(\varphi)}$	0	-1.98	-4.13	-6.03	-7.86	-9.77
	$z_k^{(\varphi)}$	235.3	235.3	240.8	236.5	232.7	232

Таблица 1. Поверхность изображения (двухфазный режим)

Таблица 2. Экран (двухфазный режим)

$arphi\setminus k$		0	1	2	3	4	5
$\pm 0V$	$\sigma_{\varphi}(k)$	0.013	0.022	0.020	0.009	0.006	0.006
	$y_k^{(\varphi)}$	0	-2.11	-4.24	-6.36	-8.49	-10.61
$\pm 100V$	$\sigma_{\varphi}(k)$	0.007	0.019	0.016	0.007	0.01	0.009
	$x_k^{(\varphi)}$	5.99	6	6	6	6	6.01
	$y_k^{(\varphi)}$	0	-2.11	-4.24	-6.35	-8.49	-10.61
$\pm 200V$	$\sigma_{\varphi}(k)$	0.012	0.021	0.02	0.014	0.017	0.017
	$x_k^{(\varphi)}$	11.99	12	12	12	12.01	12.02
	$y_k^{(\varphi)}$	0	-2.11	-4.24	-6.36	-8.50	-10.63
$\pm 300V$	$\sigma_{\varphi}(k)$	0.028	0.033	0.033	0.030	0.032	0.031
	$x_k^{(\varphi)}$	18	18.01	18.01	18.01	18.02	18.04
	$y_k^{(\varphi)}$	0	-2.12	-4.26	-6.38	-8.52	-10.66

няющих пластин для значений потенциала развертки φ : $\varphi = 200, 400, 600 \text{ V}$ приведены в табл. 3, а в табл. 4 даны значения $\sigma_{\varphi}(k)$ на экране.

Отличие $\sigma_{\varphi}(k)$ и $(x_k^{(\varphi)}, y_k^{(\varphi)}, z_k^{(\varphi)})$ для значений $\varphi = -200, -400, -600$ V от приведенных в табл. 3 и 4 при несимметричном включении отклоняющих пластин не превышает 10%.

Протяженность поверхности изображения по координате *z* в рассматриваемом режиме значительно больше, чем при симметричном способе включения отклоняющих пластин, и составляет порядка ~ 51.2 mm. В то же время, как и в двухфазном режиме, для конкретного пучка значения $\sigma_{\varphi}(k)$ на поверхности изображения и экране сравнимы, а падение разрешающей способности прибора при увеличении потенциала развертки даже более значительное — по краю экрана от ~ 4 до ~ 17 раз. Сравнительный анализ табл. 1 и 3 (табл. 2 и 4) позволяет сделать вывод, что двухфазный режим развертки обеспечивает в $\sim 2-3$ раза более качественную передачу изображения в рассматриваемой конструкции ЭОС, чем однофазный. Качественно такие же результаты будут получены и при исследовании отклоняющей системы в ЭОС с магнитной фокусировкой (см. часть II).

2. Критерий среднеквадратичного отклонения определенным образом связан только с площадью пятна рассеяния пучка электронов (элементарного или суммарного) и позволяет выявить наиболее ярко выраженные зависимости, влияющие на структуру изображения; собственно же структуру изображения наиболее полно характеризуют функции рассеяния.

На рис. З приведены значения и изолинии функций рассеяния $S_{p_k}^{(\varphi)}(i, j)$ точечных эмиттеров $P_0 = P$ (x = 0, y = 0, z = 0), $P_2 = P$ (x = 0, y = 2 mm, z = 0) и $P_4 = 0$ (x = 0, y = 4 mm, z = 0), для случая заземленных пластин S_5 ($\varphi = \pm 0$) и соответственно на рис. 4 даны значения и изолинии функций $\hat{S}_{p_k}^{(0)}(i, j)$ (функции $S_{p_k}^{(0)}(i, j)$ после фильтрации). Рассмотрим влияние на структуру указанных пучков потенциала развертки изображения.

Для симметричного способа включения отклоняющих пластин и значения потенциала развертки $\varphi = \pm 300 \, \text{V}$

Таблица 3. Поверхность изображения (однофазный режим)

$arphi \setminus k$		0	1	2	3	4	5
200 V	$\sigma_{\varphi}(k)$	0.026	0.032	0.036	0.036	0.032	0.034
0 V	$x_k^{(\varphi)}$	6.38	6.21	5.72	5.72	5.91	5.88
	$y_k^{(\varphi)}$	0	-2.15	-4.01	-6.01	-8.25	-10.30
	$z_k^{(\varphi)}$	255.7	251.4	239.5	239.5	244	243
$400\mathrm{V}$	$\sigma_{\varphi}(k)$	0.066	0.069	0.078	0.079	0.074	0.076
0 V	$x_k^{(\varphi)}$	13.11	12.32	10.17	10.36	11.30	11.16
	$y_k^{(\varphi)}$	0	-2.12	-3.59	-5.46	-7.88	-9.72
	$z_k^{(\varphi)}$	260.5	250.7	224.4	226.6	237.9	236
$600\mathrm{V}$	$\sigma_{\varphi}(k)$	0.081	0.084	0.091	0.092	0.089	0.092
0 V	$x_k^{(\varphi)}$	17.86	15.97	12.95	13.2	14.73	14.46
	$y_k^{(\varphi)}$	0	-1.86	-3.12	-4.74	-6.96	-8.53
	$z_k^{(\varphi)}$	246.2	230.7	205.9	207.9	220.2	217.8

Таблица 4. Экран (однофазный режим)

$arphi \setminus k$	0	1	2	3	4	5
$\begin{pmatrix} 200 V \\ 0 V \end{pmatrix}$	0.029	0.032	0.038	0.038	0.032	0.034
$\begin{pmatrix} 400 V \\ 0 V \end{pmatrix}$	0.069	0.069	0.085	0.083	0.075	0.077
$\begin{pmatrix} 600 V \\ 0 V \end{pmatrix}$	0.081	0.086	0.116	0.11	0.096	0.1

на рис. 5 приведены изолинии (левый столбец) функций рассеяния $\hat{S}_{p_k}^{(\pm 300)}(i, j), k = 0, 2, 4, и значения (правый столбец) <math>\hat{S}_{p_k}^{(\pm 300)}(i, j)$, при этом точечному эмиттеру P_0 отвечает рис. 5, a, эмиттеру P₂ — рис. 5, b и эмиттеру Р₄ — рис. 5, с. В свою очередь для однофазного режима развертки изображения при $\phi = 600 \, \text{V}$ аналогичным образом на рис. 6, a-c даны изолинии $S_{p_k}^{(600)}(i, j)$ (левый столбец) и значения $\hat{S}_{p_k}^{(600)}(i, j)$ (правый столбец) точечных эмиттеров P_k , k = 0, 2, 4.

Анализ графиков на рис. 3-6 подтверждает выводы, сделанные выше на основе исследования среднеквадратичного отклонения, о зависимостях площади в заданном сечении пятна рассеяния элементарного пучка электронов от режима и потенциала развертки изображения, положения точечного эмиттера. Вместе с тем среднеквадратичное отклонение характеризует только круг (покоординатно эллипс), содержащий в данном сечении большую часть электронов пучка, но не дает представления об истинной форме, тем более о структуре пятна рассеяния. Так, форма пятна рассеяния центрального пучка электронов без отклонения близка к кругу радиуса $r \approx \sigma_0(0) = 0.013 \,\mathrm{mm}$ (рис. 3, *a*, 4, *a*). При симметричном включении отклоняющих пластин и $\phi = \pm 300 \, \mathrm{V}$ пятно рассеяния центрального пучка на экране имеет сильно вытянутую в направлении развертки форму (рис. 5, a), соответственно $\sigma_{\pm 300}^{(x)}(0) = 0.028 \,\mathrm{mm}$ и $\sigma_{\pm 300}^{(y)}(0) = 0.003$ mm. В то же время в эллипс с полуосями a = 0.028 mm и b = 0.003 mm, центр которого совпадает в центром тяжести рассматриваемого пучка, попадает только порядка 70% траекторий пучка. Подобное справедливо и по отношению ко всем остальным рассматриваемым (с учетом развертки) элементарным пучкам (рис. 3-6).

Детальное исследование влияния полей развертки на структуру передаваемого ЭОС изображения требует проведения соответствующего объема вычислительных экспериментов; в то же время сравнительный анализ функций рассеяния, приведенных на рис. 4-6, позволяет сделать некоторые выводы: функции рассеяния $\hat{S}_{p_k}^{(0)}(i, j), k = 0, 2, 4$ (рис. 4) элементарных пучков, эмиттируемых из точек P_0 , P_2 и P_4 катода, в отсутствие потенциала развертки на экране имеют существенно отличную форму, адекватно отражающую структуру пучков. Кроме того, для симметричного (рис. 5) и несимметричного (рис. 6) способов включения отклоняющих пластин разрешающая способность прибора по краю экрана (значения потенциала развертки на пластинах $\varphi = \pm 300$ и 600 V соответственно) сопоставима в направлении развертки изображения, а в направлении, перпендикулярном направлению развертки, двухфазный режим позволяет получить существенно более высокое (в разы) разрешение. Другие видимые закономерности, обусловленные структурой пучков (рис. 4-6), не столь очевидны и требуют дополнительного анализа.

Список литературы

- [1] В. Глазер. Основы электронной оптики. М., 1957. С. 763.
- [2] Демин С.К., Сафронов С.И., Тарасов Р.П. // ЖТФ. 1998. Т. 68. Вып. 2. С. 97-103.
- [3] Демин С.К., Сафронов С.И., Тарасов Р.П. // ЖТФ. 1998. Т. 68. Вып. 7. С. 126–129.
- [4] Сафронов С.И., Тарасов Р.П. // ЖТФ. 1999. Т. 69. Вып. 6. C. 1-10.
- [5] Сафронов С.И., Тарасов Р.П. // ЖТФ. 2002. Т. 72. Вып. 9. C. 1-12.
- [6] Демин С.К., Тарасов Р.П. // ЖВМиМФ. 1989. Т. 29. № 9. C. 1308–1317.
- Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ДАН СССР. 171 1990. T. 314. № 3. C. 589–593.
- Тарасов Р.П. // ЖВМиМФ. 1992. Т. 31. № 9. С. 1515–1517.
- Тарасов Р.П. // ЖВМиМФ. 1993. Т. 33. № 12. С. 1815-[9] 1825.
- [10] Тарасов Р.П. // РиЭ. 1999. Т. 44. № 8. С. 920–932.
- [11] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ЖВМиМФ. 1992. T. 31. № 1. C. 40-58.
- [12] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ЖВМиМФ. 1995. T. 35. № 10. C. 1582-1591.
- [13] Тарасов Р.П. // ЖВМиМФ. 1999. Т. 39. № 6. С. 943–969.
- [14] Демин С.К., Тарасов Р.П. // Матем. модель. 1993. Т. 5. № 7. C. 113-123.
- [15] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ЖВМиМФ. 1993. T. 33. № 7. C. 1030–1042.
- [16] Захаров Е.В., Сафронов С.И., Тарасов Р.П. // ЖВМиМФ. 1998. T. 38. № 5. C. 734–739.
- [17] Бадьин Л.В. // Препринт Института прикладной математики АН СССР. № 131. М., 1982. 25 с.
- Тарасов Р.П. // ЖВМиМФ. 1996. Т. 36. № 11. С. 44-72. [18]
- [19] Антоненко О.Ф. // Вычислительные системы. Новгород.: Изд-во ИМ СО АН СССР, 1964. № 12. С. 39-47.