06;07 Инфракрасное тушение электролюминесценции тонкопленочных электролюминесцентных структур на основе ZnS:Mn

© Н.Т. Гурин, Д.В. Рябов

Ульяновский государственный университет, 432970 Ульяновск, Россия e-mail: ido@ulsu.ru

(Поступило в Редакцию 26 февраля 2004 г.)

Обнаружено инфракрасное (ИК) тушение электролюминесценции тонкопленочных электролюминесцентных излучателей после ИК подсветки излучателей в паузе между импульсами напряжения возбуждения, а также уменьшение интенсивности излучения в области $\sim 530-540$ nm и увеличения интенсивности излучения в полосе 640-690 nm, что объясняется перезарядкой глубоких центров, образованных вакансиями серы $V_{\rm S}^{2+}$ и $V_{\rm S}^{+}$, с увеличением концентрации центров $V_{\rm S}^{+}$ и перераспределением каналов ударного возбуждения центров ${\rm Mn}^{2+}$ и $V_{\rm S}^{+}$ после ИК подсветки в пользу центров $V_{\rm S}^{+}$. Оценены значения сечения и скорости ударного возбуждения центров $V_{\rm S}^{+}$, сечения фотовозбуждения центров $V_{\rm S}^{2+}$, коэффициента поглощения ИК излучения, внутреннего квантового выхода электролюминесценции, вероятности излучательной релаксации центров ${\rm Mn}^{2+}$ и коэффициента умножения электронов в слое люминофора.

Известные результаты по изучению влияния инфракрасной (ИК) подсветки на электролюминесценцию порошковых цинксульфидных люминофоров с рекомбинационной электролюминесценцией свидетельствуют о наличии спектральной полосы поглощения в ИК области [1], импульсная подсветка в которой вызывала уменьшение амплитуды волн яркости, т. е. тушение электролюминесценции.

Для тонкопленочных электролюминесцентных излучателей (ТП ЭЛИ) с внутрицентровой люминесценцией влияние импульсной ИК подсветки в паузе между импульсами напряжения возбуждения заключается в увеличении амплитуды импульса тока, протекающего через слой люминофора во время действия импульсов напряжения возбуждения [2,3]. При этом, как ранее нами показано [4], ИК подсветка в паузе между импульсами напряжения возбуждения вызывает тушение электролюминесценции ТП ЭЛИ и изменение интенсивности отдельных полос в спектре излучения ТП ЭЛИ. Установлено также, что спектры электролюминесценции ТП ЭЛИ переменного тока на основе ZnS: Mn, полученные для непрерывного режима возбуждения, не позволяют судить об их взаимосвязи с кинетикой тока, протекающего через слой люминофора, и с изменением мгновенной яркости, поскольку в измерениях фиксируется, как правило, средняя яркость излучения ТП ЭЛИ [5].

В соответствии с изложенным целью работы является исследование изменения спектров электролюминесценции ТП ЭЛИ в совокупности с изменением электрических и световых характеристик при импульсной ИК подсветке в паузе между импульсами напряжения возбуждения на различных участках волны яркости, соответствующих разным уровням возбуждения, в условиях, когда соседние волны яркости не прерываются и имеется достаточное время для нейтрализации объемных зарядов в слое люминофора в паузе между соседними импульсами напряжения возбуждения.

Для установления влияния ИК подсветки на спектры электролюминесценции на различных участках волны яркости были выполнены экспериментальные исследования ТП ЭЛИ со структурой МДПДМ, где М — нижний прозрачный электрод на основе SnO_2 толщиной $0.2 \, \mu m$, нанесенный на стеклянную подложку, и верхний непрозрачный тонкопленочный электрод на основе А1 толщиной 0.15 µm, диаметром 1.5 mm; П — электролюминесцентный слой ZnS: Mn (0.5% mass.) толщиной 0.48 µm; Π — диэлектрический слой $ZrO_2 \times Y_2O_3$ (13% mass.). Слой люминофора наносили вакуумтермическим испарением в квазизамкнутом объеме при температуре подложки 250°C с последующим отжигом при температуре 250°С в течение часа, непрозрачный электрод — вакуумтермическим испарением, диэлектрические слои получали электронно-лучевым испарением. Удельное сопротивление диэлектрических слоев составляло $\sim 10^{13} \, \Omega \cdot \, \mathrm{cm}$, пробивная напряженность на знакопеременном напряжении частотой 10 Hz-1 kHz 3.2-3.6 · 10⁶ V/cm, ток утечки этих слоев при максимальных рабочих напряжениях ТП ЭЛИ был на 2-3 порядка ниже тока, протекающего через слой люминофора.

Экспериментальное исследование волн яркости ТП ЭЛИ — зависимости мгновенной яркости свечения I_{λ} от времени t на определенной длине волны λ проводилось при возбуждении ТП ЭЛИ знакопеременным напряжением треугольной формы. Использовались непрерывные режимы возбуждения ТП ЭЛИ знакопеременным напряжением треугольной формы частотой 20 Hz и режим однократного запуска, при котором напряжение возбуждения V(t) представляло собой пачку импульсов из двух периодов напряжения треугольной формы, следующих с частотой 20 Hz, с подачей положительной или отрицательной полуволн напряжения в первом полупериоде на верхний электрод (варианты (+Al) и (-Al) соответственно). Время между однократными запусками T_s составляло 1, 50, 100 s. Ток $I_e(t)$, протекающий через

П ЭЛИ, измерялся с помощью включаемого последовательно с ТП ЭЛИ резистора сопротивлением 10 kΩ, падение напряжения на котором не превышало 0.5% от V(t). Излучение ТП ЭЛИ, соответствующее первой волне яркости, пропускалось через монохроматор МУМ-2, имеющий погрешность счетчика 0.5 nm, линейную дисперсию 4.8 nm/mm и ширину щели 3 mm для повышения чувствительности регистрации, и измерялось с помощью фотоэлектронного умножителя ФЭУ-79. Исследуемый диапазон длин волн составлял 400-750 nm с шагом 5 nm. Напряжение возбуждения V(t), ток через ТП ЭЛИ $I_{e}(t)$, полная волна яркости L(t) и волны яркости на определенной длине волны $\lambda = L_{\lambda}(t)$ фиксировались с помощью двухканального запоминающего осциллографа С9-16, связанного через интерфейс с персональным компьютером, они обеспечивали для каждого канала измерение и запоминание 2048 точек выбранного периода дискретизации и 256 уровней квантования амплитуды. Математическая и графическая обработка производилась с помощью прикладных программных пакетов Maple V Release4 Version 4.00b и GRAPHER Version 1.06 2-D Graphing System. Аппроксимация экспериментальных зависимостей производилась с помощью программы TableCurve2Dv2.03. Зависимости среднего поля в слое люминофора $F_p(t)$, а также тока $I_p(t)$ и заряда $Q_n(t)$, протекающих через слой люминофора в режиме свечения ТП ЭЛИ, определялись по методике, изложенной в [6,7], при значениях емкости диэлектрических слоев $C_i = 730 \, \text{pF}$, слоя люминофора $C_p = 275 \, \text{pF}$, определенных с помощью измерителя иммитанса Е7-14 и известных геометрических размеров ТП ЭЛИ. Средняя яркость свечения ТП ЭЛИ измерялась с помощью яркомера-люксметра ЯРМ-3.

Разница в перенесенном через слой люминофора заряде $\Delta Q_p(t)$ при ИК засветке ТП ЭЛИ и без нее определялась соответствующей разницей тока $\Delta I_p(t)$ аналогично [3]

$$\Delta Q(t) = \int_{0}^{t} \Delta I_{p}(t) \, dt, \qquad (1)$$

Фотовозбуждение ТП ЭЛИ осуществлялось со стороны подложки в импульсном и непрерывном режимах в ИК области двумя излучающими диодами АЛ107Б с длиной волны максимума спектра излучения $\lambda_m = 950$ nm, полушириной спектра излучения $\Delta \lambda_0 = 25$ nm, суммарной мощностью $P \sim 12$ mW, суммарной плотностью потока $\Phi \sim 3 \cdot 10^{15}$ mm²·s⁻¹. Спектры излучения приведены по результатам статистической обработки пяти серий измерений.

Средняя яркость на определенных длинах волн λ и для выбранных аналогично [5] участков волны яркости *n*, где *n*-I, II, II, IV (I соответствует начальному участку "быстрого" роста тока через люминофор $I_p(t)$; II, III — участкам более медленного роста $I_p(t)$; IV — участку спада тока $I_p(t)$ и яркости после достижения максимума импульсами напряжения возбуждения V(t) (рис. 1)),

определялась по закону Тальботта для пульсирующего источника излучения

$$L_n = \frac{1}{t_1 - t_2} \int_{t_1}^{t_2} L_{\lambda}(t) dt, \qquad (2)$$

где t_1 и t_2 — значения времени начала и конца выбранных участков волны яркости I, II, III, IV (рис. 1, *a*, *b*).

Зависимости $L_n(\lambda)$ определяли спектр излучения в каждом из участков I–IV. Полный (суммарный) спектр излучения из всех спектральных составляющих $L_n(\lambda)$ определялся по формуле

$$L(\lambda) = \sum_{n} L_{n}(\lambda).$$
(3)

Мгновенное значение внутреннего квантового выхода $\eta_{int}(t)$ определялось аналогично [8] отношением L(t) к $I_n(t)$.

Основные результаты исследований сводятся к следующему. В непрерывном режиме возбуждения ТП ЭЛИ влияния ИК подсветки на ток $I_p(t)$, волны яркости L(t), $L_{\lambda}(t)$ и спектр излучения в пределах погрешности измерения не обнаружено. При ИК подсветке во время действия импульсов напряжения возбуждения в режиме однократного запуска изменений данных зависимостей также не обнаружено.

При ИК подсветке во время паузы между импульсами напряжения возбуждения при однократном режиме запуска обнаружены прирост токов $I_e(t)$ и $I_p(t)$ — $\Delta I_{p}(t)$ (рис. 1, *a*, *b*, *d*), заряда $\Delta Q_{p}(t)$ (рис. 1, *e*) аналогично [3], а также различные изменения волн яркости $L_{2}(t)$ (рис. 1, a, b), полной волны яркости $\Delta L(t)$ (рис. 1, d), внутреннего квантового выхода $\eta_{int}(t)$ (рис. 1, f), спектров излучения ТП ЭЛИ на участках I, II, III, IV волны яркости и полного спектра излучения, соответствующих первому полупериоду импульса напряжения возбуждения после паузы, для вариантов (±Al) (рис. 2, 3); уменьшение волн яркости $L_{2}(t)$, в частности, в области основного максимума излучения центров Mn^{2+} с $\lambda_m = 585$ nm (рис. 1, *a*, *b*) и полной волны яркости $L(t) - \Delta L(t)$ (рис. 1, d), причем наиболее существенное уменьшение L(t) и $L_{\lambda}(t), \eta_{\text{int}}(t)$ происходит в I и II участках волны яркости, там же, где наиболее сильно выражены прирост тока $\Delta I_p(t)$ и заряда $\Delta Q_p(t)$, протекающих через слой люминофора после ИК засветки, по сравнению с соответствующими током и зарядом без засветки ТП ЭЛИ (рис. 1, d-f), а также там, где начинается (участок I) и существенно возрастает (участок II) отклонение изменения поля $F_{p}(t)$ от линейного закона (рис. 1, c); уменьшение основного максимума спектров электролюминесценции (~ 585 nm) на I, II, III участках волны яркости и полного спектра излучения для варианта (-Al) (рис. 2, *a*-*c*, *e*), а также спектров электролюминесценции на участках I, II, III, IV и полного спектра для варианта (+Al) (рис. 3, a-e) от 1.1 до 2.6 раза, в том числе уменьшение максимума полного

Рис. 1. Зависимости: 1 - V(t); 2, $3 - I_e(t)$; 4, 5, 6, $7 - L_\lambda(t)$ при $\lambda = 585$ nm; $8 - 11 - F_p(t)$; 12, 13 $-\Delta I_p$; 14, 15 $-\Delta L(t)$; 16, 17 $-\Delta Q_p(t)$; 18, 19 $-\eta_{int}(t)$; 2, 4, 6, 8, 10, 19 - без ИК подсветки, 3, 5, 9, 11, 18 - при импульсной ИК подсветке в паузе между импульсами напряжения возбуждения; *a*, 8, 9, 13, 15, 17 - вариант (+Al); *b*, *f*, 10–12, 14, 16 - вариант (-Al), $T_s = 100$ s.

спектра для варианта $(-Al) \sim в 1.5$ раза, для варианта $(+Al) \sim в 2.1$ раза; увеличение основного максимума спектра излучения в ~ 1.7 раза на IV участке для варианта (-Al); (рис. 2, d) с одновременным увеличением внутреннего квантового выхода $\eta_{\rm int}(t)$ (рис. 1, f); ослабление полос излучения в спектре в областях длин волн $\sim 530-540$ nm и усиление полос в области $\sim 640-690$ nm на I и IV участках волн яркости и в пол-

ном спектре излучения для варианта (-Al) (рис. 2, *a*, *d*); ослабление полосы излучения в спектре в области длин волн ~ 530–540 nm на участке I волны яркости для варианта (+Al) (рис. 3, *a*); ослабление полосы с максимумом ~ 495 nm на участках I–IV и в полном спектре излучения в варианте (-Al) (рис. 2, *a*-*f*); смещение длинноволновой стороны спектров электролюминесценции: полного для варианта (-Al) (рис. 2, *f*) и более

Рис. 2. Спектры электролюминесценции для варианта (-Al): I - без ИК подсветки, <math>2 - c ИК подсветкой; a -на участке I волны яркости; b - на участке II; c - на участке III; d - на участке IV; e - полные спектры электролюминесценции; f - нормированные относительно максимума полные спектры электролюминесценции, $T_s = 100$ s.

сильное на участках I, IV и полного для варианта (+Al) (рис. 3, *a*, *d*, *f*) в более коротковолновую область.

Все указанные изменения спектров возрастают с увеличением паузы между импульсами напряжения возбуждения, во время которой осуществляется ИК подсветка.

Полученные результаты можно объяснить следующим образом. В активном режиме работы ТП ЭЛИ после превышения порогового напряжения происходит (рис. 4)

туннельная эмиссия электронов с поверхностных состояний прикатодной границы раздела диэлектрик—люминофор, баллистическое ускорение этих электронов с последующей ударной ионизацией ускоренными электронами мелких донорных уровней, центров свечения — ионов Mn^{2+} , замещающих ионы цинка в узлах кристаллической решетки ZnS, и глубоких центров, обусловленных вакансиями цинка V_{2n}^{2-} серы V_{S}^+ , с образованием в

Рис. 3. Спектры электролюминесценции для варианта (+Al): *1* — без ИК подсветки, *2* — с ИК подсветкой. *a*-*f* — то же, что и на рис. 2.

прианодной области слоя люминофора положительного объемного заряда (ПОЗ); при этом в прикатодной области происходит захват свободных электронов глубокими центрами $V_{\rm S}^{2+}$, $V_{\rm S}^+$ с энергетическим положением ≈ 1.3 и ≤ 1.9 eV выше потолка валентной зоны соответственно с нейтрализацией ПОЗ, образовавшегося в предыдущем цикле работы ТП ЭЛИ, и формированием отрицательного объемного заряда (ООЗ) (рис. 4, *a*-*c*, *e*, *f*). В паузе между последовательными включениями ТП

ЭЛИ в активный режим происходит нейтрализация данных объемных зарядов, возрастающая с увеличением длительности паузы [2,3]. Засветка ТП ЭЛИ во время паузы фотонами соответствующей энергии в ИК области приводит к образованию дополнительных вакансий серы $V_{\rm S}^+$ за счет захвата освобожденных из валентной зоны ИК излучением электронов центрами $V_{\rm S}^{2+}$, что вызывает в новом цикле работы ТП ЭЛИ (рис. 4, *e*) уменьшение ПОЗ, поля в прикатодной области и тока

Рис. 4. Процессы, происходящие при возбуждении электролюминесценции в ТП ЭЛИ на основе ZnS: Mn: *a, b, c* — в первый полупериод T/2 напряжения возбуждения V(t); *d, e,f* — во второй полупериод; *a, e* — при превышении порогового напряжения; *b* — образование объемных зарядов при t < T/4; *c* — t = T/4; *d* — t = T/2; *f* — образование объемных зарядов при t < 3T/4; D — слой диэлектрика, К — катод, А — анод. *I* — отрицательный объемный заряд, 2 — положительный объемный заряд.

туннельной эмиссии (участок I) (рис. 1, d); при увеличении напряжения V(t) поля $F_p(t)$ происходит рост токов $I_e(t)$ и $I_p(t)$ (участок I, II) относительно их значений без ИК засветки ТП ЭЛИ (рис. 1, a, b, d) за счет ионизации дополнительно образованных вакансий серы $V_{\rm S}^+$ в слое люминофора. Разница в значениях $\Delta I_p(t)$ и $\Delta Q_p(t)$ для вариантов (±A1) обусловлена неоднородным распределением дефектов структуры по тол-

щине слоя люминофора [2,3]. При этом в соответствии с [5,9–11] спектр электролюминесценции ТП ЭЛИ обусловлен внутрицентровым излучением центров Mn^{2+} и образован полосами с максимумами длин волн $\lambda_m = 557$, 578, 600, 616, 635–637 nm, обусловленными различным расположением ионов Mn^{2+} в реальной кристаллической решетке ZnS и возможным образованием фазы α -MnS ($\lambda_m = 635$ nm [10,11]). В спектре может присут-

Наблюдаемое излучение в области $\sim 530{-}\,540\,\rm nm$ без ИК подсветки (рис. 2,3) может быть связано с рекомбинационным излучением, возникающим при захвате свободных электронов глубокими центрами, обусловленными двукратно ионизированными вакансиями серы V_S²⁺ с энергией — 1.3 eV выше потолка валентной зоны [5,12,15]. Ее более сильное проявление в варианте (-Al) обусловлено технологией получения слоя ZnS:Mn, при которой, как указывалось, часть слоя ZnS, прилегающая к верхнему электроду, оказывается обедненной серой, что приводит к появлению в равновесных условиях большей концентрации вакансий серы в этой области по сравнению с нижней частью слоя ZnS [2,3]. Ослабление этой полосы на I участке и в полном спектре в варианте (-AI) (рис. 2, *a*, *e*, *f*) после ИК подсветки объясняется уменьшением концентрации центров $V_{\rm S}^{2+}$ в результате захвата этими центрами электронов, освобожденных из валентной зоны, приводящего к увеличению концентрации центров V_S⁺. Это вызывает усиление полосы рекомбинационного излучения 640-690 nm на I участке в варианте (-A1) (рис. 2, a, d), обусловленного переходами электронов из зоны проводимости или с относительно мелких донорных уровней, образованных, в частности, центрами Zn⁰_i с энергией 0.1-0.12 eV от дна зоны проводимости [2,3,12] на уровень, образованный $V_{\rm S}^+$, с энергией $\geq 1.9\,{\rm eV}$ ниже дна зоны проводимости.

Полоса излучения с $\lambda_m = 490-495$ nm (рис. 2, 3, *a*, *d*, *e*, *f*) обусловлена, по-видимому, рекомбинационным излучением донорно-акцепторных пар, связанных с вакансиями серы $V_{\rm S}^{2+}$. Тушение этой полосы после ИК подсветки на всех спектрах в варианте (-Al) и появление ее на спектрах участков I, IV в варианте (+Al) может быть связано с различным распределением дефектов структуры по толщине слоя люминофора, преобладанием, как ранее указывалось, в верхней части слоя люминофора дефектов типа вакансий серы. После ИК подсветки концентрация вакансий серы $V_{\rm S}^{2+}$, а следовательно, и донорно-акцепторных пар падает.

Относительное ослабление изменения указанных выше полос на II, III участках волн яркости (рис. 2, 3) обусловлено существенным возрастанием интенсивности внутрицентрового излучения ионов Mn^{2+} на этих участках.

Увеличение после ИК подсветки основного максимума электролюминесценции на IV участке волны яркости в варианте (-Al) (рис. 2, d-f) и внутреннего квантового выхода $\eta_{int}(t)$ на этом участке (рис. 1, f) может быть обусловлено резонансным поглощением излучения с $\lambda_m = 530$ nm ионами Mn²⁺ [16], находящимися вблизи вакансий серы $V_{\rm S}^{2+}$ в верхней части слоя люминофора, в условиях уменьшения поля $F_p(t)$ (рис. 1, c) и прекращения ударной ионизации центров Mn²⁺, что приводит к ослаблению полосы излучения в области ~ 530 nm на

участке IV волны яркости и дополнительно в полном спектре (рис. 2, d-f).

Смещение длинноволновой стороны спектров электролюминесценции в более коротковолновую область (рис. 2, f, 3, a, d, f) обусловлено, по-видимому, уменьшением концентрации комплексных центров, образованных ионами Mn^{2+} и вакансиями серы и дающими полосу излучения с $\lambda_m = 606-610$ nm [12–14], из-за описанного выше изменения зарядового состояния вакансий серы, а более сильное проявление этого смещения в варианте (+Al) обусловлено, как указывалось, более высокой концентрацией вакансий серы и центров Mn^{2+} у верхнего Al электрода [2,3]. Так как ИК подсветка уменьшает концентрацию центров V_S^{2+} , то указанные комплексные центры образованы, по-видимому, ионами Mn^{2+} именно с вакансиями серы V_S^{2+} .

Отсутствие влияния ИК подсветки на спектры электролюминесценции в непрерывном режиме возбуждения ТП ЭЛИ и во время действия импульсов напряжения возбуждения в режиме однократного запуска обусловлено бо́лышим временем, необходимым для образования дополнительных глубоких центров $V_{\rm S}^+$ при используемой плотности потока ИК фотонов из-за малой толщины пленки люминофора и малого времени паузы в промежутках между импульсами напряжения возбуждения (<10 ms) в этих случаях [3].

ИК тушение основного максимума электролюминесценции связано, по-видимому, с перераспределением каналов ударного возбуждения центров свечения Mn²⁺ и глубоких центров, обусловленных вакансиями серы $V_{\rm S}^+$ и цинка V_{Zn}^{2-} [4]. В пользу этого свидетельствует уменьшение волны яркости $L_{\lambda}(t)$ на $\lambda = 585$ nm (рис. 1, *a*, *b*) и полной волны яркости $\Delta L(t)$ (рис. 1, d) одновременно с увеличением тока $\Delta I_{p}(t)$ и заряда $\Delta Q_{p}(t)$ (рис. 1, *d*, *e*), сопровождающееся снижением внутреннего квантового выхода $\eta_{int}(t)$ (рис. 1, *f*). При этом приращение концентрации центров $V_{\rm S}^+$ за счет ИК подсветки, а следовательно, и равновесная концентрация центров $V_{\rm S}^{2+} - \Delta N_{V_{\rm S}}$ составляют при приращении заряда на участках I–III $\Delta Q_p = 1.5 - 2.1 \cdot 10^{-9}$ С (рис. 1, *e*), толщина слоя ПОЗ $d = 0.2\,\mu{
m m},\,S_e = 2\,{
m mm}^2,\,\Delta N_{V_{
m S}} = 2.3 - 3.2\cdot 10^{16}\,{
m cm}^{-3},$ что соответствует ранее полученным результатам [3]. Поскольку равновесная концентрация вакансий $V_{\rm S}^+$ оценивается величиной $N_{V_{\rm S}}=3-4\cdot10^{16}\,{\rm cm}^{-3}$ [3], то ИК засветка может приводить к перераспределению процессов ударного возбуждения центров $V_{\rm S}^+$ и ${\rm Mn}^{2+}$ в 1.5–2.1 раза в зависимости от вариантов $(\pm Al)$ в пользу центров V_S⁺ даже без учета меньшей энергии ионизации их $(\sim 1.9 \, {\rm eV})$ по сравнению с центрами ${\rm Mn}^{2+}$ (2.4-2.5 eV) и соответственно без учета увеличенной эффективной толщины слоя люминофора, в которой происходит ионизация центров $V_{\rm S}^+$, по сравнению с центрами Mn⁺, а также без учета большего сечения ударного возбуждения центров $V_{\rm S}^+$.

Рассмотрим соотношение концентраций центров $V_{\rm S}^+$ и ${\rm Mn}^{2+}$ более детально. Количество возбужденных ударной ионизацией центров ${\rm Mn}^{2+}$, релаксирующих с

испусканием фотонов, в приближении монохроматичности излучения и равномерно излучающей в любом направлении поверхности ТП ЭЛИ за полпериода T/2напряжения V(t) определяется выражением [6]

$$N_r^* = \frac{AL_eT}{2K_0},\tag{4}$$

где $A = (\pi S_e)/(h\nu f_\lambda)$, $h\nu$ — энергия фотона, f_λ видность излучения, L_{ρ} — средняя яркость свечения ТП ЭЛИ за полпериода T/2 напряжения возбуждения V(t), *К*₀ — коэффициент вывода излучения из ТП ЭЛИ. При hv = 2.12 eV ($\lambda_m = 585 \text{ nm}$), $f_{\lambda} = 510 \text{ lm/W}$, $K_0 = 0.2, T = 0.05 \text{ s}, S_e = 2 \text{ mm}^2$, измеренном без ИК засветки в непрерывном режиме возбуждения на частоте 20 Hz, при значении $L_e = 5 \text{ cd/m}^2$ получаем $N_r^* = 2.7 \cdot 10^{10}$, что соответствует концентрации центров свечения при эффективной толщине слоя люминофора, в котором происходит ударное возбуждение центров Mn²⁺, $d_{pe} = 0.3 - 0.4 \,\mu$ m, $N^* = 3.4 - 4.5 \cdot 10^{16} \,\mathrm{cm}^{-3}$. Это значение даже меньше величины суммарной равновесной концентрации центров $V_{\rm S}^+$ и $V_{\rm Zn}^{2-}$, составляющей $\sim 6.2 - 7.7 \cdot 10^{16} \,\mathrm{cm}^{-3}$ [3], ударная ионизация которых приводит к образованию ПОЗ. Указанные значения концентрации ионизированных глубоких центров, образующих ПОЗ, полностью соответствуют ранее определенным значениям: $10^{16} - 10^{17} \text{ cm}^{-3}$ [17], $4.8 - 9.0 \cdot 10^{16} \text{ cm}^{-3}$ [18], а также величинам равновесной концентрации центров $V_{\rm S}^+$ и $V_{\rm Zn}^{2-}$ в ZnS [15]. Таким образом, увеличение концентрации центров $V_{\rm S}^+$ при ИК засветке на $\Delta N_{V_{\rm S}} = 2.3 - 3.2 \cdot 10^{16} \, {\rm cm^{-3}}$ действительно сильно влияет на перераспределение каналов ударного возбуждения центров свечения и центров, обусловленных собственными дефектами структуры.

Поскольку величина заряда Q_p , протекшего через слой люминофора за полпериода напряжения возбуждения V(t), определенная аналогично [3], составляет $\sim 2.7 \cdot 10^{-8}$ С, что соответствует количеству носителей заряда (электронов, так как их подвижность в ZnS в 28 раз выше подвижности дырок [3]) $n_p = 17 \cdot 10^{10}$, то это, с одной стороны, свидетельствует о достаточном количестве свободных электронов для ударной ионизации центров свечения Mn^{2+} и центров, обусловленных вакансиями серы и цинка. С другой стороны, внутренний квантовый выход ТП ЭЛИ за полпериода напряжения V(t) в приближении монохроматичности излучения и равномерно излучающей в любом направлении поверхности ТП ЭЛИ определяется, согласно [19], выражением

$$\eta_{\rm unt} = \frac{N_r^*}{n_p},\tag{5}$$

что при ранее приведенных значениях N_r^* и n_p дает $\eta_{\text{int}} = 0.16$ и свидетельствует о том, что только каждый шестой электрон, прошедший через слой люминофора, вызывает возбуждение центров Mn^{2+} , релаксирующих излучательно. Остальная часть общего количества электронов n_p участвует в ударном возбуждении центров Mn^{2+} , релаксирующих безызлучательно, и ударной

ионизации глубоких центров, обусловленных прежде всего вакансиями серы $V_{\rm S}^+$ и цинка $V_{\rm Zn}^{2-}$. Последнее подтверждается данными [20], свидетельствующими о том, что распределение горячих электронов в ZnS резко спадает при энергиях ~ 2.64–2.82 eV (энергия ионизации $V_{\rm Zn}^{2-}$ ~ 2.6–2.8 eV [3]).

Оценим полное число возбужденных центров ${\rm Mn}^{2+}$ (N^*_{Σ}) и вероятность их излучательной релаксации P_r

$$N_{\Sigma}^* = \frac{N_r^*}{P_r}.$$
 (6)

Внутренний квантовый выход η_{int} связан с P_r и количеством центров Mn^{2+} , ионизированных одним электроном, прошедшим через слой люминофора N_1 , соотношением

$$\eta_{\rm int} = N_1 \cdot P_r, \tag{7}$$

где

$$N_1 = d_{pe} \cdot \sigma \cdot N, \tag{8}$$

 σ — сечение ударного возбуждения центров Mn²⁺, $\sigma = 2 \cdot 10^{-16} \text{ cm}^2$ [21], N — их концентрация в слое люминофора; при используемом уровне легирования (0.5% mass.) $N = 2 \cdot 10^{20} \text{ cm}^{-3}$ [17].

При $\eta_{\text{int}} = 0.16$, $d_{pe} = 0.3 - 0.4 \,\mu\text{m}$, $N^* = 2.7 \cdot 10^{10}$ из (6) - (8) получаем $N_{\Sigma}^* = 20 - 27 \cdot 10^{10}$, что больше количества электронов, прошедших слой люминофора $n_p = 17 \cdot 10^{10}$, и свидетельствует о неправомочности использования выражения (8), так как значение N_1 ограничено количеством электронов, эмиттированных с поверхностных состояний катодной границы раздела диэлектрик-люминофор за полпериода напряжения $V(t) - n_{p0}$, и количеством глубоких центров $V_{\rm S}^+$ и $V_{\rm Zn}^{2-} - N_V$. Тогда, если считать, что в процессе ударной ионизации ионизируются все центры $V_{\rm S}^+$ и $V_{\rm Zn}^{2-}$, в пользу чего свидетельствует вид зависимостей $\Delta I_p(t)$, $\Delta Q_p(t)$ (рис. 1, *d*, *e*), то общее количество возбужденных центров $\mathrm{Mn}^{2+} - N_{\Sigma}^*$ не превышает величины

$$N_{\Sigma}^* \le n_p - N_V. \tag{9}$$

Учитывая приведенные выше значения n_p , N^* и общее количество центров $V_{\rm S}^+$ и $V_{Z{\rm n}}^{2-}$, соответствующее равновесной концентрации их в слое люминофора ТП ЭЛИ $6.2-7.7\cdot 10^{16}\,{\rm cm}^{-3}$ [3], $N_V=4.8-6.4\cdot 10^{10}$, величина N_{Σ}^* составит $N_{\Sigma}^*\leq 10.6-12.2\cdot 10^{10}$. В таком случае из (6) значение P_r составляет $P_r\geq 0.22-0.25$, что близко к оценочной величине $P_r=0.4$ [21]. Следует отметить, что значения N_{Σ}^* , N_r^* и $\eta_{\rm int}$ могут быть в 2–2.5 раза выше только за счет использования возбуждающего напряжения [22] из-за возрастания токов $I_e(t)$, $I_p(t)$ [7,22] и, как следствие, n_{p0} , а также дополнительно в несколько раз больше из-за уменьшения несветящейся прикатодной области слоя люминофора и возрастания d_{pe} в более совершенных структурах ТП ЭЛИ, полученных послойной атомной эпитаксией [21],

Учитывая, что ударное возбуждение центров Mn^{2+} не приводит к появлению новых свободных носителей, можно определить коэффициент умножения электронов *M* в слое ZnS

$$M = \frac{n_p}{n_{p0}}.$$
 (10)

Так как число ионизаций *m*, приходящихся на 1 электрон, вышедший из области сильного поля, равно

$$m = 1 - \frac{1}{M},\tag{11}$$

то общее число ионизаций, сопровождающихся умножением электронов, составит $m \cdot n_p$. С другой стороны, если принять, что умножение электронов осуществляется преимущественно за счет ионизации всех глубоких центров $V_{\rm S}^+$ и $V_{\rm Zn}^{2-}$, количество которых равно N_V , то значения m и M определяются в виде

$$m = \frac{N_V}{n_p}, \qquad M = \frac{n_p}{n_p - N_V}.$$
 (12)

При определенных ранее значениях N_V и n_p получаем m = 0.28 - 0.38, M = 1.4 - 1.6. Такая величина M полностью согласуется с данными [23], где для "тонких" образцов ТП ЭЛИ ($d_p = 230$ nm), полученных послойной атомной эпитаксией и имеющих минимальную толщину несветящейся прикатодной области, в которой происходит ускорение свободных электронов до энергии ионизации центров Mn^{2+} (~ 20 nm [21]) по сравнению с ТП ЭЛИ, изготовленными по другим технологиям (до 200 nm [21]), определены значения M = 1.4 - 1.8; эти значения несколько меньше величин M, полученных для более толстых образцов ТП ЭЛИ этими же авторами (M = 2.1 - 4), и значений M = 3.9, полученных авторами [24].

Определенное выше значение M позволяет найти количество электронов, туннелировавших через барьер на катодной границе раздела диэлектрик—люминофор за полпериода напряжения возбуждения V(t)

$$n_{p0} = \frac{n_p}{M} = 10.6 - 12.1 \cdot 10^{10}.$$
 (13)

С учетом площади ТП ЭЛИ $S_e = 2 \text{ mm}^2$ это соответствует поверхностной плотности состояний, с которых происходит туннелирование электронов $\sim 5.3 - 6 \cdot 10^{12} \text{ cm}^{-2}$, что согласуется с известными данными [21].

При полученных значениях *m* и $d_{pe} = 0.3 - 0.4 \,\mu$ m оценка скорости ударной ионизации α , проведенная в предположении однородного поля в области ионизации, дает

$$\alpha = \frac{m}{d_{pe}} = 0.7 - 1.3 \cdot 10^4 \,\mathrm{cm}^{-1}.$$
 (14)

Полученные данные позволяют оценить сечение ударного возбуждения σ_{V_S} центров V_S^+ . Считая, что за

полпериода напряжения возбуждения V(t) ионизируются все центры $V_{\rm S}^+$, и учитывая, что при $N_{V_{\rm S}} < n_{p0}$ количество центров $V_{\rm S}^+$, возбуждаемых одним электроном, прошедшим слой люминофора $N_{V_{\rm S}}^1$, можно определить по формуле (8), величина $\sigma_{V_{\rm S}}$ определится в виде

$$\sigma_{V_{\rm S}} = \frac{N_{V_{\rm S}}^1}{d_{pe}N_{V_{\rm S}}}.\tag{15}$$

При $d_{pe} = 0.3 - 0.4 \,\mu$ m, $N_{V_{\rm S}}^1 \leq 1$, $N_{V_{\rm S}} = 3 - 4 \cdot 10^{16} \,{\rm cm}^{-3}$ получаем $\sigma_{V_{\rm S}} \leq 0.6 - 1.1 \cdot 10^{-12} \,{\rm cm}^2$, что соответствует центрам притяжения [25] и существенно больше сечения ударного возбуждения нейтральных центров Mn²⁺ ($\sim 2 \cdot 10^{-16} \,{\rm cm}^2$).

Полученные данные позволяют также оценить сечение поглощения ИК фотона σ_{ϕ} центром $V_{\rm S}^{2+}$ (сечение фотогенерации дырок в валентной зоне с центров $V_{\rm S}^{2+}$). Согласно [25],

$$\sigma_{\phi} = \frac{\alpha_{\phi}}{\Delta N_{V_{\rm S}}^{\phi}},\tag{16}$$

где α_{ϕ} — коэффициент поглощения ИК излучения, $\Delta N_{V_{\rm S}}^{\phi}$ — концентрация фотогенерированных центров $V_{\rm S}^+$.

При условии пренебрежения отражением ИК излучения и его поглощением в других слоях структуры ТП ЭЛИ и в подложке, а также при экспоненциальном законе поглощения этого излучения в слое люминофора (центрами $V_{\rm S}^{2+}$), выражение для α_{ϕ} можно записать в виде

$$\alpha_{\phi} = \frac{1}{d} \ln \frac{n_{\phi 0}}{n_{\phi d}} = \frac{1}{d} \ln \frac{\Phi \cdot T_S}{(\Phi T_S - \Delta N_{V_S}^{\phi} d)},$$
(17)

где d — толщина слоя ПОЗ; $n_{\phi 0} = \Phi S_e T_S$ — количество ИК фотонов, попавших на поверхность ТП ЭЛИ; $n_{\phi d} = \Phi T_S S_e - N_{V_S}^{\phi} S_e d$ — количество ИК фотонов, прошедших слой люминофора без поглощения.

Подставляя в (16), (17) значения $d = 0.2 \,\mu$ m, $\Phi = 3 \cdot 10^{15} \,\mathrm{mm}^{-2} \cdot \mathrm{s}^{-1}$, $T_s = 100 \,\mathrm{s}$, $\Delta N_{V_{\mathrm{S}}}^{\phi} = (2.3 - 3.2) \times 10^{16} \,\mathrm{cm}^{-3}$, получим $\alpha_{\phi} = (7.5 - 10.5) \cdot 10^{-4} \,\mathrm{cm}^{-1}$, $\sigma_{\phi} = 3.3 \cdot 10^{-20} \,\mathrm{cm}^2$.

Таким образом, результаты исследований свидетельствуют о том, что наблюдаемое ИК тушение электролюминесценции в ТП ЭЛИ на основе ZnS: Mn обусловлено перераспределением каналов ударного возбуждения центров свечения Mn^{2+} и глубоких центров V_S^+ в запрещенной зоне ZnS: Мп в пользу ударного возбуждения глубоких центров $V_{\rm S}^+$, концентрация которых увеличена ИК подсветкой в паузе между импульсами напряжения возбуждения. Изменение спектров электролюминесценции ТП ЭЛИ подтверждает предложенный ранее механизм влияния ИК подсветки на характеристики ТП ЭЛИ и определенное ранее значение энергетического положения уровней, обусловленных вакансиями серы V_S²⁺ и $V_{\rm S}^+$: 1.3 eV выше потолка валентной зоны и $\sim 1.9 \, {\rm eV}$ ниже дна зоны проводимости соответственно. Наблюдаемая полоса излучения с максимумом $\sim 490-495\,\mathrm{nm}$ обусловлена, вероятно, рекомбинационным излучением

донорно-акцепторных пар, связанных с вакансиями серы $V_{\rm S}^{2+}$. Из экспериментальных данных оценены значения некоторых параметров глубоких центров, обусловленных собственными дефектами структуры слоя люминофора: сечение ударного возбуждения центров V_s⁺ — $\sigma_{V_{\rm s}} \leq 0.6 - 1.1 \cdot 10^{-12} \, {\rm cm}^2$ и скорость ударной ионизации их $\alpha = 0.7 - 1.3 \cdot 10^4 \, {\rm cm}^{-1}$, сечение фотовозбуждения центров $V_{\rm S}^{2+}$ — $\sigma_\phi \approx 3.3 \cdot 10^{-20} \, {\rm cm}^2$ и коэффициент поглощения ИК излучения $\alpha_{\phi} = 7.5 - 10.5 \cdot 10^{-4} \, \mathrm{cm}^{-1}$, а также значения внутреннего квантового выхода электролюминесценции $\eta_{\rm int} \sim 0.16$, вероятности излучательной релаксаци возбужденных центров Mn²⁺ - $P_r \ge 0.22 - 0.25$ и коэффициента умножения электронов в слое люминофора M = 1.4 - 1.6. Полученные данные свидетельствуют также о том, что эффективность электролюминесценции ТП ЭЛИ на основе ZnS:Mn, вызванной ударным возбуждением центров свечения Mn^{2+} , определяемая внутренним квантовым выходом, может существенно ограничиваться конкурирующим процессом ударного возбуждения глубоких центров, обусловленных собственными дефектами структуры слоя люминофора — вакансиями серы и цинка.

Работа поддержана грантом президента Российской Федерации (№ НШ-1482.2003.8).

Список литературы

- [1] Георгобиани А.Н., Пензин Ю.Г. // Люминесценция. 1963. С. 321–326.
- [2] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю., Рябов Д.В. // Письма в ЖТФ. 2003. Т. 29. Вып. 4. С. 14–21.
- [3] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю., Рябов Д.В. // ЖТФ. 2003. Т. 73. Вып. 4. С. 90–99.
- [4] Гурин Н.Т., Рябов Д.В. // Письма в ЖТФ. 2004. Т. 30. Вып. 9. С. 88–95.
- [5] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // Письма в ЖТФ. 2002. Т. 28. Вып. 15. С. 24–32.
- [6] Гурин Н.Т., Сабитов О.Ю., Шляпин А.В. // ЖТФ. 2001.
 Т. 71. Вып. 8. С. 48–58.
- [7] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // ЖТФ. 2002.
 Т. 72. Вып. 2. С. 74–83.
- [8] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // ЖТФ. 2003.
 Т. 73. Вып. 4. С. 100–112.
- [9] Буланый М.Ф., Полежаев Б.А., Прокофьев Т.А. // ФТП. 1998. Т. 32. Вып. 6. С. 673–675.
- [10] Буланый М.Ф., Коваленко А.В., Полежаев Б.А. // Междунар. конф. по люминесценции. Тез. докл. М.: ФИАН, 2001. С. 98.
- [11] Борисенко Н.Д., Буланый М.Ф., Коджесперов Ф.Ф., Полежаев Б.А. // ЖПС. 1991. Т. 55. № 3. С. 452–456.
- [12] Грузинцев А.Н. Сложные центры свечения в сильно легированных примесью сульфидах кадмия, цинка, стронция и кальция. Док. дис. Черноголовка, 1997. 373 с.
- [13] Грузинцев А.Н. // Микроэлектроника. 1999. Т. 28. № 2. С. 126–130.
- [14] Георгобиани А.Н., Грузинцев А.Н., Сю Сююнь, Лод Зиндонг // Неорган. матер. 1999. Т. 35. С. 1429–1434.
- [15] Физика соединений А^{II}В^{VI} / Под ред. А.Н. Георгобиани, М.К. Шейнкмана. М.: Наука, 1986. 320 с.

- [16] Борисенко Н.Д., Буланый М.Ф., Коджесперов Ф.Ф., Полежаев Б.А. // ЖПС. 1990. Т. 52. № 1. С. 36–39.
- [17] Howard W.E., Sahni O., Alt P.M. // J. Appl. Phys. 1982. Vol. 53. N 1. P. 639–647.
- [18] Hitt J.C., Keir P.D., Wager J.F., Sun S.S. // J. Appl. Phys. 1998. Vol. 83. N 2. P. 1141–1145.
- [19] Гурин Н.Т. // ЖТФ. 1996. Т. 66. Вып. 5. С. 77-85.
- [20] Keir P.D., Maddix C., Baukov B.A., Wager J.F. et al. // J. Appl. Phys. 1999. Vol. 86. N 12. P. 6810–6815.
- [21] Электролюминесцентные источники света / Под ред. И.К. Верещагина. М.: Энергоатомиздат, 1990. 168 с.
- [22] Гурин Н.Т., Сабитов О.Ю. // ЖТФ. 1999. Т. 69. Вып. 2. С. 64–69.
- [23] Shin S., Keir P.D., Wager J.F., Viljanen J. // J. Appl. Phys. 1995. Vol. 78. N 9. P. 5775–5781.
- [24] Zeinert A., Barthou C., Benalloul P., Benoit J. // Semicond. Sci. Technol. 1997. N 12. P. 1479–1486.
- [25] Вавилов В.С. Действие излучений на полупроводники. М.: ГИФМЛ, 1963. 264 с.