01;02;05;11 Адсорбция атомов водорода на кремнии

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 16 июня 2004 г.)

В рамках модели, учитывающей наряду с диполь-дипольным взаимодействием адатомов водорода увеличение длины адсорбционной связи с ростом степени покрытия Θ , рассчитано изменение работы выхода $\Delta\phi(\Theta)$ поверхности (100) кремния. Определена зависимость величины заряда адатомов от Θ и оценено изменение поверхностной проводимости подложки.

Теоретическому исследованию адсорбции газов на полупроводниковых поверхностях до недавнего времени уделялось сравнительно мало внимания. В работе [1] нами были предложены модели адсорбции атомарного водорода на германии. Оказалось, что для адекватного описания экспериментальных данных по адсорбции Н на Ge(111) [2] в стандартную модель адсорбции Андерсона–Ньюнса [3,4] необходимо ввести зависимость длины адсорбционной связи *а* от степени покрытия $\Theta = N/N_{ML}$ ($N(N_{ML})$ — концентрация частиц в слое (монослое)), положив

$$a = a_0(1 + \alpha \cdot \Theta), \tag{1}$$

где a_0 — длина адсорбционной связи при нулевом покрытии, α — безразмерный коэффициент.

В системе H/Ge(111) изменение работы выхода $\Delta\phi(\Theta)$ при малых покрытиях отрицательно (заряд адатома Z положителен), проходит при $\Theta = 0.15$ через нуль, после чего становится положительным (адатом приобретает отрицательный заряд) и возрастает. При переходе от Z > 0 к Z = 0 число заполнения адатома n = 1 - Z увеличивается и радиус оболочки a возрастает от значения, близкого к ионному радиусу r_i , до значения, близкого к атомному радиусу r_a . Здесь мы проанализируем результаты экспериментов [5], где исследовалась система H/Ge(100).

При адсорбции водорода на поверхности (100) кремния наблюдается зависимость $\Delta \phi(\Theta)$, в определенной степени обратная по отношению к Ge(100): до $\overline{\Theta} \approx 0.1$ работа¹ выхода системы не меняется, т.е. $\Delta \phi(\Theta) = 0$, а при $\Theta > \overline{\Theta}$ функция $\Delta \phi(\Theta)$ приобретает отрицательное значение. Вообще говоря, остается непонятным, почему в интервале покрытий (0, 0.1) работа выхода системы H/Ge(100) остается постоянной. Обычно эта область, наоборот, соответствует наиболее резкому изменению работы выхода системы как при адсорбции металлов на металлических [4] и полупроводниковых [6] подложках, так и при адсорбции газов на полупроводниках [2,7]. Более того, в той же работе [5] показано, что при нанесении на кремниевую подложку субмонослойной пленки

германия, т.е. в системе H/Ge/Si(100), наблюдается область покрытий (0, Θ^*), где $\Delta \phi(\Theta) > 0$ и имеет максимум при $\Theta \approx 0.05$. С ростом концентрации адатомов германия величина Θ^* возрастает. Все это позволяет предположить, что и в случае чистой поверхности (100) кремния в области (0, 0.1) должна иметь место положительная добавка к работе выхода. В дальнейшем мы будем исходить из этого предположения.

Как показано в [1], заряд адатома водорода Z и изменение работы выхода $\Delta \phi$ с учетом диполь-дипольного взаимодействия в адсорбированном слое можно рассчитать по следующим формулам:

$$Z = \frac{2}{\pi} \operatorname{arctg} \left[\frac{\Omega_0(1-x)/(1+\overline{\alpha} \cdot x) - x^{3/2} \overline{\xi}_0 Z(1+\overline{\alpha} \cdot x)^2}{\Gamma} \right],$$
(2)
$$\Delta \phi = -\overline{\Phi}_0 x (1+\overline{\alpha} \cdot x) Z,$$

где

$$x = \frac{\Theta}{\overline{\Theta}}, \qquad \overline{\xi}_0 = \xi_0 \overline{\Theta}^{3/2}, \qquad \overline{\Phi}_0 = \Phi_0 \cdot \overline{\Theta},$$
$$\overline{\alpha} = \alpha \cdot \overline{\Theta} = \frac{\Omega_0}{I - \phi}, \qquad \xi_0 = 2e^2 a_0^2 N_{ML}^{3/2} A,$$
$$\Omega_0 = \phi - I + \Delta_0, \qquad \Delta_0 = \frac{e^2}{4a_0}, \qquad \alpha = \frac{\Omega_0}{I - \phi}. \tag{3}$$

Здесь Ω_0 — энергия квазиуровня адатома относительно уровня Фреми подложки; ξ_0 — константа дипольдипольного отталкивания адатомов; A ~ 10 — безразмерный коэффициент, слабо зависящий от геометрии решетки адатомов; Г — полуширина квазиуровня изолированного адатома; I — энергия ионизации адсорбируемого атома; ϕ — работа выхода кремния; Δ_0 кулоновский сдвиг квазиуровня адатома, вызванный взаимодействием его электрона с электронами подложки. Для численного расчета адсорбции были выбраны следующие параметры: $a_0 = 1.5$ Å, $N_{ML} = 6.78 \cdot 10^{-14}$ cm⁻², $\overline{\Theta} = 0.1, \quad \xi_0 = 11.44 \,\mathrm{eV}, \quad \Phi_0 = 18.4 \,\mathrm{eV}, \quad \Omega_0 = -0.1 \,\mathrm{eV},$ $\Gamma = 0.1 \, \text{eV}, \, \Delta_0 = 2.4 \, \text{eV}, \, \alpha = -0.1.$ Отметим, что в данном случае $\alpha < 0$, т.е. уменьшение длины адсорбционной связи, что соответствует сдвигу квазиуровня адатома вверх, в результате чего он переходит из начального положения под уровнем Ферми

¹ При анализе данных работы [5] мы полагаем, что экспозиция 10L соответствует $\Theta = 0.1$ и предполагаем для простоты линейную связь между экспозицией и степенью покрытия.

 $(\Omega_0 \equiv \Omega(\Theta = 0) < 0)$ в положение над уровнем Ферми $(\Omega(\Theta) = \Omega_0 - \Delta_0 [\alpha \Theta / (1 + \alpha \Theta)]).$

Результаты расчета $\Delta \phi(\Theta)$ представлены на рис. 1. Наблюдается очень хорошее согласие с данными эксперимента в интервале покрытий от 0.1 до 0.3. Небольшое расхождение при $\Theta > 0.3$ связано с игнорированием обменных процессов, ведущих к деполяризации адатомов [4]. На рис. 2 представлены результаты расчета изменения заряда $Z(\Theta)$. Отметим, что масштаб рис. 2 не позволяет показать тонкие особенности зависимости $Z(\Theta)$, а именно после обращения в нуль при $\overline{\Theta}$ заряд Z

Рис. 1. Зависимость изменения работы выхода $\Delta \phi$ от степени покрытия Θ поверхности кремния атомами водорода.

Рис. 2. Зависимость заряда адатома водорода Z от степени покрытия Θ поверхности кремния.

Рис. 3. Зависимость параметра $\mu \equiv |Z(\Theta)| \cdot \Theta \cdot 10^2$, пропорционального относительному изменению поверхностной проводимости $\Delta \sigma / \sigma_0$ от степени покрытия Θ поверхности кремния.

принимает положительное значение и растет по модулю вплоть до $\Theta = 0.4$ ($Z(0.4) \approx 0.029$), после чего начинает медленно уменьшаться.

В соответствии с тем, что при $\Theta \leq 0.1$ водород отбирает электроны от подложки, а при больших покрытиях отдает, поверхностная проводимость σ вначале уменьшается по сравнению с проводимостью чистой поверхности, а затем увеличивается. На рис. 3 представлена зависимость произведения $\mu \equiv |Z(\Theta)| \cdot \Theta \cdot 10^2$, пропорциональная изменению относительной поверхностной поверхности $\Delta\sigma/\sigma_0$, где σ_0 — проводимость чистой поверхности (100) кремния.

Таким образом, простая модель, первоначально предложенная одним из авторов для описания адсорбции атомов натрия на цезии [8], описывает также и адсорбцию водорода на германии и кремнии.

Список литературы

- [1] Давыдов С.Ю. // ЖТФ. 2004. Т. 75. Вып. 1. С. 110-112.
- [2] Surnev L., Tikhov M. // Surf. Sci. 1984. Vol. 138. N 1. P. 40.
- [3] Теория хемосорбции. / Под ред. Дж. Смита. М.: Мир, 1983.
- [4] Браун О.М., Медведев В.К. // УФН. 1989. Т. 157. Вып. 4. С. 631.
- [5] Boishin G., Surnev L. // Surf. Sci. 1996. Vol. 345. N 1. P. 64.
- [6] Physics and Chemistry of Alkali Metal Adsorption / Ed. H.P. Bonzel, A.M. Bradshow, G. Ertl. Copenhagen: Elsevier, 1989.
- [7] Heinrich V.E., Cox V.E The Surface Science of Metal Oxides. Cambridge University Press, 1994.
- [8] Davydov S.Y. // Appl. Surf. Sci. 1999. Vol. 140. N 1. P. 52.