03;05 Немонотонная абсорбция в иттрий-бариевых купратах

© Б.М. Горелов, В.А. Сидорчук

Институт химии поверхности НАН Украины, 03164 Киев, Украина e-mail: user@surfchem.freenet.kiev.ua

(Поступило в Редакцию 30 марта 2004 г.)

Показано, что в металлоксидном купрате YBa₂Cu₃O_{7-δ} адсорбция растворимость и коэффициент диффузии молекул воды являются немонотонными функциями содержания кислорода. Их поведение связывается с наложением двух процессов: изменения зарядового состояния атомов промежуточных слоев и распределения электронной плотности между купратными и промежуточными слоями при заполнении кислородом позиций O1.

Известно, что молекулы воды абсорбируются кристаллической решеткой металлоксидных купратов YBa₂Cu₃O_{7-δ} [1]. Если адсорбция происходит при комнатной температуре и давлении насыщенного пара, то после образования слоя физически связанной воды молекулы H₂O внедряются в решетку, где образуют четыре локализованных состояния в междоузлиях промежуточных слоев BaO и Cu1O, заполнение которых растет со временем [2]. Можно предположить, что связывание молекул на поверхности, их диффузия в объеме кристаллов зависят от зарядовых состояний атомов в решетке, которые определяют энергетические барьеры хемосорбции и диффузии молекул. Так как зарядовые состояния атомов являются функцией содержания кислорода в системе [3], то абсорбция воды может определяться числом атомов О в решетке.

В настоящей работе исследована зависимость абсорбции молекул воды от содержания атомов кислорода O1 в системе YB₂Cu₃O_{7- δ}. Изучались дисперсные образцы YBa₂Cu₃O_{7- δ}, в которых содержание кислорода варьировалось в пределах $0 \le \delta < 1$. Частицы имели форму чешуек с диаметром ~ 20 μ m и толщиной ~ 10 μ m. Адсорбция осуществлялась при комнатной температуре в атмосфере насыщенного пара (давление пара 18.7 Torr) на образцы, предварительно отожженные в вакууме ~ 10⁻³ Тогг при температуре $T < 150^{\circ}$ C. В качестве адсорбата использовалась двукратно дистиллированная вода. Адсорбция измерялась с помощью весов Мак Бена. Удельная поверхность определялась по десорбции азота на установке ГХ-1.

Кинетика адсорбции молекул воды в образцах $YBa_2Cu_3O_{7-\delta}$ при изменении δ в пределах $0 \le \delta < 1$ представлена на рис. 1. После образования слоя физически связанной воды на поверхности частиц в течение $t \le 90$ min коэффициент адсорбции *а* плавно повышается с ростом *t* и имеет тенденцию к насыщению при t > 2000 min. Медленный рост адсорбции обусловлен внедрением и диффузией молекул H_2O в кристаллической решетке. Особенностью поведения адсорбции с ростом δ являются немонотонное изменение *a* в интервале $0.1 \le \delta \le 0.4$ и резкий рост, когда $\delta > 0.4$, что ярко проявляется в поведении предельной адсорбции

и растворимости (рис. 2, *a*). Зависимости $a_{\infty}(\delta)$ и $N_0(\delta)$ характеризуются немонотонным уменьшением a_{∞} и N_0 с ростом δ в интервале $0.1 \le \delta \le 0.35$ с минимумом при $\delta \cong 0.25$, резким ростом, когда $\delta > 0.35$, и слабым увеличением в интервале $\delta > 0.45$.

Поведение коэффициента эффективной диффузии D_e молекул воды, полученного из выражения [4],

$$\frac{a(t)}{a_{\infty}} = \frac{2S_1}{V} \sqrt{\frac{D_e t}{\pi}},\tag{1}$$

где V — объем, $S_1 = \rho V s$ — площадь внешней поверхности частиц (ρ — плотность, s — удельная поверхность), в зависимости от содержания кислорода подобно поведению $N_0(\delta)$ (рис. 2, b). При определении D_e полагалось, что частицы образцов имеют одинаковый размер, скорость перехода молекулы H₂O из свободного в связанное состояние на поверхности частиц значительно выше скорости диффузии в кристаллической решетке.

Следует отметить, что в интервале немонотонного понижения a_{∞} , N_0 и D_e удельная поверхность немонотонно возрастает (рис. 2, *c*). Кроме того, область немонотонного изменения U и D_e при $0.1 < \delta \leq 0.6$

Рис. 1. Кинетика адсорбции молекул воды в $YBa_2Cu_3O_{7-\delta}$ с $\delta = 0$ (1), 0.2 (2), 0.24 (3) и 0.44 (4).

Рис. 2. Зависимости предельной адсорбции и растворимости (a), коэффициента эффективной диффузии воды (b), удельной поверхности (c) и критической температуры (из [5]) (d) от содержания кислорода в YBa₂Cu₃O_{7- δ}.

совпадает с интервалом ступенькообразного поведения критической температуры T_c , а область $\delta > 0.6$, где U и D_e слабо меняются, соответствует интервалу содержания кислорода, где сверхпроводимость не наблюдается (рис. 2, d) [5].

Таким образом, в YBa₂Cu₃O_{7-δ} растворимость и коэффициент диффузии воды — немонотонные функции числа атомов кислорода O1 в промежуточных слоях. Так как растворимость пропорциональна числу вакансий в решетке и энергии связи атомов воды с атомным окружением

$$U = \frac{1}{8\pi\varepsilon\varepsilon_0} \sum_{i,\alpha} q^0_\alpha V^i_\alpha, \qquad (2)$$

где ε_0 — диэлектрическая постоянная; q^0_{α} — зарядовое состояние атомов купрата сорта α ; V^i_{α} — электроста-

Кроме того, в многокомпонентной системе коэффициент диффузии [6]

$$D = ukT\left(1 + \frac{\partial \ln \gamma}{\partial \ln N}\right),\tag{3}$$

где u, γ, N — подвижность, активность и число молекул H₂O и подвижность связана со скоростью диффузии v и химическим потенциалом μ выражением

$$v = -\frac{u}{N_A} \frac{\partial \mu}{\partial x};\tag{4}$$

поэтому поведение $D(\delta) = D_e a_\infty/c_0$ (c_0 — концентрация молекул на поверхности частиц) также связано с немонотонным изменением $\partial \mu/\partial x$ при плавном уменьшении δ . С другой стороны, $D = D_0 \exp(-E/kT)$, где k — постоянная Больцмана, и энергия активации $E \sim U$ [6], тогда поведение $D(\delta)$ при $\delta \to 0$ обусловлено немонотонным понижением $E(\delta)$. Существенно, что поведение U, E и $\partial \mu/\partial x$ при $\delta \to 0$ можно связать с немонотонным изменением зарядового состояния атомов решетки.

В YBa₂Cu₃O_{7- δ} рост числа атомов O1 при $\delta \rightarrow 0$ меняет зарядовое состояние атомов, составляющих промежуточные слои. Зарядовое состояние Ва и Сu1 понижается от 2.08 и 1.46 до 1.45 и 0.81, заряд атома О4 падает от -2.08 до -0.67 и растет число атомов О1 с зарядом -1.76 [4]. Кроме того, параметр решетки с уменьшается, однако апексный атом О4 удаляется от Cu1 и приближается к Cu2 [7]. При этом имеет место перераспределение дырок между $d_{x^2-v^2}$ и d_{z^2} орбиталями атома Cu2, когда дырки локализуются на $d_{x^2-y^2}$, а электронная плотность вытягивается вдоль оси с [4]. Поэтому немонотонное поведение U, E и $\partial \mu / \partial x$, вероятно, обусловлено двумя процессами, которые меняют $\partial \mu / \partial x$: плавным понижением зарядового состояния Ba, Cu1, O4 по мере роста числа атомов О1, который приводит к уменьшению U и E, и перераспределением электронной плотности на орбиталях Cu2 при сближении с O4 в интервале $0.1 \le \delta \le 0.25$, который может привести к росту V^i_{α} и соответственно U, E.

Отметим, что перераспределение электронной плотности согласуется с повышением T_c в интервале $0.1 \le \delta \le 0.25$, когда $\delta \to 0$, так как ведет к росту числа дырок p в купратных слоях и зоне проводимости, построенной орбиталями $d_{x^2-y^2}p_x(p_y)$ атомов Cu2 и O2 (O3) и температуры $T_c(p) = T_{cm} \times$

 $\times [1 - 82.6(p - 0.16)^2]$, где T_{cm} — максимальная критическая температура в УВа₂Си₃O_{7- δ} [8].

Таким образом, в YBa₂Cu₃O_{7-δ} немонотонность абсорбции молекул воды обусловлена изменениями зарядового состояния атомов, составляющих промежуточные слои, и распределения электронной плотности между купратными и промежуточными слоями при варьировании содержания кислорода.

Список литературы

- [1] Макаршин Л.Л., Андреев Д.В., Парамонов В.Н. // Успехи химии. 2000. Т. 69. № 4. С. 307-336.
- [2] Горелов Б.М., Морозовская Д.В., Пашков В.М., Сидорчук В.А. // ЖТФ. 2000. Т. 70. Вып. 9. С. 50–56.
- [3] Гусанов В.Е. // ФНТ. 1995. Т. 21. № 8. С. 805-809.
- [4] Тимофеев Д.П. Кинетика адсорбции. М.: Изд-во АН СССР, 1962. 250 с.
- [5] Высокотемпературные сверхпроводники / Под ред. Д. Нелсона, М. Уиттинхема, Т. Джорджа. М.: Мир, 1988. 400 с.
- [6] Болтакс Б.И. Диффузия в полупроводниках. М.: Физматгиз, 1961. 462 с.
- [7] Baetzold R.C. // Phys. Rev. B. 1990. Vol. 42. N 1A. C. 56-66.
- [8] Williams G.V.M., Tallon J.L., Michalak R., Dupree R. // Phys. Rev. B. 1996. Vol. 54. N 10. C. 6909–6912.