01;09 О затухании в волноводе

© И.А. Котельников

Институт ядерной физики им. Г.И. Будкера СО РАН, 630090 Новосибирск, Россия e-mail: I.A. Kotelnikov@inp.nsk.su

(Поступило в Редакцию 11 марта 2003 г. В окончательной редакции 29 декабря 2003 г.)

Показано, что сильное поглощение TM-волны при скользящем падении на поверхность металла является аналогом полного прохождения TM-волны при падении на поверхность диэлектрика под углом Брюстера. Следствием потери металлической поверхностью отражающих свойств является усиленное затухание при распространении в волноводе колебаний, таких что отношение \varkappa/k поперечного волнового числа \varkappa к предельному k по порядку величины равно поверхностному импедансу ξ . Вычислен коэффициент затухания для H- и E-волн в круглом волноводе при произвольном соотношении \varkappa/k и ξ . Показано, что при $\varkappa/k \ll \xi$ коэффициент затухания меньше предсказываемого теорией, основанной на использовании метода последовательных приближений (см. например, $[1, \S 90]$).

Введение

Традиционный подход к расчету затухания волн в волноводе с проводящими стенками состоит в использовании метода последовательных приближений, основанного на малости затухания волноводных мод (см., например, [1]). В настоящей заметке на примере волновода с круглым сечением показано, что подобный подход дает неверный результат, если длина волны существенно меньше радиуса сечения при том, что рассматриваются моды с малым поперечным волновым числом. Оказывается, что такие моды могут иметь качественно иную структуру полей, нежели в волноводе с идеально проводящими стенками даже при очень малом поверхностном импедансе, величина которого служит малым параметром при построении метода последовательных приближений. Данное явление тесно связано с эффектом полного прохождения электромагнитной волны при падении на поверхность раздела двух сред под углом Брюстера, которое для полноты картины кратко описано в разделе 1. Анализу затухания волн в круглом волноводе посвящен раздел 2. В заключительном разделе сделан вывод, что в большинстве приложений метод последовательных приближений дает правильный результат, и приведены также примеры, когда следует использовать результаты точного расчета.

1. Преломление на границе металла

Рассмотрим отражение плоской электромагнитной волны от поверхности металла. Амплитуды отраженной и преломленной волн E_1 и E_2 нетрудно выразить через амплитуду падающей волны E_0 , если использовать результат решения аналогичной задачи для диэлектрика и подставить

$$\varepsilon = \frac{4\pi i\sigma}{\omega},\tag{1}$$

где σ — проводимость металла.

Для *TE*-волны (рис. 1, a) в соответствии с формулами Френеля [1, § 86] получаем

$$\frac{E_1}{E_0} = \frac{\cos\theta - \sqrt{\varepsilon}\cos\theta_2}{\cos\theta + \sqrt{\varepsilon}\cos\theta_2},\tag{2a}$$

$$\frac{E_2}{E_0} = \frac{2\cos\theta}{\cos\theta + \sqrt{\varepsilon}\cos\theta_2},\tag{2b}$$

а для TM-волны (рис. 1, b) имеем

$$\frac{E_1}{E_0} = \frac{\sqrt{\varepsilon}\cos\theta - \cos\theta_2}{\sqrt{\varepsilon}\cos\theta + \cos\theta_2},\tag{3a}$$

$$\frac{E_2}{E_0} = \frac{2\cos\theta}{\sqrt{\varepsilon}\cos\theta + \cos\theta_2},\tag{3b}$$

где θ — угол падения, $\cos \theta_2 = \sqrt{1 - \sin^2 \theta / \epsilon}$.

Для хороших проводников $|\varepsilon| \gg 1$, поэтому с хорошей точностью $\cos \theta_2 = 1$.

Известно, что на поверхности металлов для тангенциальных компонентов электрического и магнитного

Рис. 1. Отражение излучения от плоской поверхности: *а* — *ТМ*-волна, *b* — *TE*-волна.

	$\sigma_1, \ \mathrm{s}^1$	$\sigma_0,~{ m s}^{-1}$	$\omega_p, \ \mathrm{s}^{-1}$	au, s	l_0, cm	δ_0, cm	$\vartheta_{B,FIR}'$	ϑ_B'	$\vartheta^\circ_{B,NIR}$
Ag	$6.1\cdot10^{17}$	$5.4\cdot 10^{17}$	$1.4\cdot 10^{16}$	$3.6\cdot 10^{-14}$	$5.0\cdot10^{-6}$	$1.4\cdot 10^{-7}$	1.8	45	10
Al	$3.6\cdot10^{17}$	$2.1 \cdot 10^{18}$	$1.8\cdot 10^{16}$	$8.0\cdot10^{-14}$	$1.3\cdot 10^{-5}$	$6.1 \cdot 10^{-8}$	0.9	33	7.5
Au	$4.4\cdot10^{17}$	$3.6\cdot10^{17}$	$1.4\cdot10^{16}$	$2.4\cdot10^{-14}$	$3.4\cdot 10^{-6}$	$1.7\cdot 10^{-7}$	2.2	45	10
Cu	$5.8\cdot10^{17}$	$1.6 \cdot 10^{17}$	$1.2\cdot 10^{16}$	$1.3\cdot10^{-14}$	$1.7\cdot 10^{-6}$	$2.7\cdot 10^{-7}$	3.4	52	11
Fe	$1.0\cdot 10^{17}$	$2.1\cdot 10^{16}$	$5.4 \cdot 10^{-15}$	$9.2 \cdot 10^{-15}$	$6.9 \cdot 10^{-7}$	$1.1\cdot 10^{-6}$	9.1	120	29
Ni	$1.5 \cdot 10^{17}$	$6.2\cdot10^{16}$	$7.4\cdot10^{15}$	$1.4\cdot10^{-14}$	$1.3\cdot 10^{-6}$	$5.6 \cdot 10^{-7}$	5.4	86	20
Ti	$2.1\cdot10^{16}$	$8.6\cdot10^{15}$	$4.5\cdot10^{15}$	$5.3 \cdot 10^{-15}$	$3.5 \cdot 10^{-7}$	$1.9\cdot 10^{-6}$	14	160	38

Параметры некоторых металлов

полей должно выполняться граничное условие Леонтовича [1, § 87].

$$\mathbf{E}_{\tau} = \boldsymbol{\xi}[\mathbf{n}, \mathbf{H}_{\tau}], \tag{4}$$

где ξ — поверхностный импеданс, **n** — внешняя нормаль к поверхности металла.

Учитывая, что вне металла $|\mathbf{E}| = |\mathbf{H}|$ и используя формулы (2) и (3), нетрудно найти, что для *TE*- и *TM*-волн поверхностный импеданс равен соответственно $1/(\cos \theta_2 \sqrt{\varepsilon})$ и $\cos \theta_2 / \sqrt{\varepsilon}$. Таким образом, в приближении $\cos \theta_2 = 1$ получаем

$$\xi = 1/\sqrt{\varepsilon} = (1-i)\sqrt{\omega/8\pi\sigma}$$
 (5)

вне зависимости от поляризации электромагнитного поля и угла падения. Это выражение справедливо для нормального скин-эффекта, когда толщина скин-слоя

$$\delta = \sqrt{c/2\pi\sigma\omega} \tag{6}$$

меньше длины свободного пробега электронов:

$$|l(\omega)| \ll |\delta(\omega)|. \tag{7}$$

Так как

$$l(\omega) = l_0/(1 - i\omega\tau), \quad \sigma(\omega) = \sigma_0/(1 - i\omega\tau),$$
 (8)

условие (7) можно переписать в виде [2]

$$l_0/\delta_0 \ll (1+\omega^2\tau^2)^{3/4}/(\omega\tau)^{1/2},$$
 (9)

где $\delta_0 = c/\omega_p \ \omega_p = (4\pi\sigma_0/\tau)^{1/2}$ — плазменная частота электронов проводимости.

Свойства ряда металлов представлены в таблице. Приведенные в таблице значения параметров σ_0 , τ , ω_p , l_0 , δ_0 рассчитаны по данным оптических измерений отражения излучения CO₂ лазера на частоте f = 28.3 THz ($\lambda = 10.6 \,\mu$ m) от поверхности металлических образцов, сообщенным в монографии [3]. Формулы (8), если их пытаться примерить к огромному диапазону частот от квазистационарных полей до излучения в видимой части спектра, дают лишь грубое приближение к реальной картине. Об этом свидетельствует тот факт, что расчетные значения σ_0 для ряда металлов существенно отличаются от статической проводимости σ_1 , которая также приведена в таблице по данным справочника [4] для 0°С. Впрочем, существенное отличие σ_0 от σ_1 неудивительно. Поскольку $l_0/\delta_0 \gg 1$, область низких частот, где проводимость близка к статической, отделена от диапазона инфракрасного излучения областью аномального скин-эффекта, где формулы (5), (6) и (8) не применимы [5, § 86].

Вещественная часть ξ' поверхностного импеданса $\xi = \xi' + i\xi''$ положительна [1, § 87]. В низкочастотной области нормального скин-эффекта $\xi' = -\xi'' = -\sqrt{\omega/8\pi\sigma_1}$, поскольку статическая проводимость σ_1 вещественна. В высокочастотной области нормального скин-эффекта, начиная с субмиллиметровой области частот, где $\omega \tau > 1$, поверхностный импеданс является почти чисто мнимым, $\xi \approx (1 - i\omega\tau)/(\omega\tau)$. В области аномального скин-эффекта, располагающейся между низкочастотной и высокочастотной областями нормального скин-эффекта, $\xi' \sim \xi'' \propto \omega^{2/3}$.

Как ясно из сказанного, граничное условие Леонтовича (4) верно при $|\xi| \ll 1$. Для дальнейшего важно, что им можно пользоваться при любых углах падения излучения на поверхность проводника, в том числе при скользящем падении. Ради этого вывода мы рискнули повторить выше общеизвестные сведения. Неравенство $|\xi| \ll 1$ выполняется при $\omega \ll \omega_p$, т.е., согласно данным таблицы, вплоть до частот видимого диапазона включительно.

Коэффициент отражения $R = |E_1/E_0|^2$ от поверхности металла нетрудно найти с помощью формул Френеля (2а) и (3а), полагая в них $\cos \theta_2 = 1$, либо непосредственно из граничного условия Леонтовича (4), выразив E_{τ} и H_{τ} через E_0 и E_1 :

$$R_{TE} = \left| \frac{\xi \cos \theta - 1}{\xi \cos \theta + 1} \right|^2, \qquad (10a)$$

$$R_{TM} = \left| \frac{\cos \theta - \xi}{\cos \theta + \xi} \right|^2.$$
(10b)

Коэффициент отражения *TE*-волны близок к 1 при всех значениях угла падения (рис. 2), а коэффициент отражения *TM*-волны при $\theta_B = \pi/2 - |\xi|$ имеет минимум, равный

$$R_{\min} = \frac{|\xi| - \xi'}{|\xi| + \xi'}.$$

Рис. 2. Коэффициент отражения в зависимости от угла падения для случая вещественной проводимости. *1 — ТМ*-волна, *2 — ТЕ*-волна.

На частотах, где дисперсия проводимости еще не существенна, $R_{\min} = (\sqrt{2} - 1)/(\sqrt{2} + 1) \approx 0.17$. При уменьшении мнимой части ξ'' поверхностного импеданса величина R_{\min} стремится к нулю, а величина соответствующего угла падения — к углу Брюстера [1,§86]. При падении на диэлектрик под углом Брюстера *TM*-волна полностью проходит через его поверхность, а при падении на металл почти полностью поглощается.

Для реальных металлов отличие угла Брюстера θ_B от прямого угла (равное |ζ| чрезвычайно мало́, поэтому далее мы будем отсчитывать угол падения от плоскости границы и введем обозначение $\vartheta = 90^\circ - \theta$. Для меди при частоте $f = \omega/2\pi = 1$ MHz угол Брюстера ϑ_B , выраженный в угловых секундах, составляет 0.2", а для стали не превышает 1". С ростом частоты поверхностный импеданс увеличивается, но даже в области инфракрасного излучения все еще мал. При частоте f = 0.3 THz ($\lambda = 1$ mm), соответствующей границе субмиллиметрового диапазона (Far InfraRed), величина угла Брюстера для разных металлов варьируется от 1 до 10 угловых минут. На границе оптического диапазона (Near InfraRed) при f = 375 THz ($\lambda = 0.8 \,\mu\text{m}$) угол Брюстера может достигать нескольких десятков градусов. Рассчитанные значения $\vartheta_{B,FIR}$ и $\vartheta_{B,NIR}$, выраженные соответственно в угловых минутах и градусах, приведены в третьей с конца и последней колонках таблицы, между ними приведена колонка значений угла Брюстера на частоте CO₂ лазера (28.3 THz).

2. Затухание в круглом волноводе

Наличие глубокого провала в отражательной способности металлической поверхности приводит к сильному поглощению колебаний в волноводе при определенном соотношении между длиной волны, линейными размерами сечения волновода и величиной поверхностного импеданса стенок. Рассмотрим волновод с круглым сечением (радиуса a). В таком волноводе [1, §91]

$$\mathbf{E} = \frac{ik}{\varkappa^2} \nabla_{\perp} E_z + E_z \hat{\mathbf{z}} + \frac{i\omega}{c \varkappa^2} [\nabla_{\perp} H_z, \hat{\mathbf{z}}],$$

$$\mathbf{H} = \frac{ik}{\varkappa^2} \nabla_{\perp} H_z + H_z \hat{\mathbf{z}} - \frac{i\omega}{c \varkappa^2} [\nabla_{\perp} E_z, \hat{\mathbf{z}}]$$

$$E_z = E_0 J_m(\varkappa r) \mathrm{e}^{ikz + im\varphi - i\omega l},$$

$$H_z = H_0 J_m(\varkappa r) \mathrm{e}^{ikz + im\varphi - i\omega t},$$
(11)

где $\varkappa = (\omega^2/c^2 - k^2)^{1/2}$, J_m — функция Бесселя.

Используя граничное условие (4), получаем дисперсионное уравнение [5,6]

$$\left[\xi J_m + \frac{i\omega}{c\varkappa}J'_m\right] \left[J_m + \xi \frac{i\omega}{c\varkappa}J'_m\right] = -\xi \left[\frac{ik}{\varkappa}\frac{im}{\varkappa a}J_m\right]^2,$$
(12)

где J_m и J'_m вычисляются для аргумента $\varkappa a$.

При заданной частоте ω оно определяет продольное волновое число k.

При идеальной проводимости стенок волновода, когда $\xi = 0$, уравнение (12) распадается на два уравнения, отвечающих независимому выбору амплитуд E_0 и H_0

$$J_m(\varkappa a) = 0 \quad (E_0 \neq 0, \ H_0 = 0),$$
 (13a)

$$J'_m(\varkappa a) = 0 \quad (E_0 = 0, \ H_0 \neq 0).$$
 (13b)

Первое соответствует *E*-волне, у которой $H_z \equiv 0$, а второе отвечает *H*-волне, $E_z \equiv 0$. Для справки укажем, что первые 3 корня \varkappa_{Ea} урванения (13а) при m = 1 равны 3.83171, 7.01559, 10.1735, а первые 3 корня \varkappa_{Ha} уравнения (13b) есть 1.84118, 5.33144, 8.53632.

При конечном импедансе у любой волноводной моды имеются все 6 компонентов электромагнитного поля (исключение составляет случай m = 0, см. ниже), но при малом импедансе одна из поляризаций по-прежнему является преобладающей. При $|\xi| \ll \kappa/k$ для *E*-волны из (12) получаем приближенное уравнение

$$J_m(\varkappa a) = -\xi \, \frac{i\omega}{c\varkappa} J'_m(\varkappa a).$$

Решая его методом последовательных приближений, находим поправку $\delta \varkappa$, вносимую конечным импедансом

$$\delta \varkappa = -\frac{i\omega}{c\varkappa_E}\frac{\xi}{a}.$$

Здесь κ_E — корень уравнения (13а). Так как $\kappa\delta\kappa + k\delta k = 0$ при фиксированной частоте ω , по вычисленному изменению поперечного волнового вектора $\delta\kappa$ находим коэффициент затухания *E*-волны

$$\operatorname{Im} k = \frac{\omega}{kc} \frac{\xi'}{a},\tag{14a}$$

где Im означает выделение мнимой части.

Аналогичным образом для *Н*-волны записываем приближенное уравнение

$$J'_{m} = \xi \, \frac{i \, \varkappa c}{\omega} \, J_{m} + \xi \, \frac{i k c}{\omega} \, \frac{k m^{2}}{\varkappa^{2} a^{2}} \, J_{m},$$

из которого находим

Im
$$k = \frac{kc}{\omega} \frac{m^2 k^2 + \varkappa_H^4 a^2}{(\varkappa_H^2 a^2 - m^2)k^2} \frac{\xi'}{a}$$
, (14b)

где \varkappa_H — корень уравнения (13b), причем всегда $\varkappa_H a > |m|$.

Заметим, что *H*-волна с m = 0 выделена: при $\varkappa/k \ll 1$ ее коэффициент затухания оценивается как $(\varkappa/k)^2 (\xi'/a)$, что в $(k/\varkappa)^2$ раз меньше, чем для всех других волн.

Смысл коэффициента затухания состоит в том, что поток энергии в волне убывает пропорционально $\exp(-2 \text{Im} kz)$. Формулы (14) совпадают с приводимыми во многих учебниках по классической электродинамике (см., например, задачу 2 в §91 в [1]), где диссипация в стенках волновода рассматривается в качестве малого возмущения. Однако они дают неверный результат, если $\varkappa/k \leq |\xi| = \varkappa_B$.

В этом нетрудно убедиться, рассмотрев случай m = 0, когда уравнение (12) при произвольном соотношении ζ и \varkappa/k распадается на два независимых уравнения

$$J_0 + \xi \, \frac{i\omega}{c\varkappa} J_0' = 0 \qquad (E_0 \neq 0, H_0 = 0),$$
 (15a)

$$\xi J_0 + \frac{i\omega}{c\varkappa} J_0' = 0$$
 $(E_0 = 0, H_0 \neq 0).$ (15b)

В пределе $\xi \gg \varkappa/k$ из этих уравнений получаем

$$\delta \varkappa = -\frac{i\varkappa_H}{ka}\frac{1}{\xi}, \qquad \text{Im}\,k = \frac{\varkappa_H^2}{k^2a}\frac{\xi'}{|\xi|^2}, \qquad (16a)$$

$$\delta \varkappa = -\frac{i\varkappa_H}{ka}\xi, \qquad \text{Im}\,k = \frac{\varkappa_H^2}{k^2a}\xi'$$
(16b)

соответственно для *E*- и *H*-волны, причем \varkappa_H в "нулевом" приближении в обоих случаях определяется из единого уравнения $J'_0(\varkappa_H a) = 0$. Как и при $|\xi| < \varkappa/k$, *E*-волна с m = 0 затухает быстрее: коэффициент затухания (16а) в $1/|\xi|^2$ раз больше, чем (16b).

Переходя к случаю $m \neq 0$, оставим в (12) только главные в пределе $|\xi| \gg \kappa/k$ члены

$$\xi \left[\frac{i\omega}{c\varkappa}J'_m\right]^2 = \xi \left[\frac{ik}{\varkappa}\frac{im}{\varkappa a}J_m\right]^2.$$

Полученное уравнение имеет чисто вещественные решения, так как поле сокращения множителя ξ вообще не зависит от проводимости стенок. Оно вновь распадается на два независимых уравнения, которые еще более упрощаются, если учесть, что $\omega/c \approx k$ в силу неравенств $\varkappa/k \ll |\xi| \ll 1$

$$\frac{m}{\varkappa a}J_m \mp J'_m = J_{m\pm 1} = 0 \qquad (H_0 = \pm iE_0). \tag{17}$$

Два варианта выбора знака здесь дают два уравнения и отвечают волнам с левой (верхний знак) и правой (нижний знак) циркулярной поляризацией в плоскости сечения волновода

$$E_{\tau} = \mp \frac{ik}{\varkappa} J_{m\pm 1}(\varkappa \tau) E_{0},$$

$$E_{\varphi} = -\frac{\kappa}{\varkappa} J_{m\pm 1}(\varkappa r) E_{0},$$

$$E_{z} = J_{m}(\varkappa r) E_{0},$$
(18)

причем $\mathbf{H} = \pm i \mathbf{E}$.

Следуя работе [6], назовем два решения (18) *L*и *R*-волнами соответственно выбору верхнего и нижнего знаков. На стенках волновода у этих волн отличны от нуля только *z*-компоненты электрического и магнитного полей, поэтому вектор Пойтинга $\mathbf{S} = (c/4\pi)[\mathbf{E}, \mathbf{H}]$ там равен нулю, выражая отсутствие диссипации энергии. *L*- и *R*-волны являются обобщением на случай $m \neq 0$ недифрагирующих бесселевых пучков [7], в которых в среднем по времени отсутствуют поток энергии от оси пучка. Имея в виду случай m = 1, укажем, что первые три корня $\varkappa_L a$ уравнения $J_2 = 0$ равны 5.13562, 8.41724, 11.6198, а первые три корня $\varkappa_R a$ уравнения $J_0 = 0$ равны 2.40483, 5.52008, 8.65373.

Поправка к величине $\varkappa_{L,R}$ вычисляется по формуле

$$\delta \varkappa = -\frac{i\varkappa_{L,R}}{2ka}\left[\xi + \frac{1}{\xi}\right] \pm \frac{\varkappa_{L,R}^2}{2k^2a}\left[\frac{m}{\varkappa_{L,R}a} - \frac{\varkappa_{L,R}a}{m}\right],$$

а коэффициент затухания равен

$$\operatorname{Im} k = \frac{\varkappa_{L,R}^2 \xi'}{2k^2 a |\xi|^2},\tag{19}$$

где $\varkappa_{L,R}$ определяется из уравнения (17) с соответствующим выбором знака.

Наибольшее затухание достигается на общей границе областей применимости формул (14) и (19) при $|\xi| \sim \varkappa/k$. Соответствующая длина затухания $(\text{Im } k)^{-1} \sim \alpha/\xi'$ может приближаться к длине дифракционного расплывания a^2/λ волнового пакета в неограниченном пространстве, если $\xi' \sim |\xi|$ (напомним, что в инфракрасном диапазоне $\xi' \ll |\xi|$).

Рис. 3 на примере волн с m = 1 позволяет проследить основные закономерности преобразования Н- и Е-волн в L- и R-волны при изменении коэффициента поверхностного импеданса. Для простоты при построении графиков использовалось соотношение $\xi = (1 - i)\xi'$, справедливое при чисто вещественном значении коэффициента проводимости. При увеличении ξ' от предельного значения $\xi' \ll \varkappa/k$ до $\xi' \gg \varkappa/k$ в конечном итоге происходит уменьшение \varkappa . Если упорядочить по возрастанию \varkappa_H , \varkappa_E , с одной стороны, и \varkappa_R , \varkappa_L — с другой, то соответствие волн при $\xi' \ll \kappa/k$ и $\xi' \gg \kappa/k$ устанавливается простым правилом: корень из первой последовательности переходит в ближайший меньший корень из второй последовательности. Поскольку волне Н₁₁ отвечает наименьший (1.84118) из всех корней в обоих последовательностях, она исчезает (становится сильно затухающей)

Рис. 3. Зависимость κa от ξ' — при ka = 100 при вещественном коэффициенте проводимости: a — вещественная часть, b — мнимая часть κa . H_{mn} , E_{mn} , L_{mn} , R_{mn} — волны с заданными азимутальным и радиальным номерами m и n.

при увеличении импеданса. Другие *H*-волны переходят в *L*-волны с уменьшением радиального номера *n* на единицу. Так, H_{12} переходит в L_{11} , H_{13} переходит в L_{12} и т.д. *E*-волны переходят в *R*-волны с сохранением радиального номера: E_{nn} переходит в R_{nn} .

Заключение

Проведенный анализ показывает, что традиционный подход к расчету затухания волн в волноводе может приводить к неверному результату, поскольку при $|\xi| \gtrsim \varkappa/k$ сопротивление стенок волновода в некотором смысле не мало и приводит к структурной перестройке волноводных полей. Напомним, что традиционный подход основывается на методе последовательных приближений. В первом приближении сопротивлением стенок полностью пренебрегают и находят собственные моды волновода с идеально проводящими стенками, полагая, что тангенциальная проекция электрического поля равна нулю на поверхности стенок $\mathbf{E}_{\tau} = 0$. В следующем приближении вычисляют E_{τ} , используя граничное условие Леонтовича (4) и найденную на первом шаге величину тангенциальной проекции магнитного поля \mathbf{H}_{τ} на стенках. Далее вычисляют поток энергии в стенки $S_n = (c/4\pi)[E_{\tau}, H_{\tau}]$ и находят длину затухания из уравнения баланса энергии в волне.

В реальных условиях поверхностный импеданс ξ обычно столь мал, что практически всегда выполняется условие $|\xi| \ll \varkappa/k$, и, следовательно, метод последовательных приближений дает правильный результат. Тем не менее укажем два явления, где это условие может нарушаться.

Недавно было предложено использовать микрокапиллярные трубки для предотвращения дифракционного расплывания лазерного импульса, используемого в качестве драйвера при кильватерном ускорении заряженных частиц [8]. Лазерный импульс мощностью десятки тераватт почти мгновенно ионизует стенки микрокапилляра, превращая любой материал в хороший проводник, и распространяется в капилляре, как в волноводе. Подбором параметров капилляра гипотетически можно сформировать квазибеселев пучок излучения и существенно увеличить длину расплывания пучка.

Другое возможное приложение связано с исследованием зависимости продольного импеданса в циклических ускорителях частиц от частоты [9,10]. Эта зависимость имеет резонансный характер вблизи частот, удовлетворяющих условию временного синхронизма $\omega = n\omega_0$ (при целом *n*) между частотой синхротронных мод ω и частотой вращения частицы в ускорителе $\omega_0 = \beta c/R$, где βc — скорость частицы, R — радиус ее орбиты. Синхротронные моды в тороидальной камере возбуждаются ускоряемыми частицами, если фазовая скорость моды меньше скорости света. Последнее условие приводит к неравенству $\omega > \omega_{\min} \sim \pi c R^{1/2} / a^{3/2}$ [11]. Ширина отдельного резонанса пропорциональна коэффициенту затухания Im k резонансной моды $\Delta \omega = \text{Im } kc$. Частоту ω_{max} , соответствующую переходу между режимами затухания (14) и (19), можно оценить, приравнивая характерный угол распространения синхротронного излучения $\varkappa \sim (\omega_0/\omega)^{1/3}$ (для низкочастотной части спектра синхротронного излучения) к углу Брюстера, т.е. к $|\xi| \sim \omega/\omega_p$. При этом оказывается, что для типичных параметров источников синхротронного излучения [12] величина $\omega_{\min} \sim \omega_p^{3/4} \omega_0^{1/4}$ попадает в диапазон инфракрасного излучения и удовлетворяет условию $\omega_{\rm max} > \omega_{\rm min}$.

Список литературы

- Ландау Л.Д., Лифииц Е.М. Электродинамика сплошных сред. Сер. Теоретическая физика. Т. VIII. М.: Наука, 1982. 620 с.
- [2] Kaganov M.I., Lyubarskiy G.Ya., Mitina A.G. // Phys. Rep. 1997. Vol. 288. P. 291–304.
- [3] Прохоров А.М., Конов В.И., Урсу И., Михалеску И.Н. Взаимодействие лазерного излучения с металлами. М.: Атомиздат, 1976. С. 6.
- [4] Кикоин И.К. Таблицы физических величин. 2003. М.: Атомиздат, 1976. 1006 с.

- [5] Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. Сер. Теоретическая физика. Т. Х. М.: Наука, 1979. 627 с.
- [6] Котельников И.А. Препринт ИЯФ. № 98-85. Новосибирск, 1989. 9 с.
- [7] Durnin J., Miceli J.J., Eberly J.H. // Phys. Rev. Lett. 1987.
 Vol. 58 (15). P. 1499–1501.
- [8] *Lotov K.V.* // Laser and Part. Beams. 2001. Vol. 19. P. 219–222.
- [9] Mg K.-Y. // Part. Accel. 1990. Vol. 25. P. 153–181.
- [10] Warnock R.L., Morton P. // Part. Accel. 1990. Vol. 25. P. 113– 151.
- [11] *Stupakov G.V., Kotelnikov I.A.* Phys. Rev. St Accel. Beams. 2003. Vol. 6:034401-1–034401-12.
- [12] Chernov V.A., Kondratev V.I., Korchuganov V.N. et al. // Nucl. Instr. Meth. in Phys. Res. A. 1998. Vol. 45. P. 179–190.