от Фрактальная модель переноса: малоугловое приближение

© В.В. Учайкин, Д.А. Коробко

Ульяновский государственный университет, 432970 Ульяновск, Россия e-mail: uchaikin@sv.uven.ru

(Поступило в Редакцию 30 октября 2003 г.)

Рассматривается задача о многократном рассеянии частиц стохастическим фракталом — совокупностью точечных мишеней (атомов), хаотически распределенных в пространстве с корреляционной функцией степенного типа. В малоугловом приближении найдены энергетическое и угловое распределения, обобщающие известные результаты Ферми, Ландау и Мольер. Аналитические результаты сопровождаются численными расчетами методом Монте-Карло.

Введение

Во многих случаях основным источником информации о структуре исследуемого вещества являются электромагнитные и корпускулярные излучения. Для расшифровки этой информации необходим учет процессов взаимодействия излучения с веществом (угловое отклонение при рассеянии, потери энергии при неупругих взаимодействиях и т.д.). Важнейшим фактором, определяющим специфику взаимодействия с фрактальной средой, являются далекие корреляции степенного типа, проявляющиеся в скучивании атомов в скопления и сверхскопления, подобные распределению галактик во Вселенной [1,2]. Корреляции такого типа проявляются при некоторых условиях и в конденсированных средах, систематическое исследование которых привело к возникновению научного направления фрактального материаловедения [3]. Однократное рассеяние на фракталах рассматривалось в работах [4,5], многократное — в [6], где фрактальным предполагалось распределение пор в изначально однородной среде.

Данная работа посвящена многократному рассеянию частиц на точечных центрах ("атомах"), распределение которых характеризуется корреляциями фрактального типа. Как и в [6], задача решается в малоугловом приближении, справедливом как для частиц высоких энергий, так и для волн в случае отсутствия интерференционных эффектов (длина волны λ много меньше характерных расстояний между центрами) [7]. Наши предварительные результаты в этом направлении сообщались в работах [8–15], в настоящей работе приводятся результаты дальнейших исследований.

1. Постановка задачи

Общая формулировка задачи о многократном рассеянии частиц в приближении малых углов выглядит следующим образом. Обозначим через X(t) случайную величину, характеризующую частицу на глубине t и удовлетворяющую условиям: 1) в начале координат X(0) = 0; 2) в промежутках между точками столкновений $0 < T_1 < T_2 < \ldots < T_N < t$ величина X(t) сохраняет свое значение, дискретно изменяясь только при рассеяниях на случайную величину X_i , т. е. $X(t) = \sum_{i=1}^{N(t)} X_i$; 3) изменения (скачки) X_i в точках столкновений случайны, независимы и распределены с одинаковой плотностью $\sigma(x)$.

Распределение X(N) для частицы, испытавшей N рассеяний, дается многократной сверткой распределений $\sigma(x)$

$$\sigma^{(N)}(x) = \int \sigma^{(N-1)}(x-\xi)\sigma(\xi)\,d\xi,\tag{1}$$

где $\sigma^{(1)}(x) = \sigma(x)$.

Удобно распространить эту формулу и на случай N = 0, положив $\sigma^{(0)}(x) = \delta(x)$, где $\delta(x) - \delta$ -функция Дирака. Распределение по x частиц, прошедших путь t, запишется в виде

$$\Psi(x,t) = \sum_{N=0}^{\infty} p(N;t)\sigma^{(N)}(x), \qquad (2)$$

где p(N;t) — вероятность того, что на пути t частица испытывает ровно N рассеяний.

Эта вероятность и характеризует среду. Она связана с плотностью распределения длины свободного пробега q(t) соотношением

$$p(N;t) = \int_{0}^{t} Q(t-t')q^{(N)}(t') dt', \qquad (3)$$

где

$$Q(t) = \int_{t}^{\infty} q(t') \, dt'$$

— вероятность того, что случайный пробег превысит значение t, $q^{(N)}(t)$ — многократная свертка плотностей q(t), описывающая распределение координаты точки N-го столкновения.

В качестве случайной величины X (случайного *m*-мерного вектора) могут выступать как потери энергии ε (m = 1), так и отклонение частицы от первоначального направления, в малоугловом приближении описываемое двумерным вектором θ (m = 2) (см., например, [16]). Для решения поставленной задачи надо уметь находить многократные свертки $q^{(N)}(t)$ распределений, отражающих пространственное распределение атомов, и свертки $\sigma^{(N)}(x)$ распределений, характеризующих взаимодействие движущихся частиц с атомами среды.

Самоусреднение в регулярной среде

В случае регулярной среды рассеивающие центры (атомы) предполагаются расположенными независимо друг от друга с постоянной (в случае однородной среды) средней плотностью. Распределение свободного пробега в этом случае имеет вид

$$q_0(t) = \mu \exp(-\mu t), \tag{4}$$

где μ — линейный коэффициент рассеяния, обратный среднему пробегу.

Распределение вероятности того, что на пути t частица совершит N столкновений записывается в этом случае как

$$p(N;t) = \frac{(\mu t)^N}{N!} \exp(-\mu t),$$

а распределение (2) становится обобщенным распределением Пуассона [17]

$$\Psi_0(x,t) = \exp(-\mu t) \sum_{N=0}^{\infty} \frac{(\mu t)^N}{N!} \sigma^{(N)}(x).$$
 (5)

При $t \to \infty$ среднее значение случайного числа слагаемых растет как μt , а его относительные флуктуации убывают как $(\mu t)^{-1/2}$, так что

$$\Psi_0(x,t) \cong \sigma^{(n(t))}(x), \qquad t \to \infty, \tag{6}$$

где n(t) — целая часть величины μt .

Переход от (5) к (6) означает, согласно терминологии работы [18], наличие свойства самоусредняемости: случайно-неоднородная в малых масштабах среда в больших масштабах представляется детерминированной однородной. На теоретиковероятностном языке этот факт находит отражение в законе больших чисел, справедливом при условии существования математического ожидания у распределения q(t). Это в свою очередь означает, что результат (6) останется справедливым для любого распределения с конечным средним значением

$$\int_{0}^{\infty} q(t)t \, dt = 1/\mu < \infty.$$

3. Случайные пробеги во фрактальной среде

Статистические свойства точечных фрактальных моделей подробно исследованы в работах [15,19–22]. В [15] показано, что при движении частицы вдоль прямой с фрактальным множеством атомов распределение длины ее свободного пробега имеет асимптотический степенной хвост с показателем $\alpha < 1$. Для построения теории прохождения излучения через фрактал, расположенный в трехмерном пространстве, необходимо найти соответствующее распределение пробегов и ответить на вопрос, можно ли считать последовательные случайные пробеги взаимно независимыми.

Для ответа на этот вопрос методом случайных блужданий Леви—Мандельброта моделировались реализации стохастического фрактала заданной размерности [19–22]. Вокруг каждой из точек описывалась сфера малого радиуса. Из центра одной из них строился луч в произвольном направлении, на котором определялись положения первой и второй пересекаемых ими сфер. Расстояние от начала луча до первой сферы интерпретировалось как первый пробег, расстояние между первой и второй — как второй пробег. Результаты этого моделирования, представленные на рис. 1, подтверждают гипотезу о приближенной независимости последовательных пробегов (по крайней мере в малоугловом приближении) и степенном характере их плотности

Рис. 1. Результаты моделирования распределения пробегов во фрактальной среде D = 1.5. Сплошная кривая — распределение длины первого пробега $q(t) \sim t^{-\alpha-1}$, $\alpha = 0.65$. Значки — распределение длины второго пробега при различных значениях первого: \circ — первый пробег $l < l_{\mu}$ (l_{μ} — медианный пробег, $P\{l < l_{\mu}\} = 1/2$), $\Box - l_{\mu} < l < 2l_{\mu}$, $\Diamond - 2l_{\mu} < l < 3l_{\mu}$.

распределения

$$q(t) \propto t^{-\alpha - 1}.$$
 (7)

Показатель степени *α* определяется размерностью точечной фрактальной структуры.

4. Мезоскопический эффект

При $\alpha < 1$ среднее значение пробега, распределенного с плотностью (7), бесконечно. В этом случае необходимо использовать предельную теорему в ее обобщенном варианте, приводящем к устойчивым распределениям [23,24], которые играют ту же роль в суммировании независимых случайных величин с бесконечными дисперсиями, что и обычный гауссов закон в случае конечных дисперсий. В частности, если плотности распределений независимых случайных величин T_i имеют степенные хвосты $q(t) \cong \alpha B t^{-\alpha - 1}$, то нормированная сумма

$$S_N = \sum_{i=1}^N T_i / \left[NB\Gamma(1-\alpha) \right]^{1/\alpha}$$

при больших N распределена с односторонней устойчивой плотностью $g^{(\alpha)}(t)$. Другими словами, плотность распределения $q^{(N)}(t)$ суммы $\sum_{i=1}^{N} T_i$ в асимптотике больших N имеет вид

$$q^{(N)}(t) \sim \left[NB\Gamma(1-\alpha) \right]^{-1/\alpha} \\ \times g^{(\alpha)} \Big(\left[NB\Gamma(1-\alpha) \right]^{-1/\alpha} t \Big).$$
(8)

Используя обобщенную предельную теорему, можно найти распределение вероятности того, что на пути t частица совершит N столкновений

$$p(N;t) \cong G^{(\alpha)} \left(\left[NB\Gamma(1-\alpha) \right]^{-1/\alpha} t \right)$$
$$- G^{(\alpha)} \left(\left[(N+1)B\Gamma(1-\alpha) \right]^{-1/\alpha} t \right),$$

где

$$G^{(\alpha)}(t) = \int_{0}^{t} g^{(\alpha)}(t') dt'$$

— устойчивая функция распределения.

После несложных преобразований получаем

$$p(N;t) \cong \frac{t}{\alpha N} \left[NB\Gamma(1-\alpha) \right]^{-1/\alpha} g^{(\alpha)} \\ \times \left(\left[NB\Gamma(1-\alpha) \right]^{-1/\alpha} t \right), \qquad t \to \infty.$$
(9)

Используя известное выражение для моментов отрицательных порядков распределения $g^{(\alpha)}(t)$ [23]

$$\int_{0}^{\infty} g^{(\alpha)}(t) t^{-\nu} dt = \frac{\Gamma(1+\nu/\alpha)}{\Gamma(1+\nu)}, \qquad \alpha < 1, \qquad (10)$$

найдем моменты случайного числа столкновений в интервале (0, t)

$$\left\langle N^{k}(t)\right\rangle =rac{k!t^{klpha}}{\left[B\Gamma(1-lpha)
ight]^{k}\Gamma(1+klpha)},\quad lpha<1.$$

Нетрудно видеть, что среднее значение $\langle N(t) \rangle \propto t^a$, а моменты и, стало быть, само распределение нормированной случайной величины $Z = N / \langle N(t) \rangle$ не зависят от толщины слоя t. Вследствие этих свойств, характеризующих самоподобие стохастического фрактала, ни при какой толщине нельзя пренебречь флуктуациями среды: самоусредняемость не имеет места. Такая ситуация в работе [25] названа мезоскопическим эффектом.

5. Обобщение результатов теории переноса

В данном разделе мы обобщим известные результаты теории переноса для сред с фрактальным распределением рассеивающих центров. Используя (9) и переходя в выражении (2) от суммирования по N к интегрированию по переменной $\tau = [NB\Gamma(1-\alpha)]^{-1/\alpha} t$, приходим к распределению

$$\Psi(x,t) = \int_{0}^{\infty} d\tau g^{(\alpha)}(\tau) \sigma^{n(\tau)}(x), \quad \alpha < 1, \qquad (11)$$

где $n(\tau)$ — целая часть выражения $(t/\tau)^{\alpha}/[B\Gamma(1-\alpha)]$.

Сравнивая с (6), отмечаем изменение предельной формы распределения для пробега с бесконечным средним значением. При $\alpha \to 1$ односторонняя устойчивая плотность $g^{(\alpha)}(\tau) \to \delta(\tau - 1)$ и распределение (11) переходит в (6), характеризующее самоусредняемую среду. Если средний квадрат X_i конечен

$$\left\langle X_i^2 \right\rangle = \int\limits_0^\infty x^2 \sigma(x) \, dx < \infty,$$

распределение $\sigma^{(N)}(x)$ при $N \to \infty$ стремится к нормальному гауссовому распределению (двумерному для углового распределения и одномерному для распределения потерь энергии)

$$\sigma^{(N)}(x) \cong \frac{1}{(2\pi ND)^{m/2}}$$

$$\times \exp\left(-\frac{\left(x - N\langle X \rangle t\right)^2}{2ND}\right); \quad t \to \infty; \quad m = 1, 2,$$

$$D = \langle X^2 \rangle - \langle X \rangle^2. \tag{12}$$

Во фрактальном случае ($\alpha < 1$) для распределения по углу отклонения θ получаем

$$\Psi(\theta, t) = \frac{\psi^{(\alpha)}(\theta/\sqrt{\Delta})}{\Delta},$$
(13)

где

$$\psi^{(\alpha)}(x) = \pi^{-1} \int_{0}^{\infty} d\tau \exp\left(-x^{2} \tau^{\alpha}\right) \tau^{\alpha} g^{(\alpha)}(\tau), \quad \alpha < 1.$$
(14)

Коэффициент Δ и $\langle \theta^2 \rangle$ — средний квадрат угла отклонения на *t* выражаются как

$$\langle \theta^2 \rangle = \frac{\Delta}{\Gamma(1+\alpha)} = \frac{2\langle \theta^2 \rangle t^{\alpha}}{B\Gamma(1-\alpha)\Gamma(1+\alpha)}.$$
 (15)

Здесь $\langle \theta^2 \rangle$ — средний квадрат угла однократного рассеяния. Это обобщение распределения Ферми для фрактально распределенных рассеивающих центров. Для распределения по потерям энергии ε получаем

$$\Psi(\varepsilon, t) = (2\pi D)^{-1/2} \int_{0}^{\infty} d\tau$$

$$\times \exp\left(-\frac{\left(\varepsilon - N/(t/\tau)\langle\varepsilon\rangle\right)^{2}}{2N(t/\tau)D}\right) \frac{g^{(\alpha)}(\tau)}{\sqrt{N(t/\tau)}},$$

$$D = \langle\varepsilon^{2}\rangle - \langle\varepsilon\rangle^{2}, \quad N(t/\tau) = (t/\tau)^{\alpha} / \left[B\Gamma(1-\alpha)\right], \quad (16)$$

где $\langle \varepsilon \rangle$ и $\langle \varepsilon^2 \rangle$ — средняя величина и средний квадрат потерь энергии при однократном рассеянии.

В приближении непрерывного замедления (без учета флуктуаций потерь энергии) (16) переходит в

$$\Psi(\varepsilon, t) = (\alpha \varepsilon)^{-1} \left[\frac{At^{\alpha}}{\varepsilon} \right]^{1/\alpha} g^{(\alpha)} \left(\left[\frac{At^{\alpha}}{\varepsilon} \right]^{1/\alpha} \right)$$
$$A = \langle \varepsilon \rangle / B \Gamma(1 - \alpha).$$

Используя выражения для моментов односторонних устойчивых распределений (10), можно вычислить средние потери энергии на пути *t*

$$\langle E \rangle = \frac{\langle \varepsilon \rangle t^{\alpha}}{B\Gamma(1-\alpha)\Gamma(1+\alpha)}.$$
 (17)

И в том и в другом случае можно выделить не обычную зависимость $\propto t$, а субдиффузионную: $\propto t^{\alpha}$.

Распределения $g^{(\alpha)}(x)$ и $\psi^{(\alpha)}(x)$ могут быть выражены через обобщенную гипергеометрическую функцию Фокса [26,27]. Односторонняя устойчивая плотность выражается через нее как [28]

$$g^{(\alpha)}(x) = \frac{1}{\alpha x^2} H_{11}^{10} \left(x^{-1} \middle| \begin{pmatrix} (-1, 1) \\ (-1/\alpha, 1/\alpha) \end{pmatrix} \right),$$

Используя формулу (2.25.2.3) из [29], мы получаем

$$\psi^{(\alpha)}(x) = \frac{1}{\pi x^2} H_{12}^{20} \left(x \left| \begin{array}{c} (1,1) \\ (1,1/\alpha)(1,1/\alpha) \end{array} \right) \right\}$$

Рис. 2. Плотности односторонних устойчивых распределений $g^{(\alpha)}(x)$ при $\alpha = 0.25, 0.5, 0.75.$

Рис. 3. Распределения $\psi^{(\alpha)}(x)$ при $\alpha = 1/3$, 1/2, 2/3, 5/6, 1. $\alpha = 1$ соответствует нормальному распределению.

Графики распределений $g^{\alpha}(x)$ и $\psi^{(\alpha)}(x)$ для различных значений α представлены на рис. 2, 3. На рис. 3 предельное распределение $\alpha = 1$ соответствует нормальному гауссову распределению, т.е. рассеянию с конечным средним пробегом. Важнейшим отличием формы распределений $\psi^{(\alpha)}(x)$ от нормального является более высокая концентрация вероятности в области малых и больших углов.

Выражение (11) можно применить для произвольного сечения однократного рассеяния $\sigma(x)$, в том числе и в случае бесконечной дисперсии X. С этой проблемой мы сталкиваемся при рассеянии заряженных частиц, описываемом формулой Резерфорда, если в теорию не вводить параметр максимальных потерь энергии или максимального угла отклонения. При этом $\sigma^{(N)}(x)$ описывается распределением Ландау (в случае потерь энергии)

$$\sigma^{(N)}(\varepsilon) = \frac{1}{2\pi i} \int_{\gamma} \exp(p\varepsilon - NA(p)) dp,$$

$$A(p) = \int_{\varepsilon_0}^{\infty} (1 - \exp(-p\varepsilon)) \sigma(\varepsilon) d\varepsilon, \quad \sigma(\varepsilon) \cong \varepsilon^{-2},$$

$$A(p) \cong p\varepsilon_0 b - p\varepsilon_0 \ln p\varepsilon_0, \quad b = 1 - C_e$$
(18)

и распределением Мольер (в случае угла отклонения)

$$\sigma^{(N)}(\theta) = \frac{1}{2\pi} \int_{0}^{\infty} \exp(-NA(p)) J_{0}(p\theta) dp,$$

$$A(p) = \int_{\theta_{0}}^{\infty} (1 - J_{0}(-p\theta)) \sigma(\theta) \theta d\theta, \quad \sigma(\theta) \cong \theta^{-2},$$

$$A(p) \cong p^{2}\theta_{0}b - p^{2}\theta_{0}\ln p^{2}\theta_{0}, \quad b = 2(1 - C_{e}). \quad (19)$$

Параметры ε_0 и θ_0 определяют минимально теряемую энергию (энергию связи) и угол экранирования, т.е. пределы применимости формулы Резерфорда. В любом случае после подстановки (18) или (19) в (11) мы получаем выражение для соответствующих распределений во фрактальной среде в виде, пригодном для численных расчетов.

Уравнения переноса в среде фрактального типа

Рассмотрим вопрос об уравнениях переноса в средах с экспоненциальным и степенным распределением пробега. Выше было показано, что обобщенное распределение Пуассона (5) описывает многократное рассеяние в первом случае. Дифференцированием по *t* легко убедиться, что оно удовлетворяет кинетическому уравнению

$$\frac{\partial \Psi}{\partial t} + \mu \Psi = \mu \int \sigma(y - x) \Psi(t, y) \, dy \tag{20}$$

с начальным условием $\Psi(x, 0) = \delta(x)$.

В асимптотике $t \to \infty$ уравнение (20) принимает диффузионный вид (называемый иногда приближением Фоккера-Планка)

$$\frac{\partial \Psi}{\partial t} = -\mu \langle X \rangle \, \frac{\partial \Psi}{\partial x} + \frac{\mu \langle X^2 \rangle}{2} \, \frac{\partial^2 \Psi}{\partial x^2}, \tag{21}$$

при этом для угла отклонения оператор $\partial/\partial\theta$ двумерный. В силу гауссовой асимптотики (12) это асимптотическое уравнение сохраняется и для степенного распределения пробегов с конечным средним ($\alpha > 1$).

Для получения уравнений переноса во фрактальной среде рассмотрим соотношение (2) для распределения пробегов q(t), отличного от показательного. В связи

с этим удобно перейти к плотности рассеяний f(x, t), связанной с $\Psi(x, t)$ соотношением

$$\Psi(x,t) = \int_{0}^{t} Q(t-t')f(x,t') dt'.$$
 (22)

Распределение

$$f(x,t) = \sum_{N=0}^{\infty} q^{(N)}(t) \sigma^{(N)}(x)$$
 (23)

удовлетворяет интегральному уравнению

$$f(x,t) = \int_{0}^{t} dt' q(t') \int dy \,\sigma(y) f(x-y,t-t') + \delta(t)\delta(x),$$
(24)

которое вместе с (22) обобщает кинетическое уравнение (20) на случай среды с заданным распределением пробегов q(t).

В случае рассеяния с конечной дисперсией $\sigma^{(N)}(x)$ асимптотически при $N \to \infty$ описывается распределением Гаусса (12) и удовлетворяет диффузионному уравнению

$$\frac{\partial \sigma^{(N)}}{\partial N} = \langle X \rangle \, \frac{\partial \sigma^{(N)}}{\partial x} + \frac{\langle X^2 \rangle}{2} \, \frac{\partial^2 \sigma^{(N)}}{\partial x^2}$$

После подстановки последнего соотношения в (23) и интегрирования по частям мы приходим к уравнению

$$-\langle X \rangle \frac{\partial f}{\partial x} + \frac{\langle X^2 \rangle}{2} \frac{\partial^2 f}{\partial x^2} = -\delta(t)\,\delta(x) \\ -\int_0^\infty dN \sigma^{(N)}(x) \frac{\partial q^{(N)}(t)}{\partial N}$$

Переходя к рассмотрению степенного распределения пробегов q(t) ($\alpha < 1$), необходимо учесть, что в асимптотике $N \to \infty$ $q^{(N)}(t)$ ведет себя согласно (8). В целях сокращения обозначений в последующем изложении удобно ввести оператор дробного дифференцирования Римана—Лиувилля [30]

$$\left(\frac{\partial}{\partial t}\right)^{\alpha}f(t) = \frac{1}{\Gamma(-\alpha)}\int_{0}^{t}\tau^{-\alpha-1}f(t-\tau)\,d\tau, \quad \alpha < 1.$$

Используя свойства устойчивых плотностей, можно показать, что распределения (8) удовлетворяют соотношению

$$rac{\partial q^{(N)}(t)}{\partial N} = -rac{\partial^lpha q^{(N)}(t)}{\partial t^lpha}.$$

Таким образом, мы приходим к уравнению в дробных производных для плотности рассеяний f(x, t) следующего вида:

$$\left(\frac{\partial}{\partial t}\right)^{\alpha} f + \langle X \rangle \frac{\partial f}{\partial x} - \frac{\langle X^2 \rangle}{2} \frac{\partial^2 f}{\partial x^2} = \delta(t) \,\delta(x),$$

$$\alpha < 1, \quad t \to \infty.$$
(25)

Журнал технической физики, 2004, том 74, вып. 5

Рис. 4. Распределения по числу взаимодействий p(N;t) на глубинах t, соответствующих в среднем 5, 50 и 500 взаимодействиям рассеивающейся частицы со средой. Слева — результаты для фрактальной среды (степенное распределение длины пробега $q(t) \sim t^{-\alpha-1}$, $\alpha = 1/2$), справа — для регулярной среды (экспоненциальное распределение пробега).

Производя свертку последнего уравнения с $Q(t) = Bt^{-\alpha}$ и изменяя порядок интегрирования по правилу Дирихле в слагаемом с дробной производной, мы получаем уравнение для функции распределения $\Psi(x, t)$

$$\begin{pmatrix} \frac{\partial}{\partial t} \end{pmatrix}^{\alpha} \Psi + A \langle X \rangle \frac{\partial \Psi}{\partial x} - \frac{A \langle X^2 \rangle}{2} \frac{\partial^2 \Psi}{\partial x^2} = \frac{t^{-\alpha}}{\Gamma(1-\alpha)} \,\delta(x), \\ \alpha < 1, \quad t \to \infty, \quad A = 1/B\Gamma(1-\alpha).$$
(26)

При $\alpha \to 1$ это уравнение принимает вид уравнения обычной диффузии (21). Уравнения типа (26) появляются в работах [31,32] в связи с описанием явления диффузии замедленного типа (субдиффузии), где переменная *t* играет роль времени, а переменная *x* — роль координаты (в промежутках между рассеяниями *x* не изменяется: частица сидит в "ловушке").

Рис. 5. Распределения по углу многократного рассеяния $\Psi(\theta, t)$ на глубинах t, соответствующих в среднем 5. 50 и 500 взаимодействиям рассеивающейся частицы со средой. $\langle \Theta^2 \rangle = 4 \cdot 10^{-4} \text{ rad}^2$. Слева — результаты для фрактальной среды (степенное распределение длины пробега $q(t) \sim t^{-\alpha-1}$, $\alpha = 1/2$), справа — для регулярной среды (экспоненциальное распределение пробега).

Моделирование методом Монте-Карло процесса многократного рассеяния во фрактальных структурах

Полученные выше результаты могут быть проверены численно, используя аналоговое моделирование процесса многократного рассеяния. Для этого рассматривается одномерное движение частицы с заданным распределением пробегов между взаимодействиями. В первой серии модельных экспериментов проводится сравнение распределений по числу взаимодействий на глубинах, соответствующих равным средним значениям чисел взаимодействий $\langle N(t) \rangle$. Сравниваются два распределения пробегов: распределение (4), соответствующее однородной среде с линейной плотностью μ , и (7) с показателем $\alpha = 1/2$, соответствующее фрактальной среде. Результаты представлены на рис. 4. Сплошными кривыми показаны распределения (9) для степенного распределения пробегов (7) и распределение, предельное для распределения Пуассона,

$$p_N(t) = rac{\exp\left(-rac{\left(N-\langle N
ight
angle
ight)^2}{2\langle N
ight
angle}
ight)}{\sqrt{2\pi\langle N
angle}}$$

для экспоненциального распределения пробегов (4) $(\langle N \rangle = \mu t)$.

Далее рассматривается распределение по углу многократного рассеяния. В результате *i*-го взаимодействия частице приписывается случайный двумерный вектор Θ_i , направление которого выбирается азимутально-симметрично, а величина соответствует распределению Резерфорда $p(\Theta) \sim \Theta^{-4}$, где во избежание расходимости $\langle \Theta^2 \rangle$ введены параметры минимального и максимального угла рассеяния Θ_{\min} и Θ_{\max} . Для сравнения формы распределений на рис. 5 для глубин, соответствующих равным средним значениям чисел взаимодействий $\langle N(t) \rangle$, показаны распределения по углу многократного рассеяния θ в сравнении с асимптотическими решениями $\Psi(\theta, t)$ (13) и (12). Аналогичный численный эксперимент может быть проведен и для распределения по потерям энергии.

Заключение

В работе рассмотрен процесс прохождения частиц через точечные фракталоподобные системы [19-22], моделирующие фрактальную среду. Показано, что частицы, распространяющиеся в подобной среде, обладают степенным распределением длины свободного пробега с показателем α (7). Показано, что в случае $\alpha > 1$ распределение по случайному параметру многократного рассеяния $\Psi(t, x)$ на глубине t асимптотически (при $t \to \infty$) зависит лишь от среднего значения длины свободного пробега $\langle \tau \rangle$ и не зависит от типа распределения τ (экспоненциального либо степенного). В случае $\alpha < 1$, когда средняя длина свободного пробега бесконечна, получено выражение (9) для распределения по числу взаимодействий на глубине t и универсальное правило преобразования (11), позволяющее находить распределение по случайному параметру многократного рассеяния Х для любого вида сечения рассеяния $\sigma(x)$. Найдены распределения по углу отклонения (13) и потерям энергии (14) в случае конечной дисперсии Х. Выражения, полученные для средних потерь энергии и среднеквадратичного угла многократного рассеяния на глубине t, проявляют субдиффузионную зависимость $\propto t^{\alpha}$ ($\alpha < 1$), отличающуюся от нормальной $\propto t$ замедленным ростом. Показано, что распределения $\Psi(t, x)$ при бесконечной средней длине свободного пробега удовлетворяют уравнениям субдиффузионного типа в дробных производных (26). Численное моделирование многократного рассеяния со степенным распределением длины свободного пробега подтверждает результаты аналитических расчетов.

Список литературы

- [1] Coleman P.H., Pietronero L. // Phys. Rep. 1992. Vol. 213.
 N 6. P. 311–389.
- [2] *Mandelbrot B.B.* The Fractal Geometry of Nature. New York: Freeman, 1983, 480 p.
- [3] Иванова В.С., Баланкин А.С., Бунин И.Ж. Синергетика и фракталы в материаловедении. М.: Наука, 1994. 383 с.
- [4] Ferri F., Frisken B.J., Cannell D.S. // Phys. Rev. Lett. 1991. Vol. 67. N 25. P. 3626–3629.

- [5] Hasmy A., Anglaret E., Foret M. et al. // Phys. Rev. B. 1994.
 Vol. 50. N 9. P. 6006–6016.
- [6] Maleev S.V. // Phys. Rev. B. 1995. Vol. 52. N 18. P. 13163– 13168.
- [7] Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Т. 2. М.: Наука, 1978. 464 с.
- [8] Uchaikin V.V. // XXIV ICRC. Roma, 1995. Vol. 1. He sessions. P. 698–701.
- [9] Uchaikin V.V. // Physica A. 1998. Vol. 255. Vol. 12. P. 65-92.
- [10] Учайкин В.В. // ЖТФ. 1998. Т. 68. Вып. 1. С. 138–139.
- [11] Учайкин В.В. // ТМФ. 1998. Т. 115. № 1. С. 154–160.
- [12] Учайкин В.В., Коробко Д.А. // Ученые записки УлГУ. Сер. физ. 1998. Вып. 1. С. 3–7.
- [13] Коробко Д.А., Учайкин В.В. // Ученые записки УлГУ. Сер. физ. 1999. Вып. 6. С. 15–26.
- [14] Учайкин В.В. // Критические технологии и фундаментальные проблемы физики конденсированных сред / Под ред. С.В. Булярского. Ульяновск: Изд-во УлГУ, 1999. С. 4–25.
- [15] Учайкин В.В., Коробко Д.А. // Письма в ЖТФ. 1999. Т. 25. Вып. 11. С. 34–40.
- [16] Кольчужкин А.М., Учайкин В.В. Введение в теорию прохождения частиц через вещество. М.: Атомиздат, 1978. 256 с.
- [17] Феллер В. Введение в теорию вероятностей и ее применения. Т. 2. М.: Мир, 1984. 752 с.
- [18] Лифииц И.М., Гредескул С.А., Пастур Л.А. // ЖЭТФ. 1982. Т. 83. С. 2362–2377.
- Uchaikin V.V., Gusarov G.G., Gismjatov I.F., Svetuchin V.A. // J. Bif. and Chaos. 1998. Vol. 8. P. 977–984.
- [20] Uchaikin V.V., Gusarov G.G. // J. Math. Phys. 1997. Vol. 38. N 5. P. 2453–2464.
- [21] Uchaikin V.V., Gusarov G.G., Korobko D.A. // J. Math. Sci. 1998. Vol. 92. P. 3940–3948.
- [22] Учайкин В.В., Коробко Д.А., Гисмятов И.В. // Изв. вузов. Физика. 1997. № 8. С. 7–13.
- [23] Золотарев В.М. Одномерные устойчивые распределения. М.: Наука, 1983. 304 с.
- [24] Uchaikin V.V., Zolotarev V.M. Chance and Stability. Stable Distributions and Their Applications. VSP. Utrecht (The Netherlands), 1999. 570 p.
- [25] Райх М.Э., Рузин И.М. // ЖЭТФ. 1987. Т. 92. С. 2257-2276.
- [26] Fox C. // Trans. Amer. Math. Soc. 1961. Vol. 98. P. 395.
- [27] Glöckle W.G., Nonnenmacher T.F. // J. Stat. Phys. 1993. Vol. 71. P. 741.
- [28] Schneider W.R. // Lecture Notes in Physics. Berlin: Springer, 1986. 497 p.
- [29] Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Дополнительные главы. М.: Наука, 1986. 800 с.
- [30] Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
- [31] Bouchaud J.-P., Georges A. // Phys. Rep. 1990. Vol. 195. N 4–5. P. 127–293
- [32] Zaslavsku G.M. // Physica D. 1994. Vol. 76. N 1–3. P. 110– 122.