Адсорбция атомов щелочных металлов на поверхности арсенида галлия: изменение работы выхода

© С.Ю. Давыдов,¹ А.В. Павлык²

01:02:11

¹Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия ²Санкт-Петербургский государственный электротехнический университет (ЛЭТИ), 197376 Санкт-Петербург, Россия e-mail: sergei.davydov@mail.ioffe.ru

(Поступило в Редакцию 17 сентября 2003 г.)

В рамках простой модели рассчитано изменение работы выхода при адсорбции атомов Cs на поверхности (100) и K, Rb и Cs на поверхности (110) GaAs. Модель включает как диполь-дипольное взаимодействие адатомов, так и уширение их квазиуровней за счет обменных эффектов. Результаты расчета хорошо согласуются с данными эксперимента.

Изучение взаимодействия атомов металла с поверхностью полупроводника интересно прежде всего с точки зрения формирования барьера Шоттки [1]. Установлено, что высота барьера определяется уже на начальной стадии нанесения металлического покрытия [2]. Важно поэтому понять, как субмонослойная металлическая пленка влияет на электронные состояния полупроводниковой поверхности. По-видимому, простейшей интегральной характеристикой такого влияния является изменение работы выхода адсорбционной системы $\Delta \phi$. Натоящая работа посвящена расчету $\Delta \phi$ при адсорбции атомов щелочных металлов (AM) на поверхности арсенида галлия.

Выбор именно этой адсорбционной системы не случаен. Во-первых, атомы первой группы, являясь типичными металлами, содержат на внешней оболочке лишь один электрон, который как раз и "работает" на адсорбцию. Во-вторых, электронная и кристаллографическая структура поверхности арсенида галлия изучена наиболее тщательно по сравнению с другими соединениями A₃B₅ [2].

Большинство расчетов для системы AM/GaAs основаны на том или ином варианте формализма функционала плотности [3], которые, как и все подходы ab initio, имеют неоспоримые преимущества, но при расчете функции $\Delta\phi(\Theta)$ (степень покрытия $\theta = N/N_{ML}$, N — концентрация адатомов, N_{ML} — их концентрация в монослое) встречают определенны трудности: нужно учитывать конкретную геометрию адслоя, меняющуюся с ростом Θ скачкообразно вследствие структурных переходов. Приходится, таким образом, рассчитывать значения $\Delta\phi$ лишь для нескольких характерных значений покрытий, что затрудняет сопоставление с данными эксперимента. Существуют и модельные подходы к проблеме [1,4,5], позволяющие параметрически описать функцию $\Delta\phi(\Theta)$.

В работах [6,7], посвященных соответственно описанию адсорбции AM на кремнии и рутиле, была предложена схема, позволяющая довольно просто рассчитать изменение работы выхода адсорбционной системы $\Delta \phi$ при увеличении Θ . Как известно [8], существуют три основных канала взаимодействия адатомов: диполь-дипольное отталкивание, вызывающее деполяризацию адатома и приводящее к сдвигу его квазиуровня, и прямой и косвенный межадатомный обмен электронами, приводящие к расщеплению квазиуровня и к формированию квазидвумерной поверхностной зоны. В работах [6,7] учитывались все эти каналы. Однако если диполь-дипольное взаимодействие рассматривалось непосредственно, то размытие квазиуровней в зону моделировалось, а именно мы полагали, что полуширина квазиуровня изолированного адатома Γ_0 переходит при увеличении степени покрытия в $\Gamma = \Gamma_0(1 + \gamma \Theta)$, где γ безразмерный параметр. В соответствии с моделью [6,7] в уширение уровня изолированного адатома вносят вклад как туннельные, так и оже-процессы.

Следует подчеркнуть, что в рамках нашей модели структура адсорбционной пленки игнорируется, играет роль лишь двумерная плотность адатомов. Такое довольно грубое упрощение достаточно хорошо работает в случае адсорбции щелочных металлов, обладающих (по крайней мере при малых покрытиях) большим зарядом. Вследствие этого основным каналом взаимодействия щелочных адатомов является диполь-дипольное отталкивание, пропорциональное R_a^{-3} (R_a — расстояние между соседними адатомами) и обладающее круговой (в плоскости поверхности) симметрией. В предложенной модели нас не интересует также вопрос, с каким непосредственно атомом поверхности (Ga или As) связан щелочной адатом, ибо нам достаточно того, что щелочной металл отдает свой электрон в зону проводимости субстрата.

Как показано в работах [9,10], заряд адатома Z определяется выражением

$$Z(\Theta) = \frac{2}{\pi} \arctan \frac{\Omega - \xi \Theta^{3/2} Z(\Theta)}{\Gamma(\Theta)}, \ \xi = 2e^2 \lambda^2 N_{ML}^{3/2} A.$$
(1)

Здесь Ω — энергия квазиуровня адатома относительно уровня Ферми подложки; ξ — константа диполь-дипольного отталкивания адатомов; 2λ — плечо поверх-

ностного диполя, образованного адсорбированным атомом и его изображением в подложке (диэлектрической поправкой $(\varepsilon_0 - 1)/(\varepsilon_0 + 1)$, где ε_0 — статическая диэлектрическая проницаемость, пренебрегаем); $A \approx 10$ безразмерный коэффициент, слабо зависящий от геомет-

рии решетки адатомов. Изменение работы выхода $\Delta \phi$ определяется формулами [9,10]

$$\Delta \phi(\theta) = -\Phi \Theta Z, \quad \Phi = 4\pi e^2 N_{ML} \lambda. \tag{2}$$

Для определения параметров модели воспользуемся процедурой, предложенной в работах [6,7] и состоящей в следующем: из эксперимента берутся начальный наклон кривой $\Delta\phi(\theta)$ (т.е. $d\Delta\phi/d\Theta$ при $\theta \to 0$) и значение изменения работы выхода адсорбционной системы при монослойном покрытии $\Delta\phi_{ML}$. Эти две характеристики выбраны для подгонки на том основании, что начальный наклон $\Delta\phi(\Theta)$ определяет величину дипольного момента изолированного адатома $p_0 = 2Ze\lambda$, а близость значения $\phi + \Delta\phi_{ML}$ к работе выхода соответствующего щелочного металла определяет, насколько уже первый монослой АМ формирует "объем".

Рассмотрим адсорбцию атомов цезия на поверхности GaAs (100), воспользовавшись экспериментальными данными работ [11,12]. Примем $N_{ML} = 4 \cdot 10^{14}$ atoms/cm² (см., например, [12–14]) и будем считать, что монослойной концентрации в работе [11] отвечает время экспозиции, равное 500 s. Далее, положим $\lambda = 2$ Å, что несколько меньше полусуммы атомного и ионного радиусов (2.24° Å) и отражает тот факт, что в субмонослойной пленке адатом находится преимущественно в ионном состоянии (см. ниже). Энергия квазиуровня определяется как

$$\Omega = \phi - I + e^2 / 4\lambda, \tag{3}$$

где I — энергия ионизации щелочного атома, равная для цезия 3.89 eV [15], $\phi = 5 \text{ eV}$ — работа выхода грани (100) арсенида галлия [11].

Отметим, что в настоящей модели полупроводник непосредственно характеризуется только значением работы выхода ϕ , которая, естественно, меняется в зависимости от легирования. С точки зрения теории логичнее было бы принять за уровень отсчета энергию сродства полупроводника к электрону или энергию ионизации. Такое описание удобно, однако, только для собственного полупроводника, тогда как для примесного пришлось бы вводить соответствующую плотность примесных состояний, как это делалось, например, в работе [16]. С одной стороны, это усложняет модель, с другой стороны, в эксперименте измеряют именно $\Delta \phi$. Поэтому мы оцениваем положение квазиуровня соотношением (3).

Полученные таким образом параметры модели приведены в табл. 1 (строка 1). В строке 2 содержатся оценочные значения, полученные по данным работы [12]. Расхождение экспериментальных результатов работ [11] и [12], заключается, по-видимому, в различии структур чистой поверхности арсенида галлия. Если в [11]

Рис. 1. Адсорбция цезия на поверхности (100) арсенида галлия по данным работы [11]. Расчет: *1* — 300, *2* — 200° К; эксперимент: + — 300, × — 200° К.

Рис. 2. То же, что на рис. 1, но по данным работы [12]. Поверхность (001) + — экспериментальные точки.

утверждается, что симметрия поверхности есть $c(8 \times 2)$, то в [12] структура поверхности идентифицируется как (4 × 2). Результаты расчетов в сопоставлении с данными экспериментов [11] и [12] представлены на рис. 1 и 2. В обоих случаях результаты расчетов вполне удовлетворительно согласуются с экспериментальными данными. Следует, однако, отметить два обстоятельства. На рис. 1 расчетная кривая *1* монотонна, тогда как на эксперименте при T = 300 К наблюдается слабый минимум.¹ Рис. 2 демонстрирует большой разброс экспериментальных данных, причины которого неясны.

¹ Отметим, что предложенная модель способна описывать немонотонный характер функции $\Delta \phi(\Theta)$ [6,7].

Рис. 3. Адсорбция калия (*a*), рубидия (*b*) и цезия (*c*) на поверхности (110) арсенида галлия по данным работы [14]. + — эксперимент.

Таблица 1. Параметры модели для адсорбции цезия на поверхности (100) арсенида галлия

Параметр	Ω,eV	Γ_0, eV	γ	Φ,eV	ξ, eV
I [11]	2.91	1.93	2.09 2.76	13.5	9.2
II [12]	2.91	1.26	2.84	13.5	9.2

Примечание. Для параметра γ верхнее число соответствует T = 300 К, нижнее — T = 200 К.

Таблица 2. Параметры модели для адсорбции щелочных металлов на поверхности (110) арсенида галлия по данным работы [14]

Параметр	Ω,eV	Γ_0, eV	γ	Φ,eV	ξ, eV
K	2.74	2.83	0.52	19.1	12.7
Rb	2.75	2.35	0.64	17.0	11.0
Cs	2.81	2.40	0.15	17.4	12.1

Теперь обратимся к адсорбции калия, рубидия и цезия на поверхности (110) GaAs, экспериментально исследованной в работе [15]. Как и авторы работы [15], полагаем $N_{ML} = 6.4$, 5.3 и $4.8 \cdot 10^{14}$ atoms/cm² для K, Rb и Cs соответсвенно. Далее, масштабируя, полагаем $\lambda = 1.65, 1.77$ и 2 Å для того же ряда. Параметры модели представлены в табл. 2. Результаты расчета совместно с данными эксперимента иллюстрирует рис. 3. Из рис. 3 видно, что в области промежуточных покрытий экспериментальные значения $|\Delta\phi(\Theta)|$ заметно меньше расчетных. Следовательно, в этой области покрытий наша модель несколько переоценивает процессы деполяризации в субмонослое, хотя причины линейного хода экспериментальной зависимости $\Delta \phi(\Theta)$ не вполне понятны. В целом с учетом простоты модели результаты следует признать удовлетворительными.

Таким образом, с учетом [6,7] предложенная модель способна адекватно описывать изменение работы выхода при адсорбции щелочных металлов на полупроводниковых подложках.

Список литературы

- [1] Бехштедт Ф., Эндерлейн Р. Поверхности и границы раздела полупроводников. М.: Мир, 1990. 488 с.
- [2] Mönch W.// Rep. Prog. Phys. 1990. Vol. 53. N 3. P. 221.
- [3] Bechstedt F., Scheffler M. // Surf. Sci. Rep. 1993. Vol. 18. P. 145.
- [4] Kato T., Ohtomi K., Nakayama M. // Surf. Sci. 1989. Vol. 209.
 P. 131.
- [5] Kampen T.U., Eyckler M., Mönch W. // Appl. Surf. Sci. 1998. Vol. 123/124. P. 28.
- [6] Давыдов С.Ю., Павлык А.В. // ФТП. 2001. Т. 35. Вып. 7. С. 831.
- [7] Давыдов С.Ю., Носков И.В. // ЖТФ. 2002. Т. 72. Вып. 11. С. 137.

- [8] Браун О.М., Медведев В.К. // УФН. 1978. Т. 157. Вып. 4. С. 1234.
- [9] Muscat J.P., Newns D.M. // J. Phys. 1974. Vol. 7 (15). P. 2630.
- [10] Давыдов С.Ю. // ФТТ. 1977. Вып. 11. С. 3376.
- [11] Kamaratos M., Bauer E. // J. Appl. Phys. 1991. Vol. 70. N 12.
 P. 7564.
- [12] Yamada K., Asanari J., Naitoh M., Nishigaki S. // Surf. Sci. 1998. Vol. 402–404. P. 683.
- [13] Derrien J., D'Avitaya A. // Surf. Sci. 1977. Vol. 65. P. 668.
- [14] Ortega J.E., Miranda R. // Appl. Surf. Sci. 1992. Vol. 211. P. 211.
- [15] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [16] Давыдов С.Ю. // ФТП. 1997. Т. 31. Вып. 10. С. 1236.