04;07;12 Эксимерный источник излучения фотобиологического действия

© А.Н. Малинин,¹ А.В. Поляк,¹ И.В. Блонский,² Н.Г. Зубрилин²

 Ужгородский национальный университет, 88000 Ужгород, Украина e-mail: mal@univ.uzhgorod.ua
Институт физики НАН Украины, 03028 Киев, Украина e-mail: zubrilin@iop.kiev.ua

(Поступило в Редакцию 19 июня 2003 г.)

Предложен и экспериментально исследован газоразрядный эксимерный источник излучения видимого диапазона на смеси паров дииодида и дибромида ртути с гелием. Спектр излучения источника занимает диапазон 370–510 nm. В сине-зеленой области сосредоточено около 90% мощности излучения.

Введение

В настоящее время для обеспечения искусственного освещения, необходимого для развития растений, наиболее широкое применение нашли натриевые лампы высокого давления. Для таких источников в область фотосинтетической активной радиации превращается треть мощности излучения. Для более эффективного светового управления фотосинтезом, ростом, развитием растений и водорослей необходимо создание нового поколения источников излучения с селективными характеристиками в области спектра 400–510 и 610–720 nm.

Техника и методика исследований

На рис. 1 представлены основные узлы разработанной эксимерной лампы. Лампа изготовлена из кварцевой трубки 2 диаметром 34 mm и длиной 200 mm. Внутри по ее оси расположен вольфрамовый электрод 4 круглого сечения диаметром 4 mm. Второй электрод 3 перфорированный (с коэффициентом пропускания излучения 72%). Подвод энергии к внутреннему электроду от источника питания осуществляется через металлокварцевый ввод 6. На противоположной торцевой поверхности располагается патрубок из кварцевого стекла 1 с капилляром, через который производится откачка и заправка исследуемыми компонентами смеси.

Возбуждение рабочей смеси эксимерной лампы осуществляется в плазме барьерного разряда. Питание разряда производится от генератора наносекундных импульсов. В качестве коммутатора в генераторе использовался тиратрон ТГИ 2-130/10. Накопительная емкость в генераторе набиралась из малоиндуктивных конденсаторов КВИ-3. Перезарядка емкости осуществлялась через первичную обмотку повышающего трансформатора с коэффициентом трансформации 1:3. В процессе экспериментов импульсные напряжение и ток (длительность импульсов $\sim 150 \, \rm ns$) на электродах лампы поддерживались на уровне 22–30 kV и 265 А соответственно, частота повторения импульсов составляла 2–5 kHz, на-

копительная емкость — 1.36 nF. Электрические характеристики лампы (напряжение и ток) измерялись с помощью калиброванных делителя напряжения и пояса Роговского соответственно.

Спектральные и интегральные характеристики эксимерной лампы исследовались следующим образом: излучение выводилось нормально к ее поверхности и после прохождения диафрагмы площадью 1 cm² с помощью линзы проецировалось на входную щель призменного монохроматора ЗМР-3, после чего регистрировалось фотоэлектронным умножителем ФЭУ-79 и самописцем КСП-4 (система регистрации была подобна используемой в работе [1]). Обратная линейная дисперсия ЗМР-3 составляла 44 Å/mm на длине волны $\lambda = 434$ nm. Ширина щелей монохроматора при проведении спектральных измерений составляла 0.1 mm, а при исследовании интегральных характеристик (зависимости интенсивностей излучения спектральных полос от компонентного состава смесей и их парциальных давлений) — 1.5 mm. Калибровка системы регистрации проводилась с помощью эталонной ленточной вольфрамовой лампы СИ 8-200 при температуре нити накала T = 2173 K.

Регистрация импульсной и средней мощности излучения осуществлялась фотоэлементом ФЭК-22 СПУ и прибором "Кварц-01" соответственно. Они устанавливались в системе регистрации вместо монохроматора ЗМР-3.

Для определения мощности излучения со всей поверхности созданного эксимерного источника использо-

Рис. 1. Основные узлы эксимерной лампы: *1* — патрубок откачки и напуска газов, *2* — кварцевая трубка, *3* — перфорированный электрод, *4* — электрод, *5* — разрядная область, *6* — высоковольтный ввод.

валось выражение для облученности, создаваемой равнояркостной излучающей линией при условии, что ее длина намного меньше расстояния, на котором расположен фотоприемник от источника излучения [2],

$$P_1 = \Omega_0 P_2 / \Omega_2$$

где P_2 — мощность в W, регистрируемая фотоприемником; Ω_0 — эквивалентный телесный угол; $\Omega_2 = S/l_0^2$ телесный угол фотоприемника; S_2 — площадь окошка фотоприемника; l_0 — расстояние, на котором расположен фотоприемник от источника излучения.

Импульсная и средняя мощность рассчитывалась с учетом излучающей площади. Эквивалентный телесный угол брался равным π^2 (для цилиндрической поверхности) [2].

Рабочие смеси приготавливались непосредственно в источнике излучения. Дииодид ртути (HgI_2) и дибромид ртути $(HgBr_2)$ в количестве по 60 mg предварительно загружались в источник. Обезгаживание источника производилось путем прогрева при температуре 50°С и откачке в течение 2 h. Затем производился напуск инертного газа (гелия). Парциальное давление паров HgI_2 и $HgBr_2$ создавалось за счет нагрева рабочей смеси при диссипации энергии импульсно-периодического разряда. Измерение его осуществлялось по температуре наиболее холодной точки источника на основании линейной интерполяции справочных данных работы [3].

Оптические и энергетические характеристики

На рис. 2 представлен обзорный спектр излучения эксимерного источника излучения на смеси паров дигалогенидов ртути (дииодид ртути и дибромид ртути) с гелием (рабочая смесь HgI₂:HgBr₂:He = = 14.6 Pa: 49.2 Pa: 162 kPa). Частота следования импульсов накачки составляла 4 kHz, амплитуда напряжения и ток — 25.5 kV и 265 A соответственно. Характерными для спектров являются наличие области перекрывающихся спектральных полос излучения с максимумом излучения на длинах волны $\lambda = 444$ и 502 nm (интенсивность излучения молекул HgI* превышает интенсивность HgBr* в 2.5 раза — результат калибровки), крутой рост интенсивности со стороны длинноволнового участка и медленный спад в коротковолновой области. Канты спектральных полос перекрывают диапазон длин волн 370-510 nm. С изменением частоты следования импульсов накачки в пределах 2-5 kHz форма, диапазон, положение максимумов этих спектральных полос не меняются. Изменяются лишь их интенсивность и соотношение интенсивностей на краях полос.

При повышении парциального давления гелия от 140 до 200 kPa наблюдается немонотонное изменение средней мощности излучения P_3 : непрерывный рост в диапазоне 140–180 kPa, достижение максимального значения при 182 kPa (рис. 3) и спад при дальнейшем

Рис. 2. Спектр излучения разряда эксимерного источника излучения для рабочей смеси $HgI_2:HgBr_2:He = 14.6 Pa: 49.2 Pa: 162 kPa;$ частота следования импульсов накачки 4 kHz, напряжение и ток 25.5 kV и 265 A соответственно.

Рис. 3. Зависимость средней мощности излучения от парциального давления гелия при частоте следования импульсов накачки 2000 Hz, амплитуде напряжения — 22.5 kV.

увеличении давления гелия. При увеличении напряжения на источнике и частоты следования импульсов (рис. 4, 5) наблюдается линейный рост P_3 . При напряжении 30 kV и частоте следования импульсов 2 kHz, $P_3 = 11$ W и ~ 22.5 W при частоте 5 kHz.

С повышением парциальных давлений дигалогенидов ртути P_3 достигает максимальных значений для HgI_2 при 0.25 kPa и для $HgBr_2$ при 0.5 kPa. Зависимость P_3 от парциальных давлений HgI_2 и $HgBr_2$ изучалась при нагреве рабочей смеси внешним электронагревателем.

На рис. 6 приведены характерные осциллограммы разрядного тока и мощности излучения для общего давления смеси 162 kPa, напряжения 22.5 kV и частоты следования импульсов 2 kHz. Погрешность и воспроиз-

Рис. 4. Зависимость средней мощности излучения от *U*. Частота следования импульсов 2000 Hz. Общее давление смеси 162 kPa.

Рис. 5. Зависимость средней мощности излучения от частоты следования импульсов. Общее давление смеси 162 kPa, амплитуда напряжения 22.5 kV.

водимость результатов осциллографических измерений составляли 10 и 90% соответственно. Импульсы тока имели разную полярность, амплитуду 265 А и длительность 150 ns.

Видно, что для $P_3(t)$ наблюдается двугорбая зависимость и экстремумы амплитуды импульсов излучения и импульсов тока по времени совпадают. Амплитуда второго импульса излучения больше первого, хотя амплитуда второго импульса тока ниже. Для второго импульса излучения характерно также увеличение его длительности и длительности заднего фронта по сравнению с первым импульсом.

Наблюдаемые излучения (рис. 2) полосы соответствуют электронно-колебательным переходам $B^2\Sigma^+_{1/2} \to X^2\Sigma^+_{1/2}$ молекул HgI* и HgBr* [4]. Изменение частоты следования импульсов накачки приводит к изменению температуры стенки источника. Следовательно, изменения парциальных давлений (концентраций паров дииодида дибромида И ртути) будут разными [3], что приводит к разным концентрациям возбужденных молекул HgI* и HgBr* в $B^2 \Sigma_{1/2}^+$ -состоянии [5], отражением которых являются разные интенсивности полос излучения.

Наличие оптимального парциального давления для буферного газа гелия (рис. 4), связано с величиной

энергии разряда, которая расходуется на нагрев смеси паров двух дигалогенидов ртути и гелия. Она зависит от параметра E/p (отношение напряженности поля в плазме к давлению смеси). Как показано в [6], для двойных смесей (пары одного из дигалогенида ртути и гелия) имеется оптимальная область нагрева стенки источника излучения, при которой интенсивности излучения максимальны. Известно [7], что выше определенного значения температуры стенки значительную роль играет процесс тушения $B^2 \Sigma_{1/2}^+$ -состояния этих молекул.

Зависимость P_3 от парциальных давлений дигалогенидов ртути объясняется как процессом повышения концентрации молекул в состоянии $B^2\Sigma^+_{1/2}$ с возрастанием их парциальных давлений, так и процессом их тушения. Оптимальные парциальные давления для дигалогенидов ртути определяются динамическим равновесием между этими процессами.

Временная зависимость импульсов тока вызвана перезарядкой цепи диэлектрик—плазма. Двугорбая временная зависимость с большей амплитудой второго импульса нами наблюдалась ранее во временных зависимостях интенсивности излучения эксимерных молекул HgBr* и HgI* в двухкомпонентных смесях дииодида и дибромида ртути с гелием [1,8]. Наличие временно́го уширения второго импульса в трехкомпонентной смеси и его заднего фронта по сравнению с двухкомпонентными может быть вызвано уменьшением скорости ассоциации двухатомных молекул моногалогенидов ртути в

Рис. 6. Осциллограммы разрядного тока (a) и мощности излучения (b). Общее давление смеси 162 kPa, частота следования импульсов 2 kHz, амплитуда напряжения на источнике 22.5 kV.

процессах

$$\operatorname{Hg} X(X^{2}\Sigma_{1/2}^{+}) + X_{2} \to \operatorname{Hg} X_{2} + X, \qquad (1)$$

$$\operatorname{Hg} X(X^{2}\Sigma_{1/2}^{+}) + X + R \to \operatorname{Hg} X_{2} + R, \qquad (2)$$

(где *X* = Be, I; *R* — буферный газ) и соответственно накоплением моногалогенидов ртути в основном энергетическом состоянии. Это и приводит в конечном итоге к изменению временно́го поведения второго импульса за счет увеличения заселенности $B^2\Sigma_{1/2}^+$ -состояния моногалогенидов ртути в результате возбуждения из состояния $X^2\Sigma_{1/2}^+$ электронами [6].

Заключение

Таким образом, в результате проведенных нами исследований газоразрядного эксимерного источника излучения видимого диапазона на смеси паров дииодида и дибромида ртути с гелием, возбуждаемого импульсно-периодическим барьерным разрядом установлено, что спектр излучения данного источника состоит из перекрывающихся спектральных полос излучения молекул моноиодида и монобромида ртути в диапазоне 370-510 nm. Средняя мощность излучения с поверхности источника (230 cm²) порядка 25 W, импульсная — 93 kW. КПД преобразования мощности, вкладываемой в рабочую среду, в излучение составляет 30%. В сине-зеленой спектральной области сосредоточено около 90% мощности излучения, что значительно выше, чем у натриевых ламп высокого давления при сопоставимых энерговкладах в рабочую смесь [9].

Результаты проведенных исследований позволяют надеяться на увеличение энергетических параметров предлагаемых эксимерных ламп при оптимизации схемы возбуждения и их конструкции. Такие лампы могут оказаться полезными для более эффективного управления фотосинтезом, ростом, развитием растений и водорослей.

Список литературы

- [1] *Малинин А.Н., Поляк А.В., Зубрилин Н.Г.* и др. // Квантовая электрон. 2002. Т. 32. № 2. С. 155–159.
- [2] Сапожников Р.А. // Теоретическая фотометрия. М.: Энергия, 1977. 264 с.
- [3] Ефимов А.И., Белорукова Л.П., Василькова И.В., Чечев В.П. Свойства неорганических соединений. Л.: Химия, 1983. 392 с.
- [4] Pears R.W., Gaydon A.G. The Identification of Molecular Spectra. London: Chopman Hall, ltd., 1963. 347 p.
- [5] Malinin A.N. // Laser Physics. 1998. Vol. 8. N 2. P. 395-406.
- [6] Malinin A.N. // Laser Physics. 1997. Vol. 7. N 5. P. 1032-1040.
- [7] Malinin A.N. // Laser Physics. 1997. Vol. 7. N 6. P. 1177-1181.
- [8] Малинин А.Н., Шуаибов А.К., Шевера В.С. // Журнал прикладной спектроскопии. 1980. Т. 32. Вып. 4. С. 735–737.
- [9] Бакит Ф.Г., Лапшин В.Ф. // ЖТФ. 1997. Т. 67. Вып. 9. С. 22– 24.