02;04;10;12

Влияние резонансной перезарядки ионов аргона на эффективную скорость распыления в магнетронном разряде

© И.Ю. Бурмакинский, А.В. Рогов

Российский научный центр «Курчатовский институт», 123182 Москва, Россия e-mail: alex-rogov@yandex.ru

(Поступило в Редакцию 29 мая 2003 г.)

Проведен сравнительный анализ скоростей распыления в магнетронной системе ионного распыления для различных материалов мишени. Приведены эффективные коэффициенты распыления, полученные при использовании аргона в качестве рабочего газа. Показано, что отличие коэффициента распыления от значений, полученных методом моноэнергетичных ионных пучков, обусловлено влиянием резонансной перезарядки иона аргона на собственном газе.

Введение

Стандартным методом определения коэффициента распыления материала служит метод моноэнергетичных ионных пучков [1–3]. При анализе процессов плазменноионного травления появляется необходимость в определении скорости выработки (расхода) материала, связанная с немоноэнергетичностью потока распыляющих ионов, его компонентным составом, а также в связи с наличием процессов в плазме разряда [4,5]. В предлагаемой работе содержатся данные по эффективным скоростям распыления для набора материалов, используемых в процессах магнетронного осаждения, полученные в результате эксперимента. Эксперименты проводились на магнетронной системе ионного распыления постоянного тока со сменным катодом. Распыление для всех образцов проводилось при одинаковых вакуумных условиях и одинаковом токе разряда.

Описание эксперимента

Распыление проводилось в цилиндрической камере с диаметром 400 mm и высотой 250 mm. Использовался магнетрон планарного типа (рис. 1) с эффективным размером катодной вставки 21 mm по диаметру и максимальным диаметром области выработки 16 mm. Охлаждаемая проточной водой магнитная система магнетрона находилась в герметичном корпусе. Толщина стенки над поверхностью магнитной системы составляла 1 mm; для обеспечения теплоотвода от катодной вставки из исследуемого материала применялась специальная термопроводящая паста. Толщина катодной вставки (Δ) была различной для разных материалов, вследствие чего величина магнитного поля на поверхности мишени (B_0) менялась от 0.11 до 0.155 Т. Толщины катодных вставок и соответствующие им величины магнитного поля приведены в таблице. Конфигурация магнитного поля над поверхностью катода была арочной, типичной для магнетронных систем ионного распыления постоянного тока [1,2].

Предварительная откачка во всех экспериментальных сериях производилась до давления $1 \cdot 10^{-4}$ Torr по остаточному газу (азот, кислород) с использованием турбомолекулярного насоса. Распыление происходило при значении давления на уровне $P_{\text{work}} \approx 5 \cdot 10^{-3}$ Torr по аргону, одинаковом для всех образцов материала мишени; таким образом, содержание остаточных примесей не превышало 2%.

Ток разряда (I_d) был одинаков при распылении всех материалов и составлял 100 mA.

Время распыления (τ_{Sp}) вырьировало от 10 до 20 min для разных материалов с целью достижения необходимой точности измерений.

Величина напряжения разряда незначительно изменялась (в сторону уменьшения) в процессе распыления и при обработке результатов использовалась средняя величина

$$\langle U_d \rangle = \frac{1}{\tau_{Sp}} \int_{\tau} U_d(t) dt.$$
 (1)

Количество распыленного материала определялось по разнице масс катодной вставки до и после распыле-

Рис. 1. Устройство катодного узла: *1* — корпус магнетрона, 2 — магнитная система, *3* — магнитопровод, *4* — катодная вставка (мишень), *5* — теплопроводящая паста, *6* — водяное охлаждение магнитной системы и катода.

N₂	Материал катода	Δ, mm	$\langle B_0 \rangle$, T	$\langle U_d angle, \ {f V}$	$\langle \varepsilon_i \rangle$, eV	$S_y(Tm)$, A/ion	$S_y(Ar),$ A/ion	S_y^{eff} , A/ion
1	Al(26.28)	0.91	0.115	330	260	0.40	0.42	0.54
2	Ti(47.9)	1.00	0.110	305	245	0.22		0.19
3	Fe*(55.84)	0.23	*	320	255	0.65		0.51
4	Ni*(58.7)	0.07	*	360	290	0.8	0.8	0.63
5	Cu(63.54)	0.24	0.150	312	250	0.8	0.9	1.15
6	Zr(91.22)	0.40	0.135	260	210			0.21
7	Nb(92.91)	0.50	0.130	262	211			0.22
8	Mo(95.94)	0.32	0.14	277	222	0.21	0.32	0.36
9	Ag(107.87)	0.57	0.125	361	290		1.2	1.81
10	Ta(180.95)	0.20	0.155	280	225		0.22	0.28
11	W(183.8)	0.20	0.155	292	235	0.15	0.25	0.33
12	Pt(195.0)	0.27	0.145	373	300			1.11
13	C(12)	0.81	0.120	374	300	0.09	0.1	0.16
14	Ge(72.5)	0.81	0.120	355	285		0.65	0.71

* Магнитный материал. Δ — толщина катодной вставки (mm), $\langle B_0 \rangle$ — средняя величина магнитного поля на поверхности катода (T), $\langle U_d \rangle$ — средняя величина напряжения разряда (1) (V), $\langle \varepsilon_i \rangle$ средняя энергия распыляющего иона (eV), $S_y(Tm)$ — коэффициент распыления материала мишени собственными ионами (атомами) для среднего значения энергии (атом/ион(атом)), $S_y(Ar)$ — коэффициент распыления материала мишени ионами (атомами) аргона для среднего значения энергии, атом/ион(атом), S_y^{eff} — измеренный коэффициент распыления материала мишени, атом/ион(атом).

ния — M_{cat}^0 , M_{cat}^{end} соответственно. Данные по параметрам распыления для каждого из исследованных материалов приведены в таблице.

Анализ полученных результатов

Измеряемая в эксперименте величина тока разряда являлась суммой ионного тока на катод I_i и тока вторичных электронов $I_e^{\text{sec}} = \gamma_e I_i$, образующихся в результате ионной бомбардировки, с коэффициентом вторичной электронной эмиссии γ_e [2,3,6]

$$I_d = I_i + I_e^{\text{sec}} = I_i (1 + \gamma_e).$$
 (2)

Эффективный (или кажущийся [6]) коэффициент распыления S^{eff} для каждого из элементов вычислялся по зависимости

$$S_{y}^{\text{eff}} = \frac{(M_{\text{cat}}^{0} - M_{\text{cat}}^{\text{end}})}{\tau_{Sp}M_{Tm}} \frac{e(1+\gamma_{e})}{I_{d}},$$
(3)

где e — заряд иона; M_{Tm} — масса одного атома распыленного материала; I_d — измеряемый ток разряда; τ_{Sp} — время распыления; M_{cat}^0 , M_{cat}^{end} — массы катодной вставки до и после распыления соответственно.

Из данных [5,7] следует, что энергия распыляющего иона, осредненная по ионному спектру ($\langle \varepsilon_i \rangle$, eV) составляет ~ [0.7–0.8] от величины разрядного напряжения (U_d), выраженного в энергетических единицах (eV). Для сравнения в таблице приведены значения коэффициентов распыления для исследованных материалов, полученные методом моноэнергетичных пучков, при энергии иона $\langle \varepsilon_i \rangle = 0.8U_d$ (eV) для ионов рабочего газа (аргон) и ионов материала мишени [1]. Средняя величина измеряемого в процессе распыления разрядного напряжения (1) приведена там же для каждого из материалов катодной вставки.

После обработки полученных данных эффективный коэффициент распыления (3) превысил табличное значение $S_y^{\text{Tab}}(\langle \varepsilon_i \rangle)$ [1,2] в среднем на $\delta(S_y) \approx 15-25\%$ для большинства исследованных материалов

$$\delta(S_y) = \frac{|S_y^{\text{eff}} - S_y^{\text{Tab}}(\langle \varepsilon_i \rangle)|}{S_y^{\text{Tab}}(\langle \varepsilon_i \rangle)} \cdot 100\%.$$

Одной из наиболее вероятных причин увеличения эффективного коэффициента распыления является превышение распыляющего потока над ионным током. Это возможно при участии в распылении быстрых нейтралов, что может быть обеспечено при перезарядке иона аргона на собственном газе [7]. Коэффициент распыления для нейтрального атома аргона практически совпадает с коэффициентом распыления иона аргона при той же энергии [2,3,6].

Энергетический спектр $(f_i(\varepsilon))$ бомбардирующих катод ионов [8] представлен на рис. 2, *b*.

Интеграл зависимости $f_i(\varepsilon, 0)$ по энергии дает величину ионного тока на катод (с точностью до нормиро-

Рис. 2. *а* — сечение перезарядки ионов аргона на нейтральном аргоне [7], *b* — сравнение энергетического спектра ионов (*I*) и полного спектра распыляющих частиц (*2*) на катодной мишени.

вочного коэффициента и площади катода)

$$I_{i} \propto \int_{\varepsilon} f_{i}(\varepsilon, 0) d\varepsilon,$$

$$I_{Sp} \propto \int_{\varepsilon} f_{i}(\varepsilon, L_{0}) d\varepsilon,$$
 (4)

где I_{Sp} определяет величину полного потока распыляющих частиц, в предположении, что процесс перезарядки происходит в слое с протяженностью L_0 , локализованном между областью формирования ионного потока [9] и катодом.

Тогда для функций $f_i(\varepsilon)$ и $f_i(\varepsilon, x)$ можно записать

$$\frac{df_i(\varepsilon, x)}{dx} = f_i(\varepsilon, x)\sigma_{\rm red}(\varepsilon)N_0^{\rm Ar},$$
$$f_i(\varepsilon, 0) = f_i(\varepsilon)$$
(5)

И

$$f_i(\varepsilon, L_0) = f_i(\varepsilon) \exp\{L_0/\lambda(\varepsilon)\},$$

$$\lambda(\varepsilon) = \frac{1}{\sigma_{\rm red}(\varepsilon)N_0^{\rm Ar}}.$$
 (6)

Таким образом, на основании равенства коэффициентов распыления для иона и атома аргона зависимость (4) можно представить в виде

$$\delta(S_{y}) = \frac{\left| \int_{\varepsilon} f_{i}(\varepsilon, L_{0})S_{y}(\varepsilon)d\varepsilon - \int_{\varepsilon} f_{i}(\varepsilon)S_{y}(\varepsilon)d\varepsilon \right|}{\int_{\varepsilon} f_{i}(\varepsilon)S_{y}(\varepsilon)d\varepsilon} \cdot 100\%$$
$$= \frac{\left| \langle S_{y} \rangle \int_{\varepsilon} f_{i}(\varepsilon, L_{0})d\varepsilon - \langle S_{y} \rangle \int_{\varepsilon} f_{i}(\varepsilon)d\varepsilon \right|}{\langle S_{y} \rangle \int_{\varepsilon} f_{i}(\varepsilon)d\varepsilon} \cdot 100\%$$

или после сокращений

$$\delta(S_{y}) = \frac{\int\limits_{\varepsilon} f_{i}(\varepsilon) [\exp\{L_{0}/\lambda(\varepsilon)\} - 1] d\varepsilon}{\int\limits_{\varepsilon} f_{i}(\varepsilon) d\varepsilon} \cdot 100\%.$$
(7)

Рассчитанное по последней зависимости значение $\delta(S_y)$ составляет 15–25% при давлении рабочего газа $P_{\text{work}} \approx 5 \cdot 10^{-3}$ Тогг и толщине слоя перезарядки $L_0 \approx [3-5]$ mm, что хорошо согласуется с результатами, полученными в эксперименте.

Заключение и выводы

На магнетронной системе ионного распыления были проведены экспериментальные измерения скоростей и эффективных коэффициентов распыления различных материалов мишени. Сравнение с данными, полученными методом моноэнергетичных пучков [1–3], показало завышение коэффициента распыления для большинства материалов в среднем на 15–25%. Превышение обусловлено эффектом резонансной перезарядки части ионов

аргона, двигающихся на направлению к катоду, без потери энергии с образованием быстрого нейтрала, участвующего в распылении мишени. Таким образом, учет эффекта резонансной перезарядки ионов аргона в области магнетронного разряда позволяет объяснить превышение эффективного коэффициента распыления.

Заниженное значение коэффициента распыления наблюдалось для магнитных материалов (железо, никель), а также для титана. В первом случае это обусловлено изменением параметров разряда по сравнению с немагнитными материалами ввиду изменения конфигурации и величины магнитного поля над катодом. Заниженное значение коэффициента распыления для титана объясняется долей отраженного материала, что связано с параметрами рассеяния атомов титана на аргоне и геометрией (размерами) использованной для проведения эксперимента системы [10].

Список литературы

- [1] *Eckstein W., Garcia-Rosales C.* et al. Sputtering Data. Max-Planck-institut für plasmaphysik, 1993.
- [2] Арифов У.А. Взаимодействие атомных частиц с поверхностью металла. Ташкент, 1961.
- [3] Каминский М. Атомные и ионные столкновения на поверхности металла. М.: Мир, 1967.
- [4] Kelly P.J., Arnell R.D. // J. Vacuum. 2000. Vol. 56. P. 159-172.
- [5] Данилин Б.С. Применение низкотемпературной плазмы для нанесения тонких пленок. М.: Энергоатомиздат, 1989.
- [6] Месси Г, Бархоп Е. Электронные и ионные столкновения. М.: ИЛ, 1958. 604 с. Electronic and ionic impact phenomena / Ed. H.S.W. Massey, Burhop. Oxford. Clarendon press, 1952.
- [7] Райзер Ю.П. Физика газового разряда. М.: Наука, 1987.
- [8] Touzeau M., Prioul M. et. al. // Plasma Phys. Control. Fusion. 2000. Vol. 42. P. B323–B339.
- [9] Elakshar F.F., Hassouba M.A., Garamoon A.A. // Fizika (Zagreb). 2000. Vol. 9. N 4. P. 177–186.
- [10] Macak K., Macak P., Helmersson U. // Computer Physics Communication. 1999. Vol. 120. P. 238–354.