05;07;12

Мишени для исследования динамических и радиационных свойств веществ на лазерных установках

© В.А. Пронин, В.Н. Горнов, А.В. Липин, И.Л. Святов

Российский федеральный ядерный центр

Всероссийский научно-исследовательский институт технической физики им. Е.И. Забабахина, 456670 Снежинск, Челябинская область, Россия e-mail: с 5@five.ch70.chel.su

(Поступило в Редакцию 14 января 2003 г.)

Разработаны процессы и аппаратура, изготовлены мишени прямого и непрямого облучения для исследования ударной сжимаемости на лазерных установках "Сокол-2", "Искра-5". Предложено использование метода ионного осаждения для изгттовления пленок меди и алюминия с плотностью, близкой к плотности твердого тела. Отличие плотности составляет 0.8-1.7%, погрешность измерения плотности 0.4-1.5%. Отработаны процессы и аппаратура для получения пористых металлов: алюминия, меди, никеля и др. Получены образцы пористой меди толщиной $10-50\,\mu$ m, с размером пор $0.1-5.0\,\mu$ m, со средней плотностью вещества $0.4-0.065\,\text{g/cm}^3$ и степенью пористости 20-140. Изготовлены мишени на свободно висящих пленках толщиной $0.1-0.2\,\mu$ m для экспериментов на установках "Прогресс-П", "Элас-ПС" при пикосекундной длительности лазерного импульса.

Введение

В настоящее время все большее применение находят мощные лазерные уставновки для исследования свойств материалов при высоких давлениях и температурах [1,2].

При изготовлении и измерении мишеней для исследования ударной сжимаемости возникают трудности, если эксперимент требует точности лучше 1%, и в настоящее время такие мишени в основном изготавливают с точностью 2% [2].

Огромный интерес представляют эксперименты по исследованию сжимаемости сверхпористых металлов с начальной плотностью $0.1-0.05 \text{ g/cm}^3$ или степенью пористости P = 10-100. Однако технологические трудности получения сверхпористых металлов с $P \le 100$ ограничили условия эксперимента, и эксперименты были проведены на металлах с пористостью $P \le 20$ [3].

Новые возможности для исследования взаимодействия излучения с веществом открываются при воздействии лазерных импульсов фемтосенкундной длительности. Отмечено, что наиболее перспективным типом мишеней являются наноструктурированные пористые материалы, которые имеют среднюю плотность в 2–100 раз ниже плотности твердого тела и мишени на свободно висящих тонких пленках [4].

В связи с этим перед нами встала задача получения сверхпористых металлов для мишеней лазерных установок.

Целью работы является разработка процессов и создание мишеней для исследования динамических и радиационных свойств материалов при высоких давлениях и температурах в соответствии с требованиями экспериментов на лазерных установках.

Мишени для исследования ударной сжимаемости

Исследования ударной сжимаемости веществ на лазерных установках проводятся как при прямом облучении образцов, так и с использованием хольраумов различной конструкции. Мишени прямого облучения представляют собой ступеньки из эталонного и исследуемого материалов толщиной $10-30\,\mu$ m, находящиеся на расстоянии $50-150\,\mu$ m друг от друга [2].

Поскольку такие мишени изготавливаются методами вакуумного напыления, то существуют проблемы получения пленок металлов с плотностью, близкой к плотности твердого тела. При конденсации металлических пленок на подложки начинает расти столбчатая структура решетки, которая может формироваться на протяжении всей толщины пленки в процессе нанесения. В результате столбчатой структуры появляются поры в пленках, что приводит к отличию плотности пленки от плотности материала твердого тела в некоторых случаях (5–10%) [5].

Кроме того, в пленках толщиной $5-30\,\mu$ т возникают напряжения и деформации, что приводит к короблению и отскакиванию от подложки напыленных пленок.

Для получения плотных пленок с более тонкой структурой, обладающих высокой адгезией пленок к подложкам, нами было предложено использование метода ионного осаждения [6]. Разработаны процессы получения пленок алюминия, меди, вольфрама, никеля, титана, циркония толщиной $5-30\,\mu$ m при электронно-лучевом испарении и магнетронном распылении в режиме ионного осаждения.

Рис. 1. Мишень для исследования ударной сжимаемости "Искра-5", "Сокол-2". 1 — бокс-конвертер, диаметр 1000 μ m, золото 40 μ m; 2 — алюминий 3 μ m; 3 — вольфрам; 4 — алюминий 10 μ m; 5 — исследуемый образец, медь 6.8 μ m; 6 — эталонный образец, алюминий 10.7 μ m; 7 — диагностическое отверстие, \emptyset 360 μ m; 8 — отверстие лазерного луча, \emptyset 350 μ m; 9 — конус, \emptyset 500 μ m, золото 30 μ m; 10 — полимерная пленка; 11 — элемент подвески.

При этом нанесение металлов и конденсацию паров на подложке осуществляли при температурах 150–200°С и потенциалах смещения образца 40–200 V, что соответствует наиболее оптимальным режимам напыления [7–9]. В таблице приведены режимы и результаты измерения напыления и вычисления параметров пленок меди и алюминия для вакуумного испарения и магнетронного распыления. Эти режимы были использованы при изготовлении мишеней для экспериментов по ударной сжимаемости на установках "Сокол-2"(ВНИИТФ), "Искра-5"(ВНИИЭФ). Кон-

Журнал технической физики, 2003, том 73, вып. 8

струкция мишени непрямого облучения показана на рис. 1.

Мишени из пористых металлов и на свободно висящих тонких пленках

Отработку процессов получения пористых металлов проводили, исходя из требований к мишеням для экспериментов на лазерных установках: толщина ступеньки мишени $10-30\,\mu$ m; размер пор или ячеек $0.1-5.0\,\mu$ m; степень пористости (отношение плотности обычного и пористого материала) 5-100; размеры и расстояние между ступеньками такие же, как у мишеней для исследования ударной сжимаемости обычных материалов.

Процессы, относящиеся к получению пористых металлов, рассмотрены в ряде работ [10–12]. Нами было разработано и изготовлено устройство для получения пористых металлов, аналогичное описанному в работе [12].

Сущность процесса получения пористых металлов заключается в термическом испарении металлов в инертных газах при давлениях порядка 0.3–3.0 mm Hg. При определенных условиях образующиеся в зоне испарения, преимущественно сферические частицы, конденсируются в виде кластеров на подложке, образуя пористую структуру.

Отработку режимов получения пористых структур металлов проводили при различных температурах испарителя, при скоростях испарения в интервале 1-5 mg/s, давлениях инертного газа в камере 0.3-3 mm Hg. В качестве инертных газов использовали аргон и азот, испаряемые металлы — медь, никель, алюминий. Среднюю плотность полученного металла вычисляли, исходя из измеренной массы и толщины напыленного образца. Массу напыленного материала определяли путем взвешивания на аналитических весах с чувствительностью 0.1 mg. Толщину материала измеряли на оптических микроскопах на специально приготовленных датчиках с ценой деления отсчета шкалы 0.3-0.5 µm. При этом толщина и масса напыленного металла на датчиках выбиралась таким образом, чтобы погрешность определения средней плотности составляла не более 2%. Степень пористости определяли как отношение плотности меди 8.96 g/cm³ к средней плотности пористой меди. Структуру и размер пор напыленного металла оценивали с помощью растрового электронного микроскопа РЭМ-200. На рис. 2 приведены структуры поверхности полученных пористых металлов.

Разработаны мишени на свободных висящих тонких пленках для исследования спектральных коэффициентов поглощения рентгеновского излучения в веществе при высоких плотностях и температурах. Изготовлены свободно висящие мишени из алюминия толщи-

Рис. 2. Структура поверхности образцов пористой меди. ρ — средняя плотность пористой меди, g/cm³; p — степень пористости; P — давление аргона в камере, mm Hg; V — скорость испарения меди, mg/s.

ной 0.2–0.3 µm, на которых были проведены эксперименты на установках "Прогресс-П" и "Элас-ПС" при пикосекундной длительности лазерного импульса.

Заключение

Разработаны процессы и аппаратура, изготовлены мишени прямого и непрямого облучения для исследования ударной сжимаемости на лазерных установках "Сокол-2", "Искра-5".

Предложено использование ионного осаждения для изготовления пленок меди и алюминия с плотностью, близкой к плотности твердого тела. Отличие плотности составляет 0.8–1.7%, погрешность измерения плотности 0.4–1.5%.

Отработаны процессы и аппаратура для получения пористых металлов: алюминия, меди, никеля, золота и др. Получены образцы пористой меди толщиной $10-50\,\mu$ m, размером пор $0.1-5.0\,\mu$ m, со средней плотностью вещества $0.4-0.065\,\text{g/cm}^3$ и степенью пористости 20-140.

Материал	<i>m</i> , mg	$\pm \Delta m, mg$	$\delta m, \%$	$t, \mu m$	$\pm \Delta l, \ \mu { m m}$	$\delta l,\%$	$\delta v, \%$	$ ho, { m g/cm^3}$	$ ho_0, { m g/cm}^3$	$\pm\delta\! ho,\%$	$1 - \frac{\rho}{\rho_0}, \%$	V, μ m/h	T, °C	U, V
Алюминий, вакуумное напыление	13.6	0.08	0.59	16.11	0.07	0.43	0.94	2.68	2.69	1.1	0.4	20	150	100
Алюминий, магнетронное распыление	2.72	0.03	0.4	8.8	0.08	0.9	1.0	2.65		1.7	0.5	2.5	20	60
Медь, вакуумное напыление	17.3	0.04	0.23	6.2	0.1	1.6	1.62	8.82	8.96	1.64	1.5	6	200	150
Медь, магнетронное распыление	14.5	0.1	0.69	26.3	0.08	0.3	0.43	8.84		0.8	0.9	3.8	20	40

Результаты измерений и вычислений параметров напыленных пленок

П р и м е ч а н и е. r, m, l — радиус, масса, толщина напыленной пленки; ρ — плотность напыления материала; ρ_0 — плотность сплошного материала [10]; $\Delta r, \Delta m, \Delta l$ — абсолютные погрешности измерения радиуса, массы, толщины пленки; $\delta r, \delta m, \delta i, \delta v, \delta \rho$ — относительные погрешности определение радиуса, массы, толщины, объема, плотности; $\delta v = \sqrt{2\delta r^2 + \delta l^2}$; $\delta \rho = \sqrt{\delta m^2 + \delta v^2}$; $1 - (\rho/\rho_0)$ — отличие плотности напыленной пленки от плотности сплошного материала; U — потенциал смещения образца; T — температура образца; V — скорость конденсации.

Изготовлены мишени на свободно висящих пленках алюминия толщиной 0.1–0.2 µm для экспериментов на установках "Прогресс-П", "Элас-ПС" при пикосе-кундной длительности лазерного импульса.

Список литературы

- [1] Collins G.W., Budil K.S. at al. // Phys. Rev. Let. 1997. Vol. 78.
 N 3. 20. P. 483–486.
- [2] Ротман С.Д., Эванс А.М., Иглтон Р.Т., Пирсон Л.Б. // Журнал техники ударных нагрузок. 1999. Т. 23. С. 803–810.
- [3] Грязнов В.К., Трунин Р.Ф. и др. // ЖЭТФ. 1998. Т. 114. Вып. 4 (10). С. 1242–1265.
- [4] Гордиенко В.М., Савельева А.Б. // УФН. 1999. Т. 169. № 11. С. 78–80.
- [5] Палатник Л.С., Чернецкий П.Г. Поры в пленках. М.: Энергоиздат, 1982.
- [6] Ивановский Г.Ф., Петров В.И. Ионно-плазменная обработка материалов. М.: Радио и связь, 1986.
- [7] Распыление под действием бомбардировки частицами / Под ред. Р. Бериша. К. Виттмака. Вып. III. М.: Мир, 1998.
- [8] Палатник Л.С. и др. Механизм образования и субструктура конденсированных пленок. М.: Наука, 1972.
- [9] Физические величины. Справочник / Под ред. И.С. Гигорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991.
- [10] Harris L., Jeffris D. at al. // J. Appl. Phys. 1948. V. 10. N 8. P. 791–794.
- [11] Ген М.Я., Зискин М.С., Петров Ю.Н. // ДАН СССР. 1959. Т. 127. № 2. С. 366–368.
- [12] Gragvist C.G., Buhrman R.A. // J. Appl. Phys. 1976. Vol. 47.
 N 5. P. 2200–2219.