01;09 Замкнутые геодезические траектории на части поверхности тора

© С.С. Романов

Национальный научный центр "Харьковский физико-технический институт", 61108 Харьков, Украина

(Поступило в Редакцию 9 января 2003 г.)

На тороидальных многообразиях исследованы геодезические траектории, которые расположены в части многообразия, содержащей большой экватор тора. Используя интегралы геодезических, рассмотрены локальные и глобальные свойства траекторий. Из максимальных геодезических сконструированы замкнутые траектории, которые имеют целые глобальные инварианты.

Введение

Любая информация о траекториях бывает полезной при организации движения. В физике низких энергий электромагнитные взаимодействия играют центаральную роль. Направление и фокусировка частиц с магнитным моментом могут быть осуществлены посредством магнитного поля, поторое успешно применяется в физике атомных пучков, а также предложено для нейтронных пучков [1].

Накопление нейтронов облегчается, если использовать магнитное поле в виде тора. В кольце допустимая энергия нейтронов, которые могут быть захвачены ловушкой, больше по сравнению со сферой. Барьер для влетающих нейтронов отсутствует, если движение нейтронов в ловушке осуществляется по ограниченной части поверхности кольца [2]. Естественные движения при отсутствии внешних сил происходят по геодезическим траекториям. На тороидальном многообразии не каждая максимальная геодезическая определена на всем многообразии. Поэтому поверхность тора в R³ не является геодезически полной. Геодезические траектории характеризуются локальными и глобальными инвариантами. Связь между глобальными инвариантами вдоль геодезических на тороидальных многообразиях установлена в работах [3,4].

В настоящей работе получены уравнения геодезических траекторий, которые располагаются на ограниченных тороидальных многообразиях.

Интеграл Клеро

Система дифференциальных уравнений геодезических [5] имеет два интеграла. Первый интеграл, который называется интегралом Клеро, в тороидальной системе координат η , ϕ , θ [6] имеет вид

$$\sin \alpha = h(\operatorname{ch} \eta_0 - \cos \phi),$$

h — константа вдоль геодезической γ на торе $\eta = \eta_0$.

Угол α между геодезической и меридианом тора имеет ограниченное изменение $\alpha \in [0, \pi/2]$. Если правая часть интеграла Клеро превосходит единицу, то геодезическая располагается на ограниченной части тороидального многообразия. Верхняя грань значений h для некоторых величин угла ϕ приведена в таблице.

arphi	h
$\frac{0}{\arccos(1/\operatorname{ch}\eta_0)}$	${(\ch{\eta_0}-1)^{-1}\over{(\th{\eta_0}{ m sh}{\eta_0})^{-1}}}$
$\pi/2$ π	$(ch \eta_0)^{-1} (ch \eta_0 + 1)^{-1}$

Отметим, что геодезическая траектория может обвивать азимутальную ось тора, пересекая большой и малый экваторы тора, только при $h < (ch \eta_0 + 1)^{-1}$. Уравнение геодезической в этом случае приведено в [4]. Геодезическая траектория является максимальной [7] на тороидальном многообразии, она определена на всем множестве R^3 . При других значениях h геодезические находятся на ограниченном тороидальном многообразии и для замкнутых траекторий могут быть только кусочногладкими.

Когда $h \leq (\th \eta_0 \sh \eta_0)^{-1}$, геодезические расположены в выпуклой части многообразия и пересекают большой экватор тора.

Интеграл Клеро устанавливает локальную связь между характеристиками геодезических.

Аналитические свойства второго интеграла

Здесь мы найдем уравнения максимальных геодезических траекторий, которые определены на ограниченном тороидальном многообразии.

Зависимость между поверхностными координатами геодезических представляется вторым интегралом [4]

$$\theta(\phi) = \int \frac{h(\operatorname{ch} \eta_0 - \cos \phi) d\phi}{\operatorname{sh} \eta_0 \sqrt{1 - h^2 (\operatorname{ch} \eta_0 - \cos \phi)^2}}$$

Если рассматривать только траектории, которые либо плотно покрывают многообразие R^2 , либо являются периодическими, мы должны оставаться в действительном векторном пространстве R. В этом случае геодезические,

описываемые указанными интегралами, являются гладкими траекториями без самопересечений и узлов.

Для дальнейшего анализа второго интеграла геодезических удобно перейти к новой переменной $x = tg(\phi/2)$ и записать его в виде суммы двух слагаемых

$$\theta(x) = 2h \frac{\operatorname{ch} \eta + 1}{\operatorname{sh} \eta} (A_1 + A_2).$$

Здесь и далее индекс 0 у η опущен, однако мы предполагаем, что находимся во множестве R^2 . Первое слагаемое

$$A_1 = \int \frac{\left(1 - h(\operatorname{ch} \eta - 1) + (1 - h(\operatorname{ch} \eta + 1))x^2\right)^{-1/2}}{\sqrt{1 + h(\operatorname{ch} \eta - 1)} + \left(1 + h(\operatorname{ch} \eta + 1)\right)x^2}} \, dx$$

имеет подынтегральную функцию, состоящую из двух сомножителей. Подкоренное выражение первого сомножителя может обращаться в нуль, когда постоянная Клеро превосходит (сh η + 1)⁻¹. Поэтому значения h убывают с ростом ϕ (см. таблицу). Второй сомножитель в нуль не обращается.

Второе слагаемое

$$A_{2} = -\frac{2}{\operatorname{ch} \eta + 1}$$

$$\times \int \frac{\left(1 - h(\operatorname{ch} \eta - 1) + (1 - h(\operatorname{ch} \eta + 1))x^{2}\right)^{-1/2}}{(1 + x^{2})\sqrt{1 + h(\operatorname{ch} \eta - 1)} + (1 + h(\operatorname{ch} \eta + 1))x^{2}} \, dx$$

других особенностей не добавляет.

При $h = (ch \eta - 1)^{-1}$ большой экватор тора является геодезической.

Когда $h = (\operatorname{th} \eta \cdot \operatorname{sh} \eta)^{-1}$, первое слагаемое

$$A_{1} = \frac{(\operatorname{ch} \eta + 1)^{-1/2} \operatorname{sh}^{2} \eta}{\sqrt{2 \operatorname{ch}^{2} \eta + \operatorname{ch} \eta - 1}} \cdot \int \frac{\left(\frac{\operatorname{ch} \eta - 1}{\operatorname{ch} \eta + 1} - x^{2}\right)^{-1/2} dx}{\sqrt{\frac{2 \operatorname{ch}^{2} \eta - \operatorname{ch} \eta - 1}{2 \operatorname{ch}^{2} \eta + \operatorname{ch} \eta - 1} + x^{2}}}$$
$$= \frac{\operatorname{sh} \eta}{2\sqrt{\operatorname{ch} \eta}} \left(K(k) - F(\varphi, k) \right)$$

выражается через эллиптический интеграл K(k) и эллиптическую функцию, $F(\varphi, k)$, квадрат модуля которой равен

$$k^{2} = \frac{2\operatorname{ch}^{2}\eta + \operatorname{ch}\eta - 1}{4(\operatorname{ch}\eta + 1)\operatorname{ch}\eta},$$

а аргумент эллиптической функции есть

$$\varphi = \arccos\left(\sqrt{\frac{\operatorname{ch} \eta + 1}{\operatorname{ch} \eta - 1}} x\right).$$

Второе слагаемое можно записать в виде

$$A_{2} = -\frac{2(\operatorname{ch}\eta + 1)^{-3/2}\operatorname{sh}^{2}\eta}{\sqrt{2\operatorname{ch}^{2}\eta + \operatorname{ch}\eta - 1}} \cdot \int \frac{\left(\frac{\operatorname{ch}\eta - 1}{\operatorname{ch}\eta + 1} - x^{2}\right)^{-1/2}dx}{(1 + x^{2})\sqrt{\frac{2\operatorname{ch}^{2}\eta - \operatorname{ch}\eta - 1}{2\operatorname{ch}^{2}\eta + \operatorname{ch}\eta - 1}} + x^{2}}$$

Оно не имеет особенностей, отличных от особенностей первого слагаемого. Влияние третьего сомножителя на величину A^2 оценим асимптотически. Результат вычисления таков

$$A_2 \approx -\frac{\sqrt{2}(\operatorname{ch} \eta + 1)^{-1} \operatorname{sh}^2 \eta}{\sqrt{(2 \operatorname{ch}^2 \eta + \operatorname{ch} \eta - 1) \operatorname{ch} \eta}}$$
$$\times \operatorname{arctg}\left(\sqrt{\frac{2 \operatorname{ch} \eta}{\operatorname{ch} \eta - 1 - (\operatorname{ch} \eta + 1)x^2}} x\right)$$

Геодезическая траектория при $h = (\operatorname{th} \eta \cdot \operatorname{sh} \eta)^{-1}$ расположена между верхней и нижней параболическими линиями тора

$$\begin{aligned} \theta(\phi) &\cong \frac{\sqrt{\operatorname{ch} \eta}}{\operatorname{sh}^2 \eta} \left((\operatorname{ch} \eta + 1) \right. \\ &\times \left(1 - \frac{2}{\pi} \operatorname{arctg} \sqrt{2 \frac{\operatorname{ch} \eta - \cos \phi}{(\operatorname{ch} \eta + 1)(1 - \cos \phi)}} \right) K(k) \\ &- \frac{2\sqrt{2} \operatorname{sh} \eta}{\sqrt{2 \operatorname{ch}^2 \eta + \operatorname{ch} \eta - 1}} \operatorname{arctg} \sqrt{\frac{(1 - \cos \phi) \operatorname{ch} \eta}{\operatorname{ch} \eta \cos \phi - 1}} \right) \end{aligned}$$

и пересекает большой экватор тора.

Другим примером, когда максимальная геодезическая траектория определена не на всем тороидальном многообразии, есть $h = (ch \eta)^{-1}$. Область, в которой определена траектория, находится между верхней параллелью $(\phi = \pi/2)$ и нижней $(\phi = -\pi/2)$ и содержит большой экватор тора.

Слагаемые второго интеграла

$$A_{1} = \frac{\operatorname{ch} \eta}{\sqrt{2 \operatorname{ch} \eta + 1}} \int \frac{dx}{\sqrt{1 - x^{2}} \sqrt{\frac{2 \operatorname{ch} \eta - 1}{2 \operatorname{ch} \eta + 1} + x^{2}}},$$
$$= -\frac{2(\operatorname{ch} \eta + 1)^{-1} \operatorname{ch} \eta}{4x} \int \frac{dx}{\sqrt{1 - x^{2}} \sqrt{\frac{2 \operatorname{ch} \eta - 1}{2 \operatorname{ch} \eta + 1} + x^{2}}},$$

$$A_2 = -\frac{2(\operatorname{ch}\eta + 1)}{\sqrt{2\operatorname{ch}\eta + 1}} \int \frac{dx}{(1+x^2)\sqrt{1-x^2}} \sqrt{\frac{2\operatorname{ch}\eta - 1}{2\operatorname{ch}\eta + 1} + x^2}$$

имеют особенности в точках $x = \pm 1$.

Максимальная геодезическая траектория

$$\theta(\phi) \cong \frac{1}{\operatorname{sh}\eta} \left(\frac{\operatorname{ch}\eta + 1}{\sqrt{\operatorname{ch}\eta}} \left(1 - \frac{2}{\pi} \operatorname{arctg} \sqrt{\frac{2\cos\phi}{1 - \cos\phi}} \right) K(k_0) - \frac{2\sqrt{2}}{\sqrt{2}\operatorname{ch}\eta - 1} \operatorname{arctg} \sqrt{\frac{1 - \cos\phi}{\cos\phi}} \right)$$

касается верхней параллели со стороны меньших значений ϕ и нижней — со стороны бо́льших величин ϕ . Квадрат модуля эллиптического интеграла в этом случае равен

$$k_0^2 = \frac{2\operatorname{ch}\eta + 1}{4\operatorname{ch}\eta}.$$

Журнал технической физики, 2003, том 73, вып. 7

Траектория не имеет особенностей на параболических линиях тора.

Обе траектории при непрерывном изменении начальных значений поверхностных координат плотно покрывают ограниченную часть тороидального многообразия [8].

Замкнутые геодезические траектории

Из максимальных геодезических составим уравнение замкнутой траектории. Отмеченные ранее кривые являются гладкими, кроме точек касания. По теореме Дарбу [9], необходимым и достаточным условием замкнутости всех геодезических тороидальной метрики является выполнение равенства

$$\int_{i(h)} \frac{h(\operatorname{ch} \eta - \cos \phi) d\phi}{\operatorname{sh} \eta \sqrt{1 - h^2(\operatorname{ch} \eta - \cos \phi)^2}} = \frac{p(i)}{q(i)} \pi$$

при всех i (p и q целые). Всякая геодезическая γ состоит из 2q геодезических отрезков между точками касания с параллелями.

Она огибает ось тора p раз. Пределы интегрирования i(h) определяются нормировкой постоянной Клеро.

При $h = (\operatorname{th} \eta \cdot \operatorname{sh} \eta)^{-1}$ геодезическая содержится между параллелями $i = \pm \arccos(1/\operatorname{ch} \eta)$, которые являются параболическими линиями тора.

Геодезическая замкнута тогда и только тогда, когда

$$\theta\left(\frac{\pi}{2}\right) = \frac{2\sqrt{\operatorname{ch}\eta}}{\operatorname{sh}^2\eta} \left((\operatorname{ch}\eta + 1)\left(1 - \frac{2}{\pi}\operatorname{arctg}\sqrt{\operatorname{ch}\eta}\right) K(k) - \frac{\sqrt{2\pi}\operatorname{sh}\eta}{\sqrt{2\operatorname{ch}^2\eta + \operatorname{ch}\eta - 1}} \right) = \frac{p}{q}\pi$$

для некоторого рационального p/q.

Уравнение геодезических траекторий, когда $h = (\operatorname{th} \eta \cdot \operatorname{sh} \eta)^{-1}$,

$$\varepsilon_{1}\theta(\phi) \cong \frac{\varepsilon\sqrt{\operatorname{ch}\eta}}{\operatorname{sh}^{2}\eta} \left((\operatorname{ch}\eta + 1) \right.$$
$$\times \left(1 - \frac{2}{\pi}\operatorname{arctg}\sqrt{\frac{2(\operatorname{ch}\eta - \cos\phi)}{(\operatorname{ch}\eta + 1)(1 - \cos\phi)}} \right) K(k)$$
$$- \frac{2\sqrt{2}\operatorname{sh}\eta}{\sqrt{2\operatorname{ch}^{2}\eta + \operatorname{ch}\eta - 1}} \operatorname{arctg}\sqrt{\frac{(1 - \cos\phi)\operatorname{ch}\eta}{\operatorname{ch}\eta\cos\phi - 1}} \right)$$

представляет собой кусочно-максимальные геодезические, которые являются непрерывными кривыми. Знак числа $\varepsilon_1 = \pm 1$ определяет ориентацию геодезической.

Знак $\varepsilon = \pm 1$ фиксирован на отрезке геодезической, идущей от $i = \arccos(1/\operatorname{ch} \eta)$ до $i = -\arccos(1/\operatorname{ch} \eta)$, и меняется всякий раз, когда i достигает значения $\arccos(1/\operatorname{ch} \eta)$ или $-\arccos(1/\operatorname{ch} \eta)$.

Рис. 1. Схема тороидальной геодезической, показывающая кривую с p = 1, q = 4, $i = \arccos(1/\operatorname{ch} \eta)$. Для этого тора аспектовое отношение немного превосходит единицу (ch $\eta = 3/2$). Пунктир — невидимая часть геодезической; сплошная кривая — часть геодезической, лежащей на наиболее удаленной от центра части тороидальной поверхности.

Рис. 2. Геодезическая обходит ось тора один раз (p = 1) и составлена из четырех геодезических отрезков (q = 2). Тор довольно толстый (сh $\eta = 3/2$). Параллели, которых касается замкнутая геодезическая, расположены при $i = \pm \pi/2$.

На рис. 1 представлена трехмерная кусочно-максимальная замкнутая траектория между параболическими линиями тора с p = 1, q = 4, масштабный множитель $c = 15 \cdot \sqrt{5}$. Отмечены верхняя и нижняя параллели, которых касается траектория.

Когда $h = (ch \eta)^{-1}$, угол $\theta(\pi/2)$ между двумя последовательными точками касания с крайними параллелями равен

$$hetaigg(rac{\pi}{2}igg)\cong arepsilon_1\,rac{arepsilon\,\eta+1}{arsigma\,arsigma\,arsigma}\,K(k_0)-rac{\sqrt{2}\pi}{\sqrt{2\,\mathrm{ch}\,\eta-1}}igg).$$

Условие замкнутости траектории, совершающей *р* обходов оси тора и состоящей из 2*q* геодезических отрезков, записывается в виде

$$\varepsilon_1 \varepsilon \cdot \theta(\pi/2) = \frac{p}{q} \pi.$$

Замкнутая траектория, состоящая из кусочно-максимальных геодезических,

$$\varepsilon_1 \theta(\phi) \cong \frac{\varepsilon}{\operatorname{sh} \eta} \left(\frac{\operatorname{ch} \eta + 1}{\sqrt{\operatorname{ch} \eta}} \left(1 - \frac{2}{\pi} \operatorname{arctg} \sqrt{\frac{2 \cos \phi}{1 - \cos \phi}} \right) K(k_0) - \frac{2\sqrt{2}}{\sqrt{2 \operatorname{ch} \eta - 1}} \operatorname{arctg} \sqrt{\frac{1 - \cos \phi}{\cos \phi}} \right)$$

расположена между параллелями $\phi = \pm \pi/2$ и содержит большой экватор тора.

Описанную ситуацию иллюстрирует рис. 2.

Результаты

1. Тороидальные многообразия — распространенный объект в физических исследованиях природы.

2. Геодезические траектории на ограниченном тороидальном многообразии открывают новые возможности для пленения частиц.

3. Первый интеграл Клеро позволяет установить границу между ситуациями, когда геодезическая траектория является максимальной, и случаем, когда траектория расположена на ограниченной части поверхности тора.

4. Признаком того, что геодезическая расположена в ограниченной области тороидального многообразия, является наличие особенностей у второго интеграла геодезических.

5. Особенности второго интеграла определяют положение крайних параллелей тора, которых касается геодезическая.

6. Замкнутая траектория имеет глобальные инварианты: *p* — число обходов оси тора до замыкания, состоит из 2*q* геодезических отрезков.

 Замкнутая геодезическая является кусочно-гладкой кривой без узлов и самопересечений.

Список литературы

- [1] Kugler K.-J., Paul W., Trinks U. // Phys. Lett. 1978. Vol. 72B. P. 422–424.
- [2] Пауль В. // УФН. 1990. Т. 160. Вып. 12. С. 109–127.
- [3] Романов С.С. // ДАНУ. 2001. № 9. С. 84-88.
- [4] Romanov S.S. // Scientific Paper of the Institute for Nuclear Research. 2001. Vol. 4 (6). P. 169–193.
- [5] Фиников С.П. Курс дифференциальной геометрии. М.: ГИТТЛ, 1952. 343 с.
- [6] Гобсон Е.В. Теория сферических и эллипсоидальных гармоник. М.: ИЛ, 1952. 476 с.
- [7] Торп Дж. Начальные главы дифференциальной геометрии.
 М.: МИР, 1982. 359 с.
- [8] Jacop Palis, Jr., Welington de Melo. Geometric Theory of Dynamical Systems. New York; Heidelberg; Berlin: Springer Verlag, 1982. 301 p.
- [9] Бессе А. Многообразия с замкнутыми геодезическими. М.: Мир, 1981. 325 с.