04;10;12

Влияние пучково-плазменного взаимодействия на транспортировку ионов в инжекторе циклотрона

© С.В. Григоренко, С.Ю. Удовиченко

Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова, 196641 Санкт-Петербург, Россия

(Поступило в Редакцию 9 сентября 2002 г.)

Исследовано влияние коллективных эффектов, связанных с возбуждением пучком отрицательных ионов поперечных колебаний плазмы, на степень компенсации объемного заряда быстрых ионов. Уточняется условие динамической декомпенсации нестабильного ионного пучка. Получены аналитические выражения для распределения плотности ионов плазмы и стационарного электрического поля в частично компенсированном пучке. С помощью уравнения движения пучка в собственном электрическом и внешнем магнитном полях определено влияние вторичных заряженных частиц на транспортировку отрицательных ионов в инжекторе циклотрона.

Введение

Система внешней инжекции отрицательных ионов Нв ускоритель циклотронного типа предназначена для формирования и транспортировки пучка с током более 1 mA и энергией 20-30 keV на расстояние нескольких метров. Она включает в себя плазменный источник ионов, электростатическую оптику для формирования пучка, канал транспортировки с элементами магнитной фокусирующей системы и инфлектор, необходимый для согласования пучка с ускоряющим каналом циклотрона. Особенностью такого инжектора является натекание газа в канал транспортировки из плазменного источника ионов. Плотность нейтрального газа, поступающего из ионного источника, падает по направлению к циклотрону: за системой электростатической фокусировки и доускорения пучка давление порядка 10^{-4} Torr, в области магнитной фокусирующей системы порядка 10⁻⁵ Torr и вблизи циклотрона 10⁻⁶ Torr. В результате ионизации газа пучком в канале транспортировки накапливаются вторичные заряженные частицы, которые компенсируют объемный заряд пучка. В электростатической формирующей системе пучок остается нескомпенсированным по заряду из-за рассеивания плазмы на электроды, находяшиеся под большим потенциалом.

Схема формирования и транспортировки пучка Н⁻ должна обеспечить на выходе инжектора пучок ионов с эмиттансом, вписывающимся в аксептанс ускорителя циклотронного типа. Наилучшее согласование пучка с ускоряющим каналом будет достигнуто, если пучок на входе в ускоритель будет сходящимся и с оптимальным соотношением большой и малой полуосей эллипса, представляющего пучок в фазовом пространстве.

Транспортировка пучка заряженных частиц осложняется существенным перепадом давления газа вдоль инжектора, наличием стационарного пучково-плазменного поля и поля колебаний плазмы, а также поля объемного заряда отрицательных ионов на участке декомпенсации пучка. Самосогласованное пучково-плазменное электрическое поле [1] может оказывать влияние на динамику прецизионных ионных пучков с малым фазовым объемом и малой угловой расходимостью [2]. Коллективные процессы, связанные с возбуждением пучком спектра собственных колебаний плазмы, приводят к нагреву быстрых ионов [1], а также к динамической декомпенсации объемного заряда пучка [3]. Ранее при транспортировке ионного пучка в инжекторе циклотрона наличие вторичных заряженных частиц не учитывалось [4].

В настоящей работе определяются условия пучково-плазменного взаимодействия и с помощью уравнения движения пучка исследуется влияние вторичных заряженных частиц на транспортировку отрицательных ионов, что позволит скорректировать параметры инжектора и согласовать эмиттанс пучка с аксептансом циклотрона.

Определение условий пучково-плазменного взаимодействия в канале транспортировки

В пространстве свободного дрейфа и в области магнитной оптики при низком давлении газа (*P* ≤ 10⁻⁴ Torr) объемный заряд пучка отрицательных ионов полностью компенсируется положительными ионами плазмы по истечении времени $\tau_c = (n_g \sigma_i v_b)^{-1}$, где n_g — плотность молекул газа, σ_i — сечение ионизации молекулы газа ионом пучка, v_b — продольная скорость пучка. На малом расстоянии свободного дрейфа в пучке отсутствуют большие статические и переменные поля, а также пульсации плотности отрицательных ионов. Однако уже на расстоянии в несколько десятков сантиметров компенсация нарушается — в пучке возникают пульсации отрицательного потенциала, амплитуда которых нарастает до значений, составляющих десятки процентов от потенциала полностью декомпенсированного пучка. Наблюдаемое явление связано с пучковой ион-ионной неустойчивостью [5].

Исследуем влияние низкочастотных колебаний плазмы на величину стационарного электрического поля и плотности положительных ионов в компенсированном пучке и найдем условие динамической декомпенсации пучка. С этой целью проведем уточнение гидродинамической модели пучковой плазмы, предложенной в работе [3].

Уравнение для поперечной скорости ионов плазмы в гидродинамическом приближении, когда тепловым разбросом по скоростям можно пренебречь, в декартовой системе координат имеет следующий вид:

$$u_{ix} \frac{du_{ix}}{dx} = \frac{e}{m_i} E_A(x) - \frac{Su_{ix}}{n_i} - \frac{e^2}{4m_i^2 \omega_{pi}^2} \frac{d\tilde{E}_x^2}{dx}, \qquad (1)$$

где $E_A(x) = -(T_e/en_e)dn_e/dx$ — стационарное амбиполярное поле плазмы; T_e — температура электронов; n_e, n_i — плотность электронов и ионов плазмы; \tilde{E}_x и ω_{pi} — электрическое поле и ленгмюровская частота ионных колебаний соответственно; $S = d(n_i u_{ix})/dx = \sigma_i n_g v_b n_b.$

В указанном интервале давления газа, когда плотность ионов пучка $n_b \approx n_i \gg n_e$, амбиполярное поле мало́ и по величине равно $E_A(x) \approx 2m_i(\sigma_i n_g v_b)^2 x/e$. Это выражение следует из уравнения (1), в котором учтена известная величина потока ионов плазмы $n_i u_i$ при $\tilde{E}_x = 0$. Экспериментальные результаты [6] показывают, что поперечное электрическое поле в компенсированном пучке значительно выше этого расчетного значения. Последний член в правой части (1) обусловлен миллеровской силой, вызванной полем колебаний плазмы. На ионы плазмы в быстро осциллирующем поле колебаний с частотой ω_{pi} помимо стационарного амбиполярного поля действует еще и дополнительное постоянное электрическое поле, квадратично зависящее от амплитуды переменного поля. Максимальная величина этого поля

$$E_M = -\frac{e}{4m_i\omega_{pi}^2}\frac{d\tilde{E}_x^2}{dx} = -\frac{m_i}{2e}\frac{d\omega_{pi}^2/k_\perp^2}{dx} \approx \frac{T_e}{2ex_b},\qquad(2)$$

соизмерима с оценкой значения поля, определяемой из работы [6]. В формуле (2) введены следующие обозначения: $\tilde{E}_x = k_\perp \tilde{\varphi}; \; \tilde{\varphi}_{\max} \approx m_i (\Delta v)^2 / e \approx m_i v_{\phi \perp}^2 / e - m_i v_{\phi \perp}^2 / e$ амплитуда потенциала в насыщенных ионных колебаниях при захвате в них ионов плазмы; $v_{\phi\perp} = \omega_{pi}/k_{\perp}$ фазовая скорость колебаний, которая при низких давлениях газа достигает величины скорости ионного звука $v_s = (T_e/m_i)^{1/2}$ [7]; $\omega_{pi} = (4\pi e^2 n_i/m_b)^{1/2}$; k_{\perp} поперечное волновое число, x_b — поперечный размер пучка; $n_i(x) > n_i(x_b)$. В условиях полной компенсации заряда пучка при низком давлении газа выполняется условие $k_{\perp}x_b \gg 1$ и ионные колебания распространяются вдоль оси х в виде плоских бегущих волн $(\sim \exp(ik_{\perp}x))$. Предполагается, что вплоть до нелинейного ограничения амплитуды потенциала поперечные ионные колебания $(k_{\perp} \gg k_z)$, сносимые вдоль пучка, нарастают экспоненциально с линейным инкрементом (~ $\exp(\int \operatorname{Im} k_z \cdot dz)$, k_z — продольное волновое число). При этом расстояние, на котором происходит насыщение колебаний, определяется выражением $z_c = (1/\text{Im }k_z)\ln(\tilde{\varphi}_{\max}/\tilde{\varphi}_0)$, где $\tilde{\varphi}_0$ — амплитуда начальных возмущений в плазме, пространственный инкремент нарастания $\text{Im }k_z = \omega_{bi}(\omega_{pi}\tau_i)^{1/2}/2v_b$; $\omega_{bi} = (4\pi e^2 n_b/m_b)^{1/2}$; $\tau_i = \sigma_i n_g v_b$ — время жизни иона плазмы.

Интегрируя уравнение движения (1) и уравнение непрерывности ионов плазмы, получим следующую систему уравнений, которая позволяет определить распределение параметров плазмы поперек ионного пучка:

$$n_{i}(x)u_{i}^{2}(x) - n_{i}(x_{b})u_{i}^{2}(x_{b})$$

$$= 2A \frac{v_{s}}{x_{b}} \int_{x_{b}}^{x} n_{i}(x)u_{i}(x)dx + \frac{v_{\phi \perp}^{2}}{4} [n_{i}(x_{b}) - n_{i}(x)], \quad (3)$$

$$n_i(x)u_i(x) = An_b v_s \frac{x}{x_b} + n_1 v_{\phi\perp}, \qquad (4)$$

где $A = \sigma_i n_g v_b x_b / v_s$, а плотность ионов пучка n_b для простоты полагается постоянной.

В уравнении (3) первый член в правой части пропорционален интегралу от величины ЕАпi, при этом отношение $E_A/u_i = 2(m_i/e)Av_s/x_b = \text{const.}$ Связь между E_A и линейной функцией $u_i(x)$ найдена при условии $n_i \approx n_b$ из уравнения $d(n_i u_i^2)_0/dx = (e/m_i)E_A n_i$, которое является нулевым приближением уравнения (1) по полю колебаний E_x . В уравнении (4) поток $n_1 v_{\phi \perp}$ является константой интегрирования и связан с электрическим полем, создаваемым внешним источником — пучком. Под действием поперечных ионных колебаний возрастает поток ионов плазмы на стенку камеры. Экспериментальные измерения [6] показывают, что величина потока ионов плазмы на границе пучка, в три раза превышает его расчетное значение, полученное без учета колебаний плазмы. Полагая $n_i(x_b)u_i(x_b) \approx 3An_bv_s$; $v_{\phi\perp} \approx v_s$, находим, что $n_1 \approx 2An_b$.

Это же значение для n_1 можно получить из решения системы уравнений (3), (4), определив граничные условия для плазмы на поверхности пучка. В области квазинейтральной плазмы за пучком $n_i \approx n_e$, $\tilde{E}_x = 0$, ионный поток $n_i u_i \approx 3An_b v_s = \text{const, скорость ухода ионов на стенку равна <math>v_s$. С помощью уравнения (1) находим следующее граничное условие: $u_i(x_b) \approx v_s$. Полагая $n_i(x = 0) \approx n_b$, $v_{\phi\perp} \approx v_s$, из (3), (4) для величины $\eta_1 = n_1/n_b$ получим следующее уравнение:

$$\eta_1^2 - \left(\frac{5}{4} - 2A\right)\eta_1 + A^2 + \frac{1 - 5A}{4} = 0.$$
 (5)

Анализ решения этого уравнения показывает, что $\eta_1 = 2/3 = 2A$ при A = 1/3. Согласно уравнению (4), если A < 1/3, то $n_i(x_b) < n_b$ и наступает режим декомпенсации ионного пучка. Определяемая из этого условия величина критической плотности газа

$$n_{gc} \approx \frac{v_s}{3\sigma_i v_b x_b} \tag{6}$$

хорошо согласуется с измененным значением в [6].

Рассмотрим процесс динамической декомпенсации ионного пучка, развивающийся из-за пучковой неустойчивости и обнаруженный в работе [5]. Установлено [8], что поперечные ионные колебания плазмы, возбуждаемые пучком отрицательных ионов в разреженном газе, при достаточно большой амплитуде становятся определяющим механизмом радиального ухода положительных ионов, при этом скорость ухода пропорциональна амплитуде колебаний. В результате среднее значение отрицательного потенциала в пучке нарастает по его длине.

Исследуем распределение плотности ионов плазмы и стационарного электрического поля вдоль и поперек цилиндрического пучка отрицательных ионов в условиях декомпенсации объемного заряда. При плотности газа $n_g < n_{gc}$ плотность плазменных электронов резко падает и их дебаевский радиус становится больше радиуса пучка, $d_e > r_b$. В этих условиях пучок возбуждает нулевую радиальную моду $(k_{\perp} \gg k_z)$ ионных колебаний плазмы [7]. Плотность электронов удовлетворяет неравенству $n_e/n_i \gg v_s^2/v_b^2$, которое выполняется в инжекторе циклотрона. В [3] рассмотрена возможность развития продольных ($k_z > k_{\perp}$) ионных колебаний плазмы, когда выполняется обратное неравенство.

Представляя распределение потенциала стоячей волны вдоль радиуса пучка в виде $\tilde{\varphi}(r, z) = \tilde{\varphi}(0, z)J_0(k_{\perp}r)$, где $\tilde{\varphi}(0, z) = \tilde{\varphi}_0 \exp(\int \operatorname{Im} k_z dz)$ — амплитуда потенциала на оси пучка; $k_{\perp} = \alpha_0/r_b$; $\alpha_0 = 2.4$ — первый корень функции Бесселя J_0 , найдем выражение для электрического поля (2)

$$E_M(r,z) = -\frac{\tilde{\varphi}^2(0,z)\alpha_0^2}{16\pi e n_i(r,z)r_b^2} \frac{dJ_1^2(\alpha_0 r/r_b)}{dr}.$$
 (7)

В формуле (7) функция Бесселя первого порядка $J_1(\xi) = -dJ_0(\xi)/d\xi; dJ_1^2/d\xi = 2J_1(J_0-J_1/\xi); \xi = \alpha_0 r/r_b.$ Величина пространственного инкремента нарастания колебаний Im k_z в декомпенсированном пучке при $n_g < n_{gc}$ определяется затуханием за счет конечного времени жизни и затуханием из-за разброса ионов плазмы по тепловым скоростям [8,9]. Минимальное значение из двух выражений, соответствующих этим режимам затухания, определяет скорость развития пучковой неустойчивости

$$\operatorname{Im} k_{z} = \min \begin{cases} & \frac{\omega_{bi}}{2v_{b}} (\omega_{pi}\tau_{i})^{1/2} = \alpha_{0}^{1/2} \frac{\omega_{bi}}{2v_{b}}, \\ & \left(\frac{2}{\pi}\right)^{1/4} \frac{\omega_{bi}}{v_{b}} \frac{\exp(a^{2}/4)}{a^{3/2}}, \end{cases}$$

где $\tau_i = r_b/v_{\phi\perp}, v_{\phi\perp} = \omega_{pi}/k_{\perp}, a = \omega_{pi}r_b/\alpha_0 v_{Ti}, v_{Ti} = (T_i/m_i)^{1/2}, T_i$ — температура ионов плазмы.

Предполагается, что средняя энергия ионов плазмы примерно равна глубине ямы, определяемой отрицательным перепадом потенциала на радиусе пучка.

Амбиполярное поле плазмы E_A в декомпенсированном пучке отсутствует из-за низкой плотности электронов. Подставляя выражение (7) в уравнение Пуассона, получим следующее уравнение, описывающее распредление

ионов плазмы по радиусу пучка $\eta = n_i/n_b$:

$$\eta^2 - \eta + f_1(\xi, z) - \frac{f_2(\xi, z)}{\eta} \frac{d\eta}{d\xi} = 0,$$
 (8)

где $f_1(\xi, z) = 2B(z)(J_0^2 - J_1^2 - 2J_0J_1/\xi + 2J_1^2/\xi^2);$ $f_2(\xi, z) = 2B(z)J_1(J_0 - J_1/\xi); B(z) = [\alpha_0^2\tilde{\varphi}(0, z)/8\varphi_b]^2;$ $\varphi_b = \pi en_b r_b^2$ — перепад потенциала на радиусе полностью декомпенсированного пучка.

При решении уравнения Пуассона предполагалось, что в длинном и узком пучке $dE_M/dr \gg dE_M/dz$. В приближении $d \ln \eta/d\xi \ll |f_1/f_2|$ из (8) находим

$$\eta_0 = \frac{1}{2} \left\{ 1 + [1 - 4f_1]^{1/2} \right\}.$$
(9)

Решение η_0 можно использовать для уточнения величины η , определяя с его помощью производную $d\eta_0/d\xi$ в уравнении (8). Таким образом,

$$\eta \approx \frac{1}{2} \left\{ 1 + \left[1 - 4f_1 + 4f_2 \frac{d \ln \eta_0}{d\xi} \right]^{1/2} \right\}.$$
 (10)

Используемое приближение выполняется во всем объеме пучка, где $4f_1 \leq 1$. Максимальное отличие выражений (9), (10) по величине достигается вблизи оси пучка на границе области применимости ($\eta_0 = 1/2$) и составляет не более 10%. Распределения плотности ионов плазмы по радиусу пучка (10) для различных значений координаты *z* представлены на рис. 1. Видно, что в отрицательных ионах пучок находится в декомпенсированном состоянии с отрицательным перепадом потенциала по радиусу. На периферии пучка наблюдается слабая перекомпенсация объемного заряда. Состояние пучково-плазменной системы при $n_g < n_{gc}$ с наличием положительно и отрицательных ионов обнаружено экспериментально в [10].

Рис. 1. Распределение плотности ионов плазмы по радиусу пучка для различных значений *z*: *I* — 50, *2* — 127, *3* — 132, *4* — 135, *5* — 138 ст.

Транспортировка пучка при полной и частичной компенсации объемного заряда

Параметры пучково-плазменной системы и канала транспортировки выбраны следующими: ток пучка $I_b = 30$ mA, энергия отрицательных ионов $W_b = 30$ keV; радиус квазипараллельного пучка за электродами системы первичного формирования (z = 0) $r_b = 1.5$ cm, нормализованный эмиттанс $\varepsilon = 5 \cdot 10^{-5}$ cm · rad, радиус ионопровода R = 5 cm, перепад потенциала на радиусе заряженного пучка $\varphi_b = 112.5$ V, температура ионов плазмы $T_i = 0.03$ eV.

Если канал траспортировки заполнен газом ксеноном, объемный заряд ионного пучка полностью скомпенсирован, согласно (6), при давлении газа $P \ge 3 \cdot 10^{-6}$ Torr. Для расчета параметры ксеноновой плазмы заимствованы из [6]: $T_e = 3 \,\mathrm{eV}, \, \sigma_i(\chi_e) \approx 8 \cdot 10^{-16} \,\mathrm{cm}^2$. Найденная величина давления газа не сильно отличается от величины давления остаточного газа в самом циклотроне. Однако натекание тяжелых частиц ксенона в вакуумный объем циклотрона не рекомендуется. Поэтому для компенсации объемного заряда ионного пучка используют молекулярный водород, натекающий в инжектор из водородного плазменного источника отрицательных ионов Н-. В этом случае критическое давление газа, при котором начинается декомпенсация пучка, $P_c = 1.2 \cdot 10^{-4}$ Torr $(n_{gc} = 4.3 \cdot 10^{12} \, {\rm cm}^{-3})$. Для расчета использовались следующие величины $T_e = 1 \text{ eV}, \sigma_i(\text{H}_2) = 1.5 \cdot 10^{-16} \text{ cm}^2$.

На величину давления газа в инжекторе накладывается ограничение, поскольку при высокой плотности частиц газа создаются благоприятные условия для пробоев в доускоряющей системе плазменного источника. Кроме этого, с ростом плотности газовой среды в канале транспортировки уменьшается плотность частиц пучка в результате неупругого процесса — конверсии отрицательных ионов в нейтральные атомы и положительные ионы, сечение которых соответственно $\sigma_{-10} = 7.3 \cdot 10^{-16}$ cm², $\sigma_{-11} = 0.43 \cdot 10^{-16}$ cm².

Рис. 2. Распределение плотности частиц газа H₂ вдоль оси инжектора.

Характерное распределение плотности молекулярного водорода вдоль инжектора за системой доускорения пучка представлено на рис. 2. Оценки показывают, что плотность отрицательных ионов

$$n_b(z) = n_b(0) \exp\left[-(\sigma_{-10} + \sigma_{-11}) \int_0^z n_g(z) dz\right],$$

$$n_b(z) = n_b(0) \exp\left[-(\sigma_{-10} + \sigma_{-11}) \int_0^z n_g(z) dz\right] \quad (11)$$

в процессе транспортировки пучка через газовую среду в инжекторе падает всего лишь на 10-11%.

Из рис. 2 видно, что даже на начальном участке транспортировки плотность газа порядка или меньше критической плотности n_{gc} . Однако пучок остается скомпенсированным по заряду на длине $z_c \approx 23$ сm, пока амплитуда ионных колебаний плазмы не достигнет величины $\tilde{\varphi}_{max} \approx m_i v_s^2/e \approx 1$ eV. При этом инкремент нарастания колебаний, определяемый конечным временем жизни ионов H_2^+ в квазинейтральной плазме, имеет величину Im $k_z \approx 0.2$ cm⁻¹; ионная ленгмюровская частота $\omega_{pi} = 9.3 \cdot 10^6 \text{ s}^{-1}$; $\omega_{bi} = 1.3 \cdot 10^7 \text{ s}^{-1}$. Минимальное значение амплитуды потенциала спонтанно возбуждаемых ионных колебаний плазмы полагается $\tilde{\varphi}_0 \approx 10^{-2}$ B. Режим компенсации объемного заряда на начальном участке дрейфа пучка при низком давлении газа наблюдался в [5].

Для данных параметров пучково-плазменной системы в области декомпенсации объемного заряда затухание за счет выноса ионов плазмы является определяющим в величине инкремента нарастания ионных колебаний. Поэтому в расчетах динамики пучка при участке $z > z_c$ необходимо использовать выражение Im $k_z = \alpha_0^{1/2} \omega_{bi}/2v_b \approx 0.77 \omega_{bi}/v_b$, полагая постоянной плотность отрицательных ионов на оси при незначительном изменении радиуса пучка. В аналогичных условиях эксперимента [8] на участке экспоненциального нарастания амплитуды ионных колебаний в декомпенсированном пучке измеренный инкремент оставался постоянным и равным $0.7\omega_{bi}/v_b$.

Из рис. 1 следует, что на длине $z = 140 \,\mathrm{cm}$ степень декомпенсации объемного заряда пучка достигает 50%. При этом амплитуда потенциала в поперечных колебаниях на оси пучка нарастает от 1 V ($z \approx 23 \,\mathrm{cm}$) до величины 80 V, если инкремент неустойчивости положить равным $3.8 \cdot 10^{-2} \,\mathrm{cm}^{-1}$. Такие глубокие пульсации потенциала отмечены в работе [5].

Расчет динамики пучка отрицательных ионов без учета пучково-плазменного взаимодействия в канале свободного дрейфа и в четырех квадрупольных магнитных линзах проводился на основе решения уравнения огибающей пучка в декартовой системе координат

$$\frac{d^2x_b}{dz^2} = \frac{\varepsilon^2}{x_b^3} + \frac{e\varphi_b}{x_bW_b} - \frac{ev_bx_bG}{2W_b},\tag{12}$$

где *G* — градиент магнитного поля квадрупольной линзы.

Первый и второй члены в правой части уравнения (12) определяют дефокусировку ионов из-за конечного эмиттанса пучка ε и кулоновского рассталкивания соответственно. В плоскости yz уравнение огибающей имеет такой же вид, а последний член в правой части берется со знаком плюс.

Численное интегрирование дифференциального уравнения (12) проводилось методом Рунге-Кутта. На рис. 3 представлены огибающие пучка при транспортировке в условиях вакуума и полной компенсации объемного заряда. В первом случае градиенты магнитного поля в четырех квадруполях имели величину: $G_1 = 0.9 \,\mathrm{T}/\mathrm{m}$, $G_2 = -2.2 \,\mathrm{T/m}, \ G_3 = 2.2 \,\mathrm{T/m}, \ G_4 = -0.9 \,\mathrm{T/m}.$ Приведенные оптимальные значения градиентов магнитного поля в линзе не устраняют потери тока пучка на стенке. В условиях полной компенсации объемного заряда при $G_1 = 0.45 \,\mathrm{T/m}, \ G_2 = -1.2 \,\mathrm{T/m}, \ G_3 = 1.2 \,\mathrm{T/m},$ $G_4 = -0.45 \,\mathrm{T/m}$ удается минимизировать радиус и обеспечить требуемую сходимость пучка к оси. Однако режим полной компенсации заряда пучка, как было показано выше, не реализуется при низком давлении газа в инжекторе.

Расчет динамики пучка отрицательных ионов в канале транспортировки в условиях пучково-плазменного взаимодействия проводился методом крупных частиц на основе решения уравнения движения в декартовой системе координат

$$\frac{d^2x}{dz^2} = -\frac{eE_M(x)}{2W_b} - \frac{ev_b xG}{2W_b}.$$
 (13)

На участке полной компенсации заряда пучка ($z \le z_c$) не учитывалось влияние на динамику отрицательных ионов слабого фокусирующего поля (2) $E_M \le 1 \text{ V/cm}$. В процессе расчета динамики ионов на участке декомпенсации пучка на каждом шаге по координате z вычислялась плотность ионов плазмы по фор-

Рис. 3. Огибающие пучка с объемным зарядом (1) и с полной компенсацией заряда (2) в инжекторе с четырьмя квадруполями.

Рис. 4. Траектории ионов пучка в условиях пучково-плазменного взаимодействия (сплошные кривые) и огибающая пучка с полной компенсацией заряда (штриховая кривая, соответствующая кривая 2 на рис. 3).

муле (10). Найденные значения плотности ионов использовались для определения силы Миллера (7): $eE_M = -\alpha_0^3 J_1 (J_0 - J_1/\xi) \cdot \tilde{\varphi}^2(0, z) / 8\varphi_b r_b \eta$. Принятое приближение малого изменения радиуса (плотности) первоначально круглого пучка позволяют при вычислении силы Миллера использовать аксиально-симметричную модель.

На рис. 4 приведены траектории частиц пучка, инжектированных на разных расстояниях от оси системы. Градиенты магнитного поля в квадруполях такие же, как и в случае полной компенсации заряда пучка. Видно, что в приосевой области пучка, где имеется отрицательно заряженный желоб, отрицательные ионы дефокусируются. И наоборот, периферийные частицы под действием самосогласованного пучково-плазменного поля Е_М движутся к оси пучка. В результате плотность частиц вблизи оси пучка убывает, а плотность периферийных частиц растет. Этот эффект, а также значительное изменение поперечных размеров пучка (рис. 4) противоречат исходному приближению. В этих условиях необходимо учитывать изменение плотности частиц пучка при вычислении инкремента неустойчивости и амплитуды потенциала на оси подтвержден экспериментально и не вызывает сомнения. Его нельзя не учитывать при расчете динамики пучка в протяженных системах транспортировки.

Таким образом, в настоящей работе определены условия пучково-плазменного взаимодействия при транспортировке отрицательных ионов в инжекторе циклотрона. Уточнены условия динамической декомпенсации ионного пучка, возбуждающего собственные колебания плазмы. Найдено более точное по сравнению с [3] значение критической плотности газа, ниже которого происходит декомпенсация объемного заряда пучка. Получены распределения плотности ионов плазмы и стационарного электрического поля в частично скомпенсированном пучке в условиях развитой поперечной ион-ионной неустойчивости и интенсивного потока положительных ионов поперек пучка. Проведен расчет динамики пучка на участках полной и частичной компенсации его объемного заряда. Показано, что пучково-плазменное взаимодействие заметно влияет на динамические характеристики пучка на выходе из канала транспортировки. Это влияние необходимо учитывать при согласованной работе инжектора и циклотрона. Для того чтобы минимизировать поперечные размеры пучка и обеспечить требуемую сходимость отрицательных ионов к оси, необходима корректировка магнитного поля в квадруполях и параметров пучково-плазменной системы.

Список литературы

- [1] Удовиченко С.Ю. // ЖТФ. 1995. Вып. 4. С. 31-39.
- [2] Ваганов Н.Г., Сидоров В.П., Удовиченко С.Ю. // ВАНТ. Сер. Термоядерный синтез. Вып. 4. С. 36–39.
- [3] Удовиченко С.Ю. // ЖТФ. 1994. Вып. 8. С. 104–112.
- [4] Афанасьев Ю.В., Ворогушин М.Ф., Григоренко С.В., Строкач А.П. // Тез. докл. Восьмого совещания по применению ускорителей заряженных частиц в промышленности и медицине. Санкт-Петербург, 1995. С. 150.
- [5] Габович М.Д., Джабаров Д.Г., Найда А.П. // Письма в ЖЭТФ. 1979. Т. 29. Вып. 9. С. 536–539.
- [6] Sherman J., Pitcher E., Stevens R., Allison P. // Proc. VI Intern. Symp. on the Production and Neutralization of Negative Ions and Beams. Brookhaven, 1992. P. 686–694.
- [7] Габович М.Д., Симоненко Л.С., Солошенко И.А., Шкорина Н.В. // ЖЭТФ. 1974. Т. 67. Вып. 5. С. 1710–1716.
- [8] Джабаров Д.Г., Найда А.П. // ЖЭТФ. 1980. Т. 78. Вып. 6. С. 2259–2265.
- [9] Солошенко И.А. // Физика плазмы. 1982. Т. 8. Вып. 1. С. 103–110.
- [10] Горецкий В.П., Найда А.П. // Физика плазмы. 1985. Т. 11. Вып. 4. С. 394–399.