Влияние модификации поверхности полупроводника на свойства водородочувствительных диодов Шоттки на арсениде галлия

© С.В. Тихов, Е.Л. Шоболов, С.Б. Левичев, Н.В. Байдусь

Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия e-mail: fdp@phys.unn.ru

(Поступило в Редакцию 22 июля 2002 г.)

Установлено, что модификация поверхности полупроводника в водородочувствительных диодах Шоттки на GaAs путем неполирующего травления или введения в область пространственного заряда полупроводника квантовых ям и квантовых точек может увеличивать чувствительность к водороду в 8–37 раз после травления и на два-три порядка после введения квантовых ям и квантовых точек. Показано, что это увеличение связано с уменьшением высоты барьера Pd/GaAs, с задерживанием диффузии водорода в объем GaAs напряженными квантованными слоями и с ростом рекомбинационной составляющей тока. Наличие рекомбинационной составляющей подтверждается электролюминесценцией от квантовых ям и квантовых точек и от GaAs. Для эффекта очувствления после травления определяющим является химический состав травителя.

Введение

05;06;11;12

Микроэлектронные сенсоры водорода могут быть созданы на основе структур металл-диэлектрик-полупроводник (МДП), транзисторов со структурой МДП и диодов Шоттки (ДШ) с каталитически активным электродом из Pd [1]. Наиболее чувствительными к водороду оказываются МДП диоды или транзисторы на Si: максимальный сдвиг водородочувствительной характеристики в них достигает 0.6 V, а обнаружительный порог $\sim 10^{-5}$ объемных % [2,3]. Однако эти сенсоры требуют сложной технологии изготовления (для получения малой плотности электронных состояний на границе SiO₂/Si), а также относительно сложной регистрации отклика (по емкости или по сдвигу напряжения плоских зон на поверхности полупроводника). Диоды Шоттки с тонкой прослойкой окисла не настолько сложны в изготовлении и имеют широкие возможности регистрации сигнала (по емкости, току, фотоэдс). Однако эти диоды характеризуются значительно меньшей чувствительностью к водороду: максимальный сдвиг напряжения прямой ветви вольт-амперной характеристики ≈ 0.2 V, обнаружительный порог при регистрации по току $\approx 10^{-2}$ %, а при регистрации по фотоэдс $\approx 10^{-4}$ % [4–7].

В настоящей работе ставилась задача нахождения способов повышения чувствительности к водороду диодов Шоттки со структурой Pd/термический окисел/GaAs. Ожидалось увеличение адсорбционной активности водородочувствительной поверхности вследствие получения развитого микрорельефа после неполирующего травления [8] и задерживания диффузии водорода в объем GaAs напряженными квантово-размерными слоями квантовых точек (KT) InAs/GaAs и квантовых ям (KЯ) InGaAs/GaAs, вводимых в область пространственного заряда (ОПЗ) GaAs [9].

Методика эксперимента

Диоды Шоттки создавались на основе эпитаксиальных слоев *n*-GaAs толщиной $\approx 1\,\mu\text{m}$ с концентрацией электронов $n_0 \approx 10^{16} \,\mathrm{cm}^{-3}$, выращенных методом газофазной эпитаксии при атмосферном давлении с использованием металл-органических соединений (метод МОСГЭ) при атмосферном давлении на подложках *n*-GaAs, разориентированных на $+3^{\circ}$ относительно плоскости (100) $(n_0 \approx 10^{16} \,\mathrm{cm}^{-3})$. Перед напылением металла в некоторых диодах поверхность GaAs модифицировалась травлением в неполирующем ферроцианидном травителе состава $(0.8MK_3[Fe(CN)_6] в 0.3M$ растворе КОН): H₂O: глицерин (1:5:8) и в травителе Сиртла CrO₃(30%): HF (1:1). Скорость травления в ферроцианидном травителе для GaAs составляла 2-4 nm/min, а время травления варьировалось в интервале от 10 до 30 min. Скорость травления GaAs в травителе Сиртла была $\approx 4\,\mu m/min$, а время травления выбиралось $\approx 3, 11$ и 30 s. На некоторых образцах в область пространственного заряда полупроводника на расстоянии 15 nm от поверхности через промежуточный спейс-слой (CC) толщиной 10 nm вводились КЯ из $In_xGa_{1-x}As$ (x = 0.2) толщиной 5 nm и KT из InAs (5 монослоев). В разных диодах порядок следования квантовых слоев менялся от КЯ/СС/КТ до КТ/СС/КЯ, отсчитывая от поверхности ЭП. Методика создания КЯ и КТ описана в [10,11]. Перед нанесением Pd образцы нагревались на воздухе до 300°C в течение 30 min для создания термического окисла толщиной $\approx 3-4$ nm. Полупрозрачные для света электроды из Pd толщиной $\approx 20\,\mathrm{nm}$ наносились на окисленную поверхность полупроводника методом термического испарения в вакууме. Использовался стандартный для ДШ на GaAs режим напыления, позволяющий получать наилучшие вольт-амперные характеристики (BAX): предваритель-

Рис. 1. АСМ изображение окисленной поверхности полупроводника и металла. *a* — поверхность GaAs до травления; *b* — поверхность Pd, нанесенного на нетравленый GaAs; *c* — поверхность полупроводника после травления в ферроцианидном травителе; *d* — поверхность полупроводника после травления в травителе Сиртла.

ный прогрев до 200°С и осаждение Pd на подогретую до 100°С подложку [12]. Площадь Pd электрода составляла $\approx 2.35 \cdot 10^{-2}$ сm⁻².

Исследовались ВАХ в темноте и при освещении неразложенным светом при комнатной и оптимальной для газовых сенсоров температуре 100°С [5]. Измерения проводились в потоке воздуха и в потоке воздушно-аргоновой смеси с водородом концентрации 0.6 объемных % по методике, описанной в работе [5]. Измерялись зависимости фоточувствительности малосигнальной фотоэдс S от энергии фотонов hv при комнатной температуре и спектральные кривые электролюминесценции $I_{EL}(hv)$ при импульсном прямом смещении на диоде амплитудой ≈ 1 V и токе ≈ 30 mA и фотолюминесценции $I_{PL}(hv)$ при 77 K.

Микрорельеф поверхности Pd и полупроводника исследовался на атомно-силовом микроскопе ACM Торотеtrix[®] АссигехTM TMX=2000 в неконтактном режиме. Для количественной оценки топологии поверхности рассчитывалась ее средняя шероховатость h и фрактальная размерность Ф. Согласно [13], фрактальная размерность более полно характеризует структуру поверхности и позволяет отличать разные типы поверхностей, используя всего одно число, заключенное в интервале от 2.00 (совершенно гладкая поверхность) до 3.00 (сильно изрезанная, пористая поверхность). Фрактальная размерность определялась методом подсчета клеток [14].

Экспериментальные результаты и обсуждение

1. Морфология поверхности. На рис. 1 показано АСМ изображение окисленной (a) и покрытой Pd (b) поверхности GaAs. На рисунках четко видны ступени роста в виде гребенчатой структуры. Средняя шероховатость окисленной поверхности эпитаксиальной пленки составила ≈ 0.5 nm, а фрактальная размерность ≈ 2.54 . Поверхность Pd практически повторяла микрорельеф окисленной поверхности $(h \approx 0.6$ nm, $\Phi \approx 2.50$). Некоторое уширение гребеней на Pd происходило из-за огибания Pd неровностей в GaAs и соответствовало толщине пленки металла.

На рис. 1 также показана морфология окисленных поверхностей GaAs после травления в ферроцианидном травителе (c) и в травителе Сиртла (d). Из сравнения микрофотографий (рис. 1, a и c, d) видно, что после травления морфология поверхности сильно изменялась: вместо гребней наблюдались холмы размером 160×100 nm и плотностью 10^{10} cm⁻² для поверхности, травленной в ферроцианидном травителе, и плотностью $\sim 10^9$ cm⁻² — в травителе Сиртла. Для первой поверхности $h \approx 8.0$ nm и $\Phi \approx 2.33$, а для второй $h \approx 4.0$ nm и $\Phi \approx 2.31$. Как и без травления, поверхность Рd практически повторяла микрорельеф GaAs. Морфология травленой поверхности GaAs практически не зависела от времени травления.

2. Электрофизические характеристики. Результаты измерений и расчетов, полученных из измерений и анализа ВАХ в темноте и на свету, приведены в таблицах 1–4. В этих таблицах φ_B — высота барьера на контакте Pd/GaAs, полученная в предположении преобладания эмиссии Шоттки путем экстраполяции экспоненциального участка прямой ветви ВАХ к напряжению V = 0; m — фактор идеальности диода, определенный по наклону этой экспоненциальной части [11]; V_{ph} — напряжение холостого хода; j_{ph} — плотность тока короткого замыкания. Плотность поверхностных состояний (ПС), обменивающихся носителями заряда с полупроводником, рассчитывалась из экспериментальных измерений величины m по формуле [12]

$$m = 1 + \frac{d_I}{\varepsilon_I} \cdot \frac{\varepsilon_S}{w} + \frac{q^2 N_{SS} d_I}{\varepsilon_0 \cdot \varepsilon_I},\tag{1}$$

где q — заряд электрона; N_{SS} — плотность ПС в eV⁻¹ · cm⁻¹; d_I — толщина оксида; ε_I , ε_S , ε_0 относительная диэлектрическая проницаемость оксида, полупроводника и абсолютная диэлектрическая проницаемость вакуума соответственно; w — толщина области пространственного заряда в полупроводнике; при расчете N_{SS} принималось ε_I = 9, как для арсената галлия [6], а d_I = 3 nm.

Остальные параметры, приведенные в таблицах, характеризуют степень воздействия водорода концентрацией 0.6% при температуре $\approx 100^{\circ}$ C: $\Delta \varphi_B$ — изменение высоты барьера, ΔV_{ph} — изменение напряжения холостого хода (фотоэдс), Δj — изменение плотности обратного тока через диод при V = -0.3 V на Pd под действием водорода.

Таблица 1. Влияние травления поверхности полупроводника в травителе Сиртла на некоторые характеристики водородочувствительных ДШ на GaAs при $T \approx 27^{\circ}$ C

$\Delta d, \mu m$	φ_B, V	т	N_{SS} , $eV^{-1} \cdot cm^{-1}$	V_{ph}, V	j_{ph} , A/cm ²
0	0.89	1.17	$2.6\cdot 10^{12}$	0.5	$9.5\cdot 10^{-3}$
0.2	0.76	1.36	$5.8 \cdot 10^{12}$	0.37	$9.5 \cdot 10^{-3}$
0.7	0.67	1.44	$7.1 \cdot 10^{12}$	0.29	$6.7 \cdot 10^{-3}$
2.0	0.61	1.83	$1.4\cdot10^{13}$	0.22	$4.5 \cdot 10^{-3}$

2а. Диоды Шоттки на GaAs. Травление в ферроцианидном травителе не изменяло значений φ_B , m, V_{ph} , N_{SS} и характеристик чувствительности к водороду в диодах на GaAs. Следовательно, изменение микрорельефа поверхности GaAs и Pd (ср. рис. 1, a и c) в указанных пределах не приводило к изменению адсорбционной активности поверхностей катализатора (Pd) к водороду.

В табл. 1, 2 приведены данные для таких диодов, поверхность полупроводника в которых была протравлена в травителе Сиртла в течение 3, 11 и 30 s. Видно, что наблюдается значительное изменение как параметров и характеристик диода (φ_B , m, V_{ph} , N_{SS}), так и чувствительности его к водороду. Абсолютная чувствительность к водороду по изменению плотности обратного тока Δj через диод увеличивалась в 8–37 раз в зависимости от толщины стравленного слоя Δd (колонка 5 в табл. 2).

Увеличение чувствительности сопровождалось уменьшением величины барьера. При этом происходило уменьшение барьерной фотоэдс на 0.28 V, согласующееся с уменьшением φ_B (ср. колонки 2 и 5 в табл. 1).

Из табл. 2 следует, что уменьшение высоты барьера под действием водорода $\Delta \varphi_B \approx \Delta V_{ph}$ практически не зависит от его исходной величины. Однако долю увеличения отклика тока под действием водорода, связанную с уменьшением φ_B , можно найти из очевидного в предположении эмиссии Шоттки соотношения

$$\frac{\Delta j_t}{\Delta j_n} = \exp\left\{q \; \frac{(\varphi_{Bn} - \varphi_{Bt}) + (\Delta \varphi_{Bt} - \Delta \varphi_{Bn})}{kT}\right\},\qquad(2)$$

где индексы *t* и *n* относятся к травленой и нетравленой поверхностям GaAs соответственно.

Выражение (2) справедливо, когда Δj много больше разности плотностей токов после и до воздействия водорода, что выполнялось на практике. Данные расчета приведены в колонке 7 (табл. 2). В колонке 6 этой таблицы значение данного отношения получено непосредственным делением величин изменения обратного тока под действием водорода для диодов с травленой и нетравленой поверхностями. Видно, что эти отношения согласуются только по порядку величины. Если показатель m < 1.5, то увеличение чувствительности больше, чем предсказывает уменьшение барьера, а при $m \approx 1.8$ — меньше. В обоих случаях наличие оксида и увеличение плотности ПС, соответствующее увеличению величины *m*, должны приводить к относительному уменьшению эффекта действия водорода, связанного с уменьшением высоты барьера: в первом случае из-за влияния сопротивления окисла [6], а во втором случае из-за увеличения экранировки ПС. В последнем случае $(m \approx 1.8)$, видно, экранировка настолько велика, что реальный эффект увеличения чувствительности меньше, чем предсказываемый уменьшением высоты барьера. Наблюдающееся для этого случая значительное уменьшение тока короткого замыкания свидетельствует об увеличении рекомбинации в диоде.

В связи с тем что увеличение чувствительности к водороду после травления обычно больше, чем пред-

$\Delta d, \ \mu m$	$arphi_B, \mathrm{V}$	$\Delta arphi_B, { m V}$	$\Delta V_{ph}, { m V}$	Δj , A / cm ²	$\Delta j_t / \Delta j_n,$ эксперимент	$\Delta j_t / \Delta j_n,$ теория
0 0.2 0.7 2.0	0.86 0.80 0.75 0.70	0.17 0.16 0.13 0.14	0.16 0.23 0.20 0.15	$\begin{array}{c} 4.9\cdot 10^{-4}\\ 4.0\cdot 10^{-3}\\ 4.5\cdot 10^{-3}\\ 1.8\cdot 10^{-2}\end{array}$	8 9 37	3 3 60

Таблица 2. Влияние травления поверхности полупроводника в травителе Сиртла на некоторые характеристики водородочувствительных ДШ на GaAs при $T \approx 100^{\circ}$ C

Таблица 3. Влияние травления в ферроцианидном травителе на некоторые характеристики водородочувствительных ДШ на GaAs с KH/CC/KT и с KT/CC/KS при $T \approx 27^{\circ}C$

Образец	Δd , nm	$arphi_B, \mathrm{V}$	т	$N_{SS}, \mathrm{eV}^{-1} \cdot \mathrm{cm}^{-1}$	$V_{ph}, { m V}$	j_{ph} , A/cm ²
КЯ/СС/КТ	0	0.64	1.17	$2.8\cdot 10^{12}$	0.20	$8.9\cdot 10^{-3}$
	25	0.74	1.95	$1.6 \cdot 10^{13}$	0.23	$4.2 \cdot 10^{-5}$
	50	0.81	1.4	$6.4 \cdot 10^{12}$	0.48	$8.1 \cdot 10^{-3}$
КТ/СС/КЯ	0	0.67	1.17	$2.8 \cdot 10^{12}$	0.23	$7.6 \cdot 10^{-3}$
	25	0.73	1.83	$1.4 \cdot 10^{13}$	0.21	$3.6\cdot10^{-4}$
GaAs	0	0.86	1.15	$2.3\cdot 10^{12}$	0.5	$9.5 \cdot 10^{-3}$

Таблица 4. Влияние травления в ферроцианидном травителе на характеристики водородочувствительных диодов на GaAs с K S/CC/KT и с KT/CC/KS при $T \approx 100^{\circ}C$

Образец	Δd , nm	$arphi_{B}, \mathrm{V}$	$\Delta \varphi_B, \mathrm{V}$	$\Delta V_{ph}, { m V}$	j_{ph} , A / cm ²	$\Delta j_t / \Delta j_n$, эксперимент	$\Delta j_t / \Delta j_n,$ теория
КЯ/СС/КТ	0	0.69	0.09	0.18	$7.4 \cdot 10^{-2}$		
	25	0.86	0.10	0.12	$1.0\cdot 10^{-4}$	740	292
	50	0.89	0.26	0.26	$1.7 \cdot 10^{-3}$	43	32
КТ/СС/КЯ	0	0.75	0.20	0.19	$9.0 \cdot 10^{-2}$		
	25	0.84	0.12	0.12	$4.8\cdot 10^{-4}$	187	60
GaAs	0	0.86	0.17	0.16	$4.9\cdot 10^{-4}$		

сказывается уменьшением высоты барьера, оно может быть также обусловлено изменением адсорбционной активности поверхностей Pd и оксид/Pd вследствие изменения микрорельефа. Однако последнее маловероятно, так как травленная в травителе Сиртла поверхность GaAs имеет менее выраженный микрорельеф по сравнению с исходной, судя по фрактальному числу и по сравнению с микрорельефом поверхности, полученной после травления в ферроцианидном травителе. Наблюдающийся после травления рост обратного тока и чувствительности к водороду частично может быть связан с увеличением рекомбинационной компоненты тока через диод. О наличии такого тока прямо свидетельствовало наблюдение электролюминесценции в диодах на GaAs, соответствующее межзонной рекомбинации в GaAs (рис. 2, кривая 2). Таким образом, можно заключить, что причиной увеличения чувствительности к водороду после травления является изменение состояния поверхности GaAs из-за химического взаимодействия полупроводника и травителя.

На рис. 3 показаны спектры фоточувствительности малосигнальной фотоэдс диодов на GaAs до и после травления, которые, согласно [15], могут быть использованы для обнаружения ПС на поверхности GaAs, локализованных в нижней половине запрещенной зоны полупроводника или глубоких уровней в GaAs. Из рис. 3 видно, что наблюдалась относительно пологая широкая область фоточувствительности в интервале энергий от 0.9 до 1.35 eV, в которой фоточувствительность увеличивалась с ростом энергии почти по экспоненциальному закону в соответствии с обычно наблюдаемым для реальной поверхности GaAs ростом плотности ПС к потолку валентной зоны [6]. По мере увеличения времени травления фоточувствительность в этой области спектра незначительно увеличивалась. При переходе барьера в подложку (толщина стравленного слоя $\approx 2 \, \mu m$) наблюдалось значительное (в 4 раза) возрастание фоточувствительности в диапазоне 1.28-1.38 eV, что соответствует, по-видимому, увеличению плотности до-

Рис. 2. Спектры электролюминесценции (1, 2) и фотолюминесценции (3). 1 — диод на GaAs с КЯ/СС/КТ, 2 — диод на GaAs, 3 — полупроводник с КЯ и КТ.

Рис. 3. Влияние травителя Сиртла на спектры фоточувствительности ДШ на GaAs. Δd , μ m: 1 - 0, 2 - 0.2, 3 - 0.7, 4 - 2.0.

норных ПС и качественно согласуется с увеличением величины *m*, отмеченным выше.

2b. Диоды Шоттки на GaAs с КЯ и КТ. Роль КЯ и КТ, встраиваемых в ОПЗ GaAs диодов Шоттки, оказалось возможным выявить после стравливания их ферроцианидным травителем, который как отмечено выше, не изменял основных параметров диодов на GaAs и их чувствительности к водороду.

На рис. 4 показаны спектры фоточувствительности для диодов с КТ/СС/КЯ и КЯ/СС/КТ до и после травления ферроцианидным травителем. Из рисунка видно, что с помощью этого травителя можно довольно точно стравливать весьма тонкие слои в приповерхностной области полупроводника. После стравливания слоя толщиной ≈ 25 nm пропадал сигнал от КТ (в области 1.0–1.2 eV), но сохранялся сигнал от КЯ (1.30–1.37 eV) [10] в диодах с КТ/СС/КЯ (кривые *1, 2*), а в диодах с КЯ/СС/КТ исчезал сигнал от КЯ (кривые 3, 4), но сохранялся сигнал от КТ. После стравливания слоя толщиной \approx 50 nm на кривой спектральной чувствительности отсутствовал сигнал как от КЯ, так и от КТ (кривая 5).

В табл. 3,4 содержатся результаты влияния такого травления на характеристики диодов с КЯ и КТ. Видно, что после стравливания КЯ или КТ увеличивались значения величин φ_B (до 0.1 V), V_{ph} , m, N_{SS} и уменьшались значения плотности тока короткого замыкания j_{ph} . Вероятно, что уменьшение j_{ph} при стравливании КЯ или КТ связано с ростом толщины и, следовательно, сопротивления пленки оксида вследствие возможного дополнительного окисления In, который имелся в приповерхностном слое GaAs в оставшихся после стравливания слоях InAs или InGaAs. После стравливания слоя полупроводника толщиной 50 nm, когда КЯ и КТ исчезали, ток короткого замыкания снова увеличивался и соответствовал окисленной поверхности GaAs.

Стравливание КЯ и КТ приводило к уменьшению чувствительности к водороду по Δi в 740 раз после стравливания КЯ и в 187 раз после стравливания КТ. Роль изменения высоты барьера на величину токовой чувствительности оценивалась по формуле (2). При этом рассчитанные отношения $\Delta j_n / \Delta j_t ~ (\Delta j_n$ и $\Delta j_t -$ чувствительности к H₂ до и после травления соответственно) оказывались одного порядка, но всегда меньше, чем экспериментально измеренные отношения (таблица 4, колонки 8 и 7 соответственно). Ранее [16] была показана возможность увеличения чувствительности к водороду в планарной резистивной структуре с Pd контактами на полуизолирующем GaAs после введения КЯ и КТ в ОПЗ полупроводника на 1-2 порядка величины. Поэтому стравливание КЯ и КТ, наоборот, уменьшает чувствительность к водороду более чем на 2 порядка

Рис. 4. Кривые спектральной чувствительности фотоэдс ДШ с КТ/СС/КЯ (кривые *1,2*) и с КЯ/СС/КТ (кривые *3–5*). *1,3* — до травления; *2,4* — после стравливания в ферроцианидном травителе слоя толщиной $\Delta d \approx 25$ nm соответственно; $5 - \Delta d \approx 50$ nm.

величины, что качественно согласуется с результатами работы [16].

Больший, чем ожидалось в связи с изменением высоты барьера, эффект уменьшения чувствительности к H_2 при стравливании КЯ или КТ, вероятно, связан с задержкой водорода на поверхности полупроводника напряженными слоями InGaAs и InAs [9], так как в диодах с неквантованными, ненапряженными слоями $In_{1-x}Ga_x$ As и InAs эффект очувствления был значительно меньше, чем в аналогичных диодах с напряженными слоями.

Присутствие КЯ и КТ в ОПЗ GaAs также может увеличивать рекомбинационную составляющую тока через диод. О существенной роли рекомбинации в ОПЗ через КЯ и КТ свидетельствуют спектры электролюминесценции, представленные на рис. 2. Из рис. 2 (кривая 3) видна мощная люминесценция в области КТ (уровни энергии 0.95, 1.025, 1.11 eV от основного, первого и второго и возбужденных уровней квантования) и в области КЯ ($\approx 1.31 \text{ eV}$). Интересно, что спектры электролюминесценции имели лучшее разрешение особенно в области свечения от КТ, чем спектры фотолюминесценции, полученные от полупроводника, на котором были сделаны диоды (ср. кривые 1 и 3 на рис. 2).

Травление и введение квантовых слоев не изменяли быстродействия диодов как датчиков водорода, однако значительно увеличивали их обнаружительную способность от 10^{-2} до $10^{-3}-10^{-4}$ %. Следует также отметить, что при малых концентрациях H₂ (до 10^{-2} %) величина Δj линейно увеличивалась с ростом концентрации водорода, что также представляет интерес для технической разработки сенсоров.

Заключение

Обнаружено, что модификация поверхности полупроводника в диодах Шоттки с каталитически активным электродом из Pd путем неполирующего травления или введения в область пространственного заряда полупроводника на расстоянии 15 nm от поверхности слоев квантовых ям (InGaAs) и квантовых точек (InAs) может увеличивать чувствительность к водороду в первом случае в $\approx 10 - 40$ раз, а во втором — более чем на 2 порядка величины. Показано, что это увеличение можно связать с уменьшением высоты потенциального барьера Pd/GaAs задержкой диффузии водорода в глубь полупроводника напряженными слоями КЯ и КТ и влиянием рекомбинационной составляющей тока. Установлено, что введение КЯ и КТ в область пространственного заряда приводит к увеличению рекомбинационного тока и к возникновению электролюминесценции, связанной с рекомбинацией в КЯ и КТ, а увеличение обратного тока после травления в диодах на GaAs сопровождалось электролюминесценцией, соответствующей межзонной рекомбинации в GaAs.

Авторы выражают благодарность И.А. Карповичу за полезное обсуждение результатов и Б.Н. Звонкову за изготовление слоев полупроводника.

Работа выполнена при финансовой поддержке РФФИ (грант № 00-02-17598).

Список литературы

- Евдокимов А.В., Муршудли М.Н., Подлепецкий и др. // Зарубежная электронная техника. 1988. № 2 (321). С. 3– 39.
- [2] Petersson L.G., Dunnetum H.M., Fogelbery J. et al. // J. Appl. Phys. 1985. Vol. 58. N 1. P. 404–416.
- [3] Johansson M., Lundstrom I., Ekedahi L.D. // J. Appl. Phys. 1998. Vol. 84. N 1. P. 44–51.
- [4] Гаман В.И., Дробот П.И., Дученко М.О. и др. // Поверхность. 1996. № 11. С. 64–73.
- [5] Тихов С.В., Лесников В.П., Подольский В.В. и др. // ЖТФ. 1995. Т. 65 (11). С. 120–125.
- [6] Гаман В.И., Дученко М.О., Калыгина В.М. // Изв. вузов. Физика. 1988. № 1. С. 69–83.
- [7] Слободчиков С.В., Салихов К.Н. // ФТП. 2000. Т. 34 (3).
 С. 290–296.
- [8] Тихов С.В., Павлов Д.А., Шиляев П.А. и др. // Письма в ЖТФ. 2002. Т. 28 (9). С. 1–5.
- [9] Карпович И.А., Тихов С.В., Шоболов Б.Н. и др. // ФТП. 2002. Т. 36 (5). С. 582–586.
- [10] Карпович И.А., Аншон А.В., Филатов Д.О. // ФТП. 2001. Т. 32 (9). С. 1089–1095.
- [11] Звонков Б.И., Карпович И.А., Байдусь Н.В. и др. // ФТП. 2001. Т. 35 (1). С. 92–97.
- [12] *Родерик Э.К.* Константы металл–полупроводник. М., 1982. 207 с.
- [13] Chesters S. et al. // Proc. of Institute of Environmental Sciencs. 1990. Vol. 316.
- [14] Фредер Е. Фракталы. М.: Мир, 1991. 256 с.
- [15] Karpovich I.A., Baidus N.V., Zvonkov B.N. et al. // Nanotechnology. 2001. N 12. P. 405–429.
- [16] Карпович И.А., Тихов С.В., Шоболов Е.Л. и др. // Письма в ЖТФ. 2002. Т. 28 (8). С. 28–32.