01;06 Солитонная линия задержки на основе полупроводниковой сверхрешетки

© С.В. Крючков, Е.В. Капля

Волжский политехнический институт, филиал Волгоградского государственного технического университета, 404121 Волжский, Волгоградская область, Россия e-mail: kaple_ev@newmail.ru

(Поступило в Редакцию 18 марта 2002 г. В окончательной редакции 31 июля 2002 г.)

Предложен новый тип линии задержки, предназначенный для задержки солитонных импульсов. В качестве нелинейной среды взята полупроводниковая сверхрешетка. Солитоны, распространяющиеся вдоль слоев сверхрешетки, запираются в ячейках ограниченными поперечными слоями неоднородности. Запирание и извлечение солитона производятся с помощью внешнего электрического тока, включенного внутри ячейки.

Введение

В последние годы сформировался новый тип волоконно-оптических линий связи — солитонные линии связи (СЛС) [1,2], в которых в качестве носителей информации используются электромагнитные солитоны. СЛС обладают высокой пропускной способностью благодаря устойчивости солитонных импульсов. Но возможности излучателя, приемника и анализатора солитонных импульсов ограничены по скорости. Для обеспечения их согласованной работы при информационной перегрузке может потребоваться солитонная линия задержки.

Конструкция солитонной линии задержки

Основой представляемого элемента солитонной линии задержки (СЛЗ) является полупроводниковая сверхрешетка (СР). Достаточными нелинейными электрическими свойствами обладают СР с периодом $d \sim 10^{-8}$ m и объемной концентрацией носителей $n \sim 10^{20}$ m⁻³. Для изготовления СЛЗ можно использовать различные полупроводниковые материалы. Основой СЛЗ может, например, служить СР типа GaAs/AlGaAs, энергетический спектр которой с высокой степенью точности описывается в рамках приближения сильной связи.

Пришедший по СЛС солитон усиливается во внешнем высокочастотном электрическом поле, создаваемом в области U₁ боковыми обкладками O₁. Уси-

Рис. 1. Конструкция солитонной линии задержки на основе полупроводниковой сверхрешетки с одной ячейкой.

ление солитона производится до амплитуды, необходимой для преодоления неоднородностей ячейки N_m (m = 1, 2) с $n_m \sim 10^{22}$ m⁻³. Ширина слоев неоднородности $D \sim 10^{-7}$ m. Ширина ячейки r должна превышать ширину солитона $r \sim 10^{-5}$ m. Ячейка снабжена парой обкладок O_2 (рис. 1), к которым подводится электрический ток, управляющий записью и извлечением электромагнитных солитонов. Обкладка по ширине должна охватывать почти всю ширину ячейки. Между каждой обкладкой и соседними поперечными неоднородностями N_1, N_2 необходим небольшой зазор для исключения возможности появления помех вследствие воздействия электрического поля обкладок на соседние неоднородности.

Поперечный (вдоль оси Ox) размер СЛЗ должен составлять $\sim 10^{-6}$ m, т.е. несколько десятков или сотен периодов сверхрешетки d, для того чтобы избежать боковых краевых эффектов.

Распространение электромагнитного солитона в сверхрешетке

Солитон (кинк) представляет собой локализованную уединенную волну [3] с напряженностью электрического поля

$$E_x = -(\hbar\omega_{pl})/ed)[\partial\varphi/\partial\tau], \qquad (1)$$

где $\varphi(.)$ — безразмерная функция вида

$$\varphi(\tau,\xi,u(\tau)) = 4\arctan(\exp(Q\xi(\tau,\xi,u(\tau))/\Gamma(u(\tau)))).$$
(2)

В приведенных формулах используются безразмерные величины: $\xi = z \omega_{pl}/c$ — пространственная переменная; $\tau = t \omega_{pl}$ — временная переменная; $u(\tau) = v(\tau)/c$ — безразмерная скорость солитона; $\xi(\tau, \xi, u(\tau)) = \xi_0 + \xi - u(\tau)\tau$ — фаза солитона; $\Gamma(u(\tau)) = (1 - u(\tau)^2)^{1/2}$ — полуширина солитона.

Напряженность электрического поля солитона, распространяющегося в СР, пропорциональна плазменной частоте $\omega_{pl} = \sqrt{[(4\pi)/\varepsilon_0] \cdot [e^2/m_e]n}$ электронов в минизоне СР.

Распространение электромагнитного солитона в СР с неоднородностями при воздействии стороннего электрического тока может быть описано возмущенным уравнением синус-Гордона [4–6] с сингулярностью

$$\frac{\partial^2 \varphi}{\partial \tau^2} - \frac{\partial^2 \varphi}{\partial \xi^2} + \Theta(\xi) \sin(\varphi)$$
$$= -\alpha \frac{\partial \varphi}{\partial \tau} - \beta(\xi, \tau) + \Theta(\xi) \chi \gamma(\tau, \varphi, \varphi'). \quad (3)$$

Затухание солитона, связанное с минизонной структурой СР [7] учитывается в (3) коэффициентом

$$\alpha = 4\pi \, \frac{c}{\omega_{pl}} \, \eta, \tag{4}$$

где η — константа, характеризующая потери энергии солитона на межминизонных переходах электронов.

Плотность стороннего электрического тока входит в (3) в виде безразмерной функции координаты и времени

$$\beta(\xi,\tau) = \frac{4\pi}{\varepsilon_0} \frac{ed}{\hbar} \frac{1}{\omega_{pl}^2} J_x(z,t), \tag{5}$$

где $J_x(z, t)$ — плотность стороннего электрического тока в A/m^2 .

Поперечные неоднородности можно задать с помощью δ-функции [8]

$$\Theta(\xi) = 1 + \sum_{m} \left(\mu_m \delta(\xi - \xi q_m) \right),$$
$$\mu_m = D_m \frac{\Delta n_m}{n} \frac{\omega_{pl}}{q} \qquad (m = 1; 2).$$
(6)

Параметр μ_m неоднородности N_m , расположенный в плоскости ζq_m , определяется шириной неоднородности D_m , превышением концентрации Δn_m носителей заряда в ней относительно концентрации *n* в СР.

Столкновения электронов с нерегулярностями СР учитываются в (3) интегралом

$$\gamma(\tau, \varphi, \varphi') = \int_{-\infty}^{\tau} \exp\left[-\chi(\tau - \tau')\right] \cdot \left[\sin(\varphi' - \varphi) + \sin(\varphi)\right] d\tau',$$
(7)

где $\chi = (1/\omega_{pl})\nu$, ν — частота столкновений.

Расчет управляющих токов

Запись солитона проводится с помощью короткого записывающего импульса внешнего электрического тока $j_x^S(t,z) < 0$, включенного внутри ячейки во время прохождения через нее солитона.

Извлечение солитона из ячейки осуществляется с помощью импульса тока $j_x^L(t,z) > 0$. Величина электрического тока определяется энергией, необходимой электромагнитному солитону для преодоления границ ячеек.

Основная задача при проектировании СЛЗ состоит в определении моментов прохождения солитоном неоднородностей и необходимой величины управляющих токов. Солитон обладает статической и кинетической энергией

$$W_{ss} = 8; \quad Wks(u(\tau)) = 8(\Gamma(u(\tau))^{-1} - 1).$$
 (8)

Скорость солитона $u(\tau)$ в момент времени τ без учета (7) определяется из энергетического уравнения (9)

$$Wks(u(\tau)) = Wks(u(\tau_{0})) - \sum_{m=1}^{2} [Wq_{m}(\tau, \xi q_{m}, u(\tau))] - Wp(\tau, \xi, u(\tau)), \quad (9)$$

где $Wq_m(\tau, \xi q_m, u(\tau))$ — энергия, переданная солитоном *m*-й неоднородности к моменту времени τ ; $Wp(\tau, \xi, u(\tau))$ — потери энергии солитона на межминизонных переходах

$$Wq_m(\tau, \xi q_m, u(\tau)) = \int_{\tau_0}^{\tau} \mu_m \left[1 - \cos(\varphi(\tau', \xi q_m, u(\tau'))) \right] d\tau',$$
(10)

$$Wp(\tau,\xi,u(\tau)) = \alpha \int_{\tau_0}^{\tau} \int_{\xi_0}^{\xi} \left[\frac{\partial \varphi(\tau',\xi',u(\tau'))}{\partial \tau'} \right]^2 d\xi' d\tau'.$$
(11)

Момент τ_k прохождения солитоном k-й неоднородности удовлетворяет уравнению

$$\int_{\tau_0}^{\tau_k} u(\tau') d\tau' = \xi q_k.$$
(12)

Запись солитона производится путем закрепления солитона между неоднородностями с помощью импульса внешнего тока $j_x^S(t, z) < 0$. При запирании солитона в ячейку электрический ток должен включаться локально в области $\xi q_1 < \xi < \xi q_2$. На моменты включения и выключения тока наложим условие $\tau_1 \leq \tau j_1 < \tau j_2 \leq \tau_2$.

Солитон преодолевает неоднородность N_m при отсутствии внешних воздействий, если на удалении от неоднородности обладает энергией и скоростью,

$$Wks > 2\mu_m, \quad u > u_0 = \frac{\sqrt{\mu_m(\mu_m + 8)}}{\mu_m + 4}.$$
 (13)

В противном случае солитон отражается от неоднородности [9], восстанавливая свою энергию.

Для солитона, прошедшего первую неоднородность, условие отражения от второй выражается в виде неравенства

$$Wks(\tau j_1) + Wq_1(\tau_1, \xi q_1, u(\tau_1)) \le Wj(\tau j_2) + 2\mu_2 + \Delta Wp_{1,2}.$$
(14)

Энергия $W_j(\tau j_2)$, переданная электрическим током солитону за промежуток времени (τj_1 ; τj_2), определяется следующим интегралом:

$$Wj(\tau j_2) = \int_{\tau j_1 \xi q_1}^{\tau j_2 \xi q_2} \left[\beta^S(\tau', \xi') \varphi(\tau', \xi', u(\tau')) \right] d\xi' d\tau', \quad (15)$$

где

$$\beta^{S}(\tau',\xi') = (4\pi/\varepsilon_0)(ed/\hbar) \cdot (1/\omega_{pl}^2) j_x^{S}(t',z').$$

Распространяясь внутри ячейки, солитон теряет на межминизонных переходах за промежуток времени $(\tau_1; \tau_{j_2})$ энергию

$$\Delta W p_{1,2} = W p(\tau j_2, \xi(\tau j_2)) - W p(\tau_1, \xi q_1).$$
(16)

Приравняв левую и правую части (14), получаем интегральное уравнение, решение которого с учетом (15) и (16) дает минимально необходимую для записи солитона величину тока $j_x^S(t, z)$.

Солитон, отраженный от неоднородности N_2 , остается запертым в ячейке СЛЗ. Записанный электромагнитный солитон совершает колебательные движения между стенками ячейки, обмениваясь энергией с ними. В процессе хранения колеблющегося солитона в ячейке теряется энергия вида (11).

Энергия, необходимая для извлечения солитона из ячейки, передается солитону локальным импульсом тока $j_x^L(t, z) > 0$. Расчет величины извлекающего тока осуществляется подобно расчету $j_x^S(t, z)$ и сводится к интегральному уравнению.

Взаимодействие солитонов

В результате взаимодействия солитонов (кинков) их амплитуды и скорости u_1 и u_2 не изменяются, но появляется сдвиг фаз [9,10]

$$\Delta \xi_1 = 2\Gamma_1 \ln[P], \quad \Delta \xi_2 = -2\Gamma_2 \ln[P],$$

где

$$P = \frac{\sqrt{(1+u_1)\cdot(1-u_2)} + \sqrt{(1+u_2)\cdot(1-u_1)}}{\sqrt{(1+u_1)\cdot(1-u_2)} - \sqrt{(1+u_2)\cdot(1-u_1)}}.$$
 (17)

Полный фазовый сдвиг солитона при рассеянии на совокупности других солитонов равен сумме сдвигов, порожденных его столкновениями с каждым из остальных солитонов по отдельности. Этот факт позволяет использовать СЛС одновременно в двух направлениях и повысить ее пропускную способность [1,2]. Устойчивость солитонов при взаимодействии дает возможность задерживать последовательность солитонных импульсов и извлекать запертые солитоны в произвольном порядке. Для этого СЛЗ должна содержать несколько ячеек. Солитоны, проходя сквозь соседние ячейки, не повреждают запертые в них солитоны.

Результаты расчетов

Возможность запирания и извлечения солитонов была проверена с помощью моделей СЛЗ с одной и четырьмя ячейками. Устойчивость солитона не зависит от количества ячеек, так как он локализован в пределах одной ячейки. Моделирование распространения солитонов в СР с неоднородностями проведено на основе решения методом разностных схем возмущенного уравнения синус-Гордона вида (3) с сингулярностями при соответствующих начальных и граничных условиях.

Рассмотрим действие СЛЗ с одной ячейкой, выполненной на основе СР с параметрами: $d = 10^{-8}$ m, $\Delta = 10^{-2}$ eV, $n = 10^{20}$ m⁻³, $\eta = 10^{-2}$ m⁻¹, $\alpha \approx 1.887 \cdot 10^{-5}$, $\omega_{pl} \approx 1.998 \cdot 10^{12}$ Hz. Пусть ячейка образована неоднородностями $D = 10^{-7}$ m, $\Delta n_m/n = 10^2$, $\mu_m = 0.067$, $\Omega_{pl}^m \approx 1.998 \cdot 10^{13}$ Hz, расположенными в плоскостях $zq_1 = 7.2 \cdot 10^{-3}$ m, $zq_2 = 9.6 \cdot 10^{-3}$ m. Размер ячейки $r = 2.4 \cdot 10^{-3}$ m. Параметры солитона (кинка) в начальный момент времени: $v_0 = 10^8$ m/s, $u \approx 0.333$, $E_0 = 9.303 \cdot 10^4$ V/m, $\Gamma = 0.943$, $W \approx 0.485$, $\xi_0 = -13.318$.

Запирание солитона в ячейке проведем с помощью трапециевидного импульса стороннего тока. Пусть крутизна включения $a = \pi/50$. Моменты времени прохождения солитоном неоднородностей, ограничивающие промежуток времени включения записывающего электрического тока $j_x^S(z,t)$, определяются из (12): $t_1 = 4.2 \cdot 10^{-11}$ s, $t_2 = 6.8 \cdot 10^{-11}$ s. Минимальная величина тока, необходимая для запирания в ячейке солитона с указанной амплитудой, определяется из (14): $j_x^S \approx -0.441 \cdot 10^3$ A/m², $\beta \approx -2.382 \cdot 10^{-3}$.

Запертый солитон совершает в ячейке колебательные движения. Период колебаний солитона в ячейке с указанными параметрами равен $T \approx 0.1$ пs. Предельно допустимая продолжительность хранения солитона в ячейке определяется параметром η пролупроводниковых материалов, из которых состоит CP, и требуемым качеством записи. Для $\eta = 0.01$ логарифмический декремент затухания составляет $\delta \approx 1.121 \cdot 10^{-3}$.

Задержка солитона квантована по времени. Квантование задержки примерно соответствует периоду колебаний солитона в ячейке.

Рис. 2. Изменение напряженности электрического поля главного максимума солитона при запирании и извлечении.

 $15 \\ 10 \\ 10 \\ 5 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 2, 10^{-3} m$

Рис. 3. Пространственно-временна́я карта распределения экстремальных точек напряженности электрического поля при задержке солитона на один период.

В процессе затухания и под действием электрического тока изменяется амплитуда напряженности электрического поля солитона. График изменения напряженности электического поля главного максимума солитона со временем при запирании на один период и извлечении показан на рис. 2.

Для извлечения солитона из ячейки ему необходимо сообщить дополнительную энергию. В случае длительной задержки необходимо учитывать потери энергии (11) солитона в ячейке.

В случае, показанном на рис. 2, усиление солитона, совершившего один период колебаний, проводилось сторонним током $j_x^L \approx 1.5 \cdot 10^3 \text{ A/m}^2$, подводимым в ячейку в процессе движения солитона вдоль оси Oz.

Соответствующая пространственно-временная карта распределения экстремальных точек напряженности электрического поля при запирании и извлечении солитона показана на рис. 3.

Горизонтальная ось соответствует координате *z*, вертикальная — времени *t*. Положение неоднородностей, ограничивающих ячейку, отмечено толстыми вертикальными линиями. Движение солитонного импульса соответствует яркой кривой (рис. 3).

Заключение

Предлагаемая модель позволяет создать СЛС с квантованной по времени СЛЗ. Квантованность задержки определяется продольным размером ячейки.

Для задержки последовательности солитонных импульсов следует использовать СЛЗ с несколькими ячейками, снабженными управляющими обкладками. Возможно извлечение солитонов из ячеек в порядке, который отличается от порядка их прибытия в СЛЗ. Порядок извлечения целесообразно устанавливать в соответствии с приоритетом пришедшей информации. СЛЗ (рис. 1) и управляющие элементы могут быть выращены с использованием метода молекулярно-лучевой эпитаксии [10,11] на основе сверхрешетки типа GaAs-Al_xGa_{1-x}As [12,13]. Неоднородности в сверхрешетке обычно создают в процессе лучевой эпитаксии путем введения отдельным пучком примесей или изменением концентрации используемых материалов.

Список литературы

- Волоконно-оптическая техника: история, достижения, перспективы / Под ред. С.А. Дмитриева, Н.Н. Слепова. М.: Connect, 2000. 376 с.
- [2] Слепов Н.Н. // Сети. 1999. № 3.
- [3] Эпштейн Э.М. // ФТТ. 1977. Т. 19. Вып. 11. С. 3456-3458.
- [4] *Габов С.А.* Введение в теорию нелинейных волн. М.: МГУ, 1988. 216 с.
- [5] Авловиц М., Сигур Х. Солитоны и метод обратной задачи. Пер. с англ. М.: Мир, 1987. 479 с.
- [6] Лэм Дж. Введение в теорию солитонов. Пер. с англ. М.: Мир, 1983. 294 с.
- [7] Эпштейн Э.М. // Изв. вузов СССР. Радиофизика. 1981.
 Т. 24. № 10. С. 1293–1294.
- [8] Казача Г.С., Сердюкова С.И. // ЖВМиМФ. 1993. Т. 33. № 3. С. 417-427.
- [9] *Крючков С.В., Попов К.А. //* ФТП. 1996. Т. 30. Вып. 12. С. 2168–2173.
- [10] Молекулярно-лучевая эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога. Пер. с англ. М., 1989.
- [11] Голубев Л.В., Леонов Е.И. // Физика. 1997. № 8. С. 24–56.
- [12] Герловин И.Я., Долгих Ю.К., Елисеев С.А. и др. // ФТП. 1999. Т. 33. Вып. 3. С. 302–305.
- [13] Галиев Г.Б., Каминский В.Э., Мокеров В.Г. и др. // ФТП. Т. 34. Вып. 7. С. 769–773.

