01;05 Влияние кулоновской блокады куперовских пар на динамические свойства малых джозефсоновских переходов

© И.Н. Аскерзаде

Институт физики АН Азербайджана, 370143 Баку, Азербайджан Physics Department, Ankara University, 06100 Tandogan, Ankara, Turkey e-mail: solstphs@lan.ab.az

(Поступило в Редакцию 29 ноября 2001 г. В окончательной редакции 13 августа 2002 г.)

В рамках резистивной модели исследуется динамика туннелирования куперовской пары в режиме кулоновской блокады в малых джозефсоновских переходах. Получена зависимость времени задержки и термических флуктуаций края кулоновской блокады от скорости нарастания напряжения на переходе.

Введение

В последнее время интенсивно исследуются квантовые эффекты в малых джозефсоновских переходах [1,2]. Одним из важных проявлений квантовых флуктуаций является макроскопическое квантовое туннелирование эффективной частицы, описывающей поведение перехода через энергетический барьер в фазовых координатах. Как известно, динамика переключения обычного джозефсоновского перехода аналогична движению частицы в потенциале вида "стиральной доски" [3]

$$U(\phi) = -E_J(\cos\phi + \varepsilon\phi), \qquad (1)$$

где ε — ток смешения в единицах критического тока перехода I_c , ϕ — джозефсоновская фаза, $E_J = \hbar I_c/2e$ — джозефсоновская энергия.

Время жизни метастабильного состояния τ_L джозефсоновского перехода с током определяется следующей формулой [3]:

$$\tau_L = \frac{2\pi}{\omega_A} \, \exp\left(\frac{U_0}{kT}\right),\tag{2}$$

где высота потенциального барьера дается выражением $U_0 = E_J \{-\pi \varepsilon + 2 (\varepsilon \sin \varepsilon + (1 - \varepsilon^2)^{1/2})\},$ а частота попыток ω_A зависит от параметра емкости Мак-Камбера

$$\beta = \frac{2e}{\hbar} I_c R_N^2 C.$$

Согласно формуле (2), при малых температурах роль квантовых флуктуаций существенно возрастает. Высота энергетического барьера U_0 уменьшается до величины, сравнимой с энергией плазменных колебаний $\hbar \omega_p$, и естественно говорить о макроскопическом туннелировании "сквозь" этот барьер.

Другим проявлением эффекта возрастания квантовых флуктуаций при низких температурах является эффект кулоновской блокады в малых джозефсоновских переходах [4,5]. Условием проявления таких эффектов в малых джозефсоновских переходах является [3]

$$\min|\hbar\omega_p, \hbar\omega_c| \gg E_J, \tag{3}$$

где введены обозначения: плазменная частота $\omega_p = (2eI_c/\hbar C)^{1/2}$, характерная частота $\omega_c = 2eI_c R_N/\hbar$

джозефсоновского перехода с критическим током I_c и нормальным сопротивлением R_N и емкостью C.

В терминах сопротивления условие (3) переписывается как

$$R_N > R_Q; \quad R_Q = \hbar/4e^2, \tag{4}$$

где константа $R_Q = 1 \,\mathrm{K}\Omega$ — квантовая единица сопротивления.

Анализ вида вольт-амперной характеристики джозефсоновских переходов малых размеров показывает, что при напряжениях меньше, чем край кулоновской блокады $V_0 = e/C$, т.е. $V < V_0$, происходит зарядка конденсатора, образуемого электродами перехода (режим блокады) [3]. При этом среднее значение сверхтока равно нулю. Когда заряд в обкладках приближается к нечетному числу заряда электрона, сверхпроводящий ток становится отличным от нуля и происходит передача куперовской пары от одного электрода к другому. При воздействии термических флуктуаций такая передача куперовской пары происходит несколько раньше, т.е. не при точном равенстве V(t) = e/C. Это означает, что происходит термическое "размывание" края кулоновской блокады. Таким образом, представляет интерес рассмотрение влияния эффектов кулоновской блокады на динамику туннелирования куперовской пары, а также воздействие термических флуктуаций на край кулоновской блокады.

Основные уравнения

Для переходов, параметры которых удовлетворяют условию (4), при небольших напряжениях $eV < \Delta$, где Δ — энергетическая щель сверхпроводника, можно написать гамильтониан

$$H = \hat{Q}^2 / 2C + E_c (1 - \cos \phi) - \frac{\hbar}{2e} I(t)\phi, \qquad (5)$$

где I(t) — протекающий через переход внешний ток.

Общая теория эффекта Джозефсона [3] справедлива при

$$E_Q \ll E_J, \quad E_Q = Q^2/2C. \tag{6}$$

При этом электрический заряд Q и джозефсоновскую фазу ϕ можно рассматривать как классические переменные. В противоположном пределе такой подход уже неверен, и Q и ϕ нужно считать некоммутирующими операторами [6], причем в ϕ -представлении,

$$Q = -2ei(\partial/\partial\phi). \tag{7}$$

Далее в [7] было показано, что на свойства малого перехода влияет импеданс окружения (подводов) к переходу. Только в высокоомном окружении $R_s \gg R_O$ кулоновская блокада не подавляется флуктуациями заряда в подводах. В работе [8] развита полуклассическая теория джозефсоновского перехода с малой емкостью и с малой квазичастичной проводимостью в режиме малого тока I(t). В этой теории 2*е* периодичность связана с блоховскими зонами джозефсоновского перехода. Высота нижней зоны зависит от отношения джозефсоновской энергии $E_J = \hbar I_c/2e$ к электростатической энергии $E_O = e^2/2C$, т.е. $\kappa = E_J/E_O$. Здесь будем считать, что значение параметра $\kappa \ll 1$, что является необходимым для экспериментального наблюдения зарядовых эффектов. В однозонном приближении можем написать уравнение для квазизаряда как [8]

$$\frac{dq}{dt} = I(t) - \frac{1}{R} \frac{dE(q)}{dq}.$$
(8)

При высокоомном окружении уравнение для нормированного заряда y = q/e (8) переписывается как

$$\dot{y} + v(y) = v_e, \tag{9}$$

где точка над у означает производную по времени в единицах R_nC , где R_N — сопротивление джозефсоновского перехода, E(q) — закон дисперсии для нижней зоны, V(q) = dE/dq.

Мы также вводим следующие безразмерные параметры: $v(q) = V(q)/V_0$ — напряжение на переходе, v_e — внешнее напряжение в единицах $V_0 = e/C$. В соответствии с [8] для v(q) справедлива следующая формула:

$$\nu(q) = \frac{(y - y^3)}{((y^2 - 1) + (\kappa/2)^2)^{0.5}}.$$
 (10)

Время задержки туннелирования куперовской пары при линейном нарастании напряжения

Малые джозефсоновские переходы проявляют нелинейную нормированную дифференциальную емкость с величиной $c_d^{-1} = d\nu(y)/dy$. Существенно, что эта емкость может принимать отрицательные значения. Это обусловливает сильно отличие свойств малых джозефсоновских переходов от свойств других нелинейных реактивных элементов, в том числе и от обычного джозефсоновского перехода. Как следует из уравнения (8), динамика малого джозефсоновского перехода подобна поведению частицы в потенциале вида $U(q) = E(q) - v_e q$, где E(q) — периодический закон дисперсии нижней зоны.

Как и в случае обычного джозефсоновского перехода [3,9,10], такая нелинейная емкость приводит к дополнительной задержке туннелирования куперовских пар. Однако существует некоторый фактор для времени задержки, зависящий от формы импульса напряжения v_e . Используя (8) и аппроксимируя вблизи y = 1 $v(y) \approx 2(1 - y^2)/\kappa$, имеем следующее решение для уравнения (9):

$$y = \left(v_e - \operatorname{th} \frac{2}{\kappa} \tau + \frac{\kappa v_e}{2} \operatorname{th} \frac{2}{\kappa} \tau\right) / \left(1 - v_e \operatorname{th} \frac{2}{\kappa} \tau\right). \quad (11)$$

Для времени задержки получаем

$$\tau_d \approx \kappa.$$
 (12)

При выводе последней формулы полагалось, что значение v_e скачком становится больше края кулоновской блокады e/C. Эта формула находится в хорошем согласии с более сложной формулой, полученной точным решением уравнения с нелинейной зависимостью v(y) (10).

Пусть скорость нарастания внешнего напряжения $\alpha = dv_e/d_{\tau}$ является такой, что туннелирование пары происходит вблизи y = 1 при пренебрежимо малых флуктуациях. После введения новых переменных

$$z=\frac{4}{\kappa}\,\tau-\frac{8}{\alpha\kappa^2},$$

 $\alpha_z = \alpha \kappa^2 / 16$ уравнение (9) принимает вид

$$\frac{dy}{dz} - \frac{2}{\kappa}y^2 = \alpha_z z^2 \tag{13}$$

со следующим асимптотическим решением:

$$y = C_1 \alpha_z^{2/3} (z - z_0)$$
 при $y < 1,$ (14a)

$$y = rac{2^{1/3}}{(C_3 a_z^{-1/3} - z)^{1/3}}$$
 при $y \to \infty,$ (14b)

где $z_0 = C_2 \alpha_z^{-1/3}$ — момент достижения значения y = 1; C_1, C_2, C_3 — постоянные порядка 1; τ_d — время, за которое значение квазизаряда становится бесконечным и которое принимается за время задержки при линейном нарастании напряжения.

Решение (14а) соответствует зарядке нелинейного конденсатора при линейном нарастании напряжения (режим блокады). При этом движение происходит по внутреннему склону барьера $U(q) = E(q) - v_e q$. Движение после достижения края кулоновской блокады дается формулой (14b), что соответствует движению по внешнему склону барьера. Сшивая асимптотические выражения на границе их применимости для времени за-держки при линейном нарастании напряжения, получим

$$\tau_d = \frac{2}{\alpha\kappa} + \frac{C_3}{2^{19/3}} \left(\frac{\kappa}{\alpha}\right)^{1/3}.$$
 (15)

Термические флуктуации края кулоновской блокады

При малых скоростях нарастания напряжения энергетический барьер $U(q) = E(q) - v_e q$ постепенно уменьшается так, что флуктуации могут инициировать туннелирование куперовской пары. Справедливо следующее выражение для вероятности туннелирования в интервале t (см., например, [3]):

$$w(t) = 1 - \exp\left(-\int_{0}^{t} \Gamma(q(t))dt\right), \qquad (16)$$

где скорость туннелирования может быть выражена как гауссовский пик с центром в точке q = e (y = 1)

$$\Gamma = \frac{I_c}{e} \frac{\pi \kappa}{2^{7/2} (\pi \gamma)^{1/2}} \exp\left(-\frac{(y-1)^2}{\gamma}\right), \qquad (17)$$

где I_c — критический ток джозефсоновского перехода и значение параметра $\gamma = 2kCT/e^2$ мало́, т.е. удовлетворяется соотношение $\gamma \ll 1$.

Для случая малых термических флуктуаций мы можем использовать асимптотическое выражение (14а) в формуле (16). Такой подход оправдан тем, что инерционный участок движения частицы в потенциале $U(q) = E(q) - v_e q$ соответствует решению (14а) и длительность этого участка велика по сравнению с (14b). В результате интегрирования имеем

$$w = 1 - \exp\left(-\frac{\pi}{2^{29/6}C_1} \frac{I_e RC}{e} \left(\frac{\kappa}{\alpha}\right)\right)^{2/3} \times \left(1 - \operatorname{erf}\frac{(C_1 \alpha_z^{2/3} (z - z_0))}{\gamma^{1/2}}\right), \quad (18)$$

где erf() — функция ошибок.

Из формулы (18) для флуктуации заряда имеем

$$\delta y = \frac{(\gamma \pi)^{1/2}}{2} \frac{1}{\left(1 - \frac{2^{29/6} e^{\left(\frac{\alpha}{k}\right)^{2/3}}}{\pi I_c R C}\right)}.$$
 (19)

Величина флуктуаций края кулоновской блокады находится из соотношения

$$\delta V = \frac{e}{C} \,\delta y. \tag{19'}$$

Обсуждение

Как следует из последней формулы, флуктуации края кулоновской блокады зависят не только от фактора γ , характеризующего тепловые флуктуации, но и от скорости нарастания напряжения α . Увеличение скорости нарастания увеличивает флуктуации края кулоновской блокады. В случае обычного джозефсоновского перехода с увеличением скорости нарастания тока через переход

флуктуация критического тока уменьшается [3.9]. Такое различие в поведении обычного и малого джозефсоновского перехода связано с характером нелинейности перехода в разных случаях. Как известно [3], эквивалентная схема обычного джозефсоновского перехода состоит из четырех параллельно включенных элементов: ток куперовских пар I_S , ток квазичастиц I_N , ток смещения I_D и флуктуационный ток I_F . Ток куперовских пар $I_S = I_c \sin \phi$ ведет себя как нелинейный реактивный "энергоемкий" элемент $U_S(\phi) = -E_J \cos \phi$. Для малых вариаций тока справедливо выражение для нелинейной индуктивности с дифференциальным значением

$$L_{S}^{-1} = \frac{2\pi I_{c}}{\Phi_{0}} \frac{di}{d\phi} = \frac{2\pi I_{c}}{\Phi_{0}} \cos\phi.$$
(20a)

Как было сказано выше, в отличие от обычного джозефсоновского перехода в случае малых переходов ток состоит из трех компонент: нелинейный ток смещения I_D , ток квазичастиц I_N и флуктуационный ток I_F . Нелинейный ток смещения I_D ведет себя как емкостной элемент с энергией U(q) = E(q) и обратное дифференциальное значение его получается выражением

$$C_d^{-1} = C^{-1} d\nu(y) / dy.$$
 (20b)

Изменение переменной ϕ на q меняет реактивный характер джозефсоновского перехода от индуктивного на емкостной.

Таким образом, в этой работе исследовано влияние кулоновской блокады на динамические свойства малого джозефсоновского перехода в рамках резистивной модели. Получены формулы для времени задержки туннелирования куперовской пары, определяемые нелинейной емкостью. Также получена формула для термических флуктуаций края кулоновской блокады при линейном нарастании напряжения через переход.

Список литературы

- Лихарев К.К. // Микроэлектроника. 1987. Т. 16. Вып. 3. С. 195–209.
- [2] Silvestrini P. // NATO Science series Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics / Ed. by I.O. Kulik, R. Ellialtioglu. 2000. P. 321–325.
- [3] Лихарев К.К. Введение в динамику джозефсоновских переходов. М.: Наука, 1985. 320 с.
- [4] Аверин Д.В., Лихарев К.К., Зорин А.Б. // ЖЭТФ. 1985. Т. 88. С. 692–701.
- [5] Аверин Д.В., Лихарев К.К. // ЖЭТФ. 1986. Т. 90. С. 733– 743.
- [6] Anderson P.W. in Lectures Many Body Problems / Ed. E.R. Caianiello. 1962. P. 113.
- [7] Kuzmin L.S., Pashkin Yu., Golubov D.S., Zaikin A.D. // Phys. Rev. 1996. Vol. B54. P. 10074–10080.
- [8] Likharev K.K., Zorin A.B. // J. Low Temperature Physics. 1986. Vol. 62. P. 345–353.
- [9] Аскерзаде И.Н. // ЖТФ. 1998. Т. 68. Вып. 9. С. 129–130.
- [10] Аскерзаде И.Н. // ЖТФ. 2001. Т. 71. Вып. 12. С. 88–91.