02;03;07;12 О кинетических механизмах инициирования горения водородно-кислородных смесей при возбуждении электронных степеней свободы молекулярного кислорода лазерным излучением

© А.М. Старик, Н.С. Титова

Центральный институт авиационного моторостроения им. П.И. Баранова, 111116 Москва, Россия e-mail: star@ciam.ru

(Поступила в Редакцию 2 июля 2002 г.)

Анализируются кинетические механизмы, приводящие к интенсификации воспламенения смесей $H_2 + O_2$ при возбуждении молекул O_2 в состояния $a^1\Delta_g$ и $b^1\Sigma_g^+$ лазерным излучением с длиной волны $\lambda_I = 1.268 \,\mu\text{m}$ и 762 nm. Показано, что возбуждение молекул O_2 резонансным лазерным излучением приводит к появлению новых каналов образования O, H и OH, ускорению воспламенения исходной смеси и снижению температуры самовоспламенения. Даже при относительно небольшой энергии лазерного излучения с $\lambda_I = 762 \,\text{nm}$ температура самовоспламенения при начальных давлениях $P_0 = 10^3 - 10^4 \,\text{Pa}$ может быть уменьшена до 300 K.

Введение

Возможность интенсификации процессов горения путем инициирования в реагирующей смеси газов плазмохимических реакций с участием возбужденных атомов и молекул достаточно давно обсуждается в литературе [1–5]. Так, было показано, что предварительное возбуждение молекулярных исходных реагентов приводит к существенному ускорению образования активных радикалов, уменьшению порога самовоспламенения и ускорению горения [5,6].

Связано это в основном с уменьшением барьера эндоэргических реакций с участием колебательновозбужденных молекул. Возбуждение электронных степеней свободы реагирующих молекул должно приводить к еще большему снижению барьера в силу значительно большей энергии электронных состояний по сравнению с колебательными. Однако детальная информация о механизмах инициирования горения при возбуждении электронных степеней свободы реагентов практически отсутствует. Обусловлено это в первую очередь неразработанностью кинетических моделей процессов в реагирующих смесях в участием электронно-возбужденных молекул.

Простейшей доступной для теоретического анализа системой является смесь $H_2 + O_2$, в которой молекулы O_2 могут быть возбуждены в состояния $a^1\Delta_g$ и $b^1\Sigma_g^+$. Такое возбуждение может быть реализовано либо в электрическом разряде [7], либо резонансным лазерным излучением [8]. Проведенный недавно в [9] анализ показал, что присутствие в смеси даже небольшого (~1%) количества электронно-возбужденных молекул $O_2(a^1\Delta_g)$ может привести к существенной интенсификации цепного механизма горения и к самовоспламенению смеси H_2 и O_2 даже при начальной температуре $T_0 \approx 400$ К. Молекулы $O_2(b^1\Sigma_g^+)$ должны быть более активны по сравнению с $O_2(a^1\Delta_g)$ в преодолении барьеров эндо-

эргических реакций. Кроме того, молекулы $O_2(b^1\Sigma_g^+)$ существенно легче получить, чем молекулы $O_2(a^1\Delta_g)$, при возбуждении молекулярного кислорода лазерным излучением.

Целью данной работы как раз и является анализ динамики воспламенения смеси $H_2 + O_2$ при возбуждении молекул O_2 в состояния $a^1\Delta_g$ и $b^1\Sigma_g^+$ лазерным излучением.

Кинетическая модель

Одной из наиболее важных и в то же время сложной проблемой при анализе элементарных процессов в реагирующих системах является разработка кинетической схемы, позволяющей правильно описать основные характеристики процесса горения и провести анализ механизмов воспламенения. В данной работе будем рассматривать заранее перемешанную смесь газов $H_2 + O_2$, находящуюся в замкнутом адиабатическом реакторе, в которой могут присутствовать возбужденные молекулы $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$. При этом будем полагать, что между поступательными, вращательными и колебательными степенями свободы молекул смеси существует термодинамическое равновесие, которое не нарушается при протекании химических реакций.

Известно, что даже при отсутствии электронновозбужденных молекул O₂ для описания воспламенения простой смеси H₂ + O₂ в широком диапазоне начальных температур и давлений необходимо использовать достаточно разветвленную кинетическую схему, содержащую 29 реакций с участием H, O, OH, H₂O, H₂, O₂, HO₂, H₂O₂ и O₃. Реакции и соответствующие им константы скоростей приведены в [9,10]. Присутствие в реагирующей системе возбужденных молекул O₂($a^1\Delta_g$) и O₂($b^1\Sigma_g^+$) приводит к необходимости введения в схему дополнительных каналов, причем не только с участием указанных молекул, но и атомов O(¹D), которые обра-

Рис. 1. Энергетическая диаграмма экзотермической обменной реакции AB + C = A + BC при участии невозбужденной молекулы AB и возбужденной AB(e).

зуются при протекании реакций с участием $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ [8]. Включенные в кинетическую схему процессы представлены в таблице.

Возбуждение колебательных или электронных степеней свободы реагирующих молекул приводит к увеличению сечения взаимодействия и к снижению барьера эндоэргических реакций [11]. Константа скорости такой реакции может быть представлена в обычном виде

$$k_{\mathrm{ex},q} = A_q T_n^{n_q} \exp\left(-\frac{E_{aq}^e}{T}\right). \tag{1}$$

Здесь E_{aq}^e — энергия активации реакции с участием возбужденной молекулы. На рис. 1 представлена диаграмма экзотермической реакции обмена AB + C = A + BCдля случаев, когда молекула AB находится в основном электронном состоянии и когда молекула AB возбуждена в состояние "e"-AB(e). Здесь ΔH — тепловой эффект реакции, E_a^0 — энергия активации реакции при отсутствии возбуждения молекулы AB. В соответствии с [11] поверхности потенциальной энергии прямой и обратной реакции при отсутствии возбуждения молекулы AB определяются соотношениями

$$U_1(r) = \Delta H + E_a^0 \exp(r/r_1),$$

 $U_2(r) = (\Delta H + E_a^0) \exp(-r/r_2).$

Поверхность потенциальной энергии для прямой реакции с участием возбужденной в состоянии "e" с энергией E_e молекулы AB(e) записывается в виде

$$U_1^e = \Delta H + E_e + E_a^0 \exp(r/r_1).$$

Здесь r_1 и r_2 — радиусы действия обменных сил для реагентов и продуктов соответственно. Для многих реакций $r_1 \approx r_2$ [11]. В этом случае в точке пересечения потенциальных поверхностей U_1^e и U_2 справедливо соотношение

$$E_a^0 t^2 + (\Delta H + E_e) t - (\Delta H + E_a^0) = 0,$$
где $t = \exp(r/r_1).$

При этом величина E_a^e определяется следующим выражением:

$$E_a^e = \frac{1}{2} \Big(\sqrt{(\Delta H + E_e)^2 + 4E_a^0(\Delta H + E_a^0)} - (\Delta H + E_e) \Big).$$
(2)

По соотношениям (1) и (2) вычислялись константы скорости прямых реакций 4, 5, 16, 17, 27, 28, 32, 33, 46, 47 (здесь и далее нумерация реакций соответствует нумерации в таблице) и реакций 41, 42, 52, 53, 55, 56, протекающих в обратном направлении.

Для безбарьерных реакций или реакций с низким энергетическим барьером ($E_a^0 \approx 0$), продуктом которых является O_2 в различных электронных состояниях $X^3\Sigma_g^-$, $a^1\Delta_g$ и $b^1\Sigma_g^+$ в соответствии с [12] полагалось, что вероятность образования $O_2(X^3\Sigma_g^-)$, $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ пропорциональна кратности вырождения этих состояний $q_X = 0.5$, $q_a = 0.33$, $q_b = 0.17$. В таблице каналы соответствующих реакций указаны под отдельными номерами (18–20, 34–36, 61–63, 65–67). При этом константы скорости суммарных процессов взяты такими же, как и в [13].

Константы скорости реакций развития цепи с участием $O_2(a^1\Delta_g)$ (10, 22) были взяты из [14], а константы аналогичных реакций с участием $O_2(b^1\Sigma_g^+)$ (11, 23) вычислялись по формулам (1) и (2). При этом однако полагалось, что в (2) тепловой эффект реакции ΔH и энергия активации E_a^0 соответствуют реакциям 10, 22, а $E_e = \Delta E_{ba}$, где ΔE_{ba} — разность между энергиями состояний $b^1\Sigma_g^+$ и $a^1\Delta_g$ молекулы O_2 с нулевым колебательным квантовым числом $(E_{ba} = 7593 \text{ K}).$

Константы скоростей реакций с участием возбужденных атомов $O({}^{1}D)$ (8, 13, 25, 57–60, 73–76) были выбраны на основе рекомендаций [8,12,15], а процессов электронно-электронного (E-E) обмена и электроннопоступательной (E-T) релаксации (реакции 70–72) были взяты из [16]. Значения констант скоростей реакций 34–36, 41, 42, 52, 53, 55, 56, протекающих в прямом, и реакций 4, 5, 8, 11, 13, 16, 17, 23, 25, 27, 28, 32, 33, 46, 47, 49, 50, 57–60, 62–76, протекающих в обратном направлении, определялись на основе принципа детального равновесия.

Постановка задачи и основные уравнения

Рассмотрим неподвижную однородную смесь газов $H_2 + O_2$, на которую действует импульс лазерного излучения длительностью τ_p , частота которого резонансна частоте центра линии электронно-колебательного перехода в молекуле $O_2 m(e', v', j', K') \rightarrow n(e'', v'', j'', K'')$, где $e' = X^3 \Sigma_g^-$, $e'' = a^1 \Delta_g$ или $b^1 \Sigma_g^+$, v' и v'' — колебательные, а j', K' и j'', K'' — вращательные квантовые числа в основном $X^3 \Sigma_g^-$ и возбужденных $a^1 \Delta_g$ или $b^1 \Sigma_g^+$ состояниях молекулы O_2 . Анализ проведем

Реакции, включенные	в	кинетическую	схему
---------------------	---	--------------	-------

N₂	Реакция	N₂	Реакция
1.	$H_2O + M = OH + H + M$	39.	$H + H_2O_2 = H_2O + OH$
2.	$\mathrm{H}_2 + M = 2 \cdot \mathrm{H} + M$	40.	$2 \cdot \mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(X^3\Sigma_g^-)$
3.	$\mathrm{O}_2(X^3\Sigma_g^-)+M=\mathrm{O}(^3P)+\mathrm{O}(^3P)+M$	41.	$2 \cdot \mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(a^1\Delta_g)$
4.	$O_2(a^1\Delta_g) + M = O(^3P) + O(^3P) + M$	42.	$2\cdot\mathrm{HO}_2=\mathrm{H}_2\mathrm{O}_2+\mathrm{O}_2(b^1\Sigma_g^+)$
5.	$\mathrm{O}_2(b^1\Sigma_g^+)+M=\mathrm{O}(^3P)+\mathrm{O}(^3P)+M$	43.	$\mathrm{HO}_2 + \mathrm{H}_2\mathrm{O} = \mathrm{H}_2\mathrm{O}_2 + \mathrm{OH}$
6.	$OH + M = O(^{3}P) + H + M$	44.	$\mathbf{OH} + \mathbf{HO}_2 = \mathbf{H}_2\mathbf{O}_2 + \mathbf{O}({}^3P)$
7.	$\mathbf{H}_2 + \mathbf{O}(^3P) = \mathbf{OH} + \mathbf{H}$	45.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-}) = \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}(^{3}P)$
8.	$\mathrm{H}_2 + \mathrm{O}(^1D) = \mathrm{OH} + \mathrm{H}$	46.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}(^{3}P)$
9.	$\mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{H} = \mathrm{OH} + \mathrm{O}(^3P)$	47.	$\mathrm{H_2O} + \mathrm{O_2}(b^1\Sigma_g^+) = \mathrm{H_2O_2} + \mathrm{O}(^3P)$
10.	$O_2(a^1\Delta_g) + H = OH + O({}^3P)$	48.	$\mathrm{O}_3 + M = \mathrm{O}({}^3P) + \mathrm{O}_2(X^3\Sigma_g^-) + M$
11.	${ m O}_2(b^1\Sigma_g^+)+{ m H}{=}{ m O}{ m H}{+}{ m O}(^3P)$	49.	$\mathrm{O}_3 + M = \mathrm{O}({}^3P) + \mathrm{O}_2(a^1\Delta_g) + M$
12.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}(^{3}P) = 2 \cdot \mathrm{OH}$	50.	$\mathrm{O}_3+M=\mathrm{O}({}^3P)+\mathrm{O}_2(b^1\Sigma_g^+)+M$
13.	$\mathrm{H_2O} + \mathrm{O}(^1D) = 2 \cdot \mathrm{OH}$	51.	$\mathrm{O}_3 + \mathrm{H} = \mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-)$
14.	$\mathrm{H_2O} + \mathrm{H} = \mathrm{OH} + \mathrm{H_2}$	52.	$\mathrm{O}_3 + \mathrm{H} = \mathrm{OH} + \mathrm{O}_2(a^1\Delta_g)$
15.	$\mathrm{H}_2 + \mathrm{O}_2(X^3\Sigma_g^-) = 2\cdot\mathrm{OH}$	53.	$\mathrm{O}_3 + \mathrm{H} = \mathrm{OH} + \mathrm{O}_2(b^1\Sigma_g^+)$
16.	$\mathrm{H}_2 + \mathrm{O}_2(a^1\Delta_g) = 2\cdot\mathrm{OH}$	54.	$\mathrm{O}_3 + \mathrm{O}({}^3P) = 2 \cdot \mathrm{O}_2(X^3\Sigma_g^-)$
17.	$\mathrm{H}_2 + \mathrm{O}_2(b^1\Sigma_g^+) = 2\cdot\mathrm{OH}$	55.	$\mathrm{O}_3 + \mathrm{O}({}^3P) = \mathrm{O}_2(X{}^3\Sigma_g^-) + \mathrm{O}_2(a{}^1\Delta_g)$
18.	$\mathrm{HO}_2 + M = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{H} + M$	56.	$\mathrm{O}_3 + \mathrm{O}({}^3P) = \mathrm{O}_2(X{}^3\Sigma_g^-) + \mathrm{O}_2(b{}^1\Sigma_g^+)$
19.	$\mathrm{HO}_2 + M = \mathrm{O}_2(a^1\Delta_g) + \mathrm{H} + M$	57.	$\mathrm{O}_3 + \mathrm{O}(^1D) = 2 \cdot \mathrm{O}_2(X^3\Sigma_g^-)$
20.	$\mathrm{HO}_2+M=\mathrm{O}_2(b^1\Sigma^+_g)+\mathrm{H}+M$	58.	$\mathrm{O}_3 + \mathrm{O}(^1D) = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(a^1\Delta_g)$
21.	$\mathrm{H}_2 + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{H} + \mathrm{HO}_2$	59.	$\mathrm{O}_3 + \mathrm{O}(^1D) = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(b^1\Sigma_g^+)$
22.	$\mathrm{H}_2 + \mathrm{O}_2(a^1\Delta_g) = \mathrm{H} + \mathrm{HO}_2$	60.	$O_3 + O(^1D) = O_2(X^3\Sigma_g^-) + O(^3P) + O(^3P)$
23.	$\mathrm{H}_2 + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{H} + \mathrm{HO}_2$	61.	$\mathrm{O}_3 + \mathrm{OH} = \mathrm{HO}_2 + \mathrm{O}_2(X^3\Sigma_g^-)$
24.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}(^{3}P) = \mathrm{H} + \mathrm{HO}_{2}$	62.	$\mathrm{O}_3 + \mathrm{OH} = \mathrm{HO}_2 + \mathrm{O}_2(a^1 \Delta_g)$
25.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}(^{1}D) = \mathrm{H}_{2} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-})$	63.	$\mathrm{O}_3 + \mathrm{OH} = \mathrm{HO}_2 + \mathrm{O}_2(b^1\Sigma_g^+)$
26.	$\mathrm{H}_{2}\mathrm{O} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-}) = \mathrm{OH} + \mathrm{HO}_{2}$	64.	$\mathrm{O}_3 + \mathrm{H}_2 = \mathrm{OH} + \mathrm{HO}_2$
27.	$\mathrm{H_2O} + \mathrm{O_2}(a^1\Delta_g) = \mathrm{OH} + \mathrm{HO_2}$	65.	$\mathrm{O}_3 + \mathrm{HO}_2 = \mathrm{OH} + 2 \cdot \mathrm{O}_2(X^3\Sigma_g^-)$
28.	$\mathrm{H_2O} + \mathrm{O_2}(b^1\Sigma_g^+) = \mathrm{OH} + \mathrm{HO_2}$	66.	$\mathrm{O}_3 + \mathrm{HO}_2 = \mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(a^1\Delta_g)$
29.	$\mathrm{H_2O} + \mathrm{OH} = \mathrm{H_2} + \mathrm{HO_2}$	67.	$\mathrm{O}_3 + \mathrm{HO}_2 = \mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(b^1\Sigma_g^+)$
30.	$2\cdot OH = H + HO_2$	68.	$\mathcal{O}_3 + \mathcal{O}_2(a^1 \Delta_g) = 2 \cdot \mathcal{O}_2(X^3 \Sigma_g^-) + \mathcal{O}({}^3P)$
31.	$\mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{O}({}^3P) + \mathrm{HO}_2$	69.	$\mathrm{O}_3 + \mathrm{O}_2(b^1\Sigma_g^+) = 2\cdot\mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}(^3P)$
32.	$\mathrm{OH} + \mathrm{O}_2(a^1\Delta_g) = \mathrm{O}({}^3P) + \mathrm{HO}_2$	70.	$2\cdot\mathrm{O}_2(a^1\Delta_{\!g})=\mathrm{O}_2(b^1\Sigma_g^+)+\mathrm{O}_2(X^3\Sigma_g^-)$
33.	$\mathrm{OH} + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{O}({}^3P) + \mathrm{HO}_2$	71.	$\mathrm{O}_2(a^1\Delta_g)+M=\mathrm{O}_2(X^3\Sigma_g^-)+M$
34.	$\mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{O}(^1D) + \mathrm{HO}_2$	72.	$\mathrm{O}_2(b^1\Delta_{\!\scriptscriptstyle g})+M=\mathrm{O}_2(a^1\Delta_{\!\scriptscriptstyle g})+M$
35.	$\mathrm{OH} + \mathrm{O}_2(a^1\Delta_g) = \mathrm{O}(^1D) + \mathrm{HO}_2$	73.	$\mathrm{O}(^1D) + \mathrm{O}_2(X^3\Sigma^g) = \mathrm{O}(^3P) + \mathrm{O}_2(a^1\Delta_g)$
36.	$\mathrm{OH} + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{O}(^1D) + \mathrm{HO}_2$	74.	$\mathrm{O}(^1D) + \mathrm{O}_2(X^3\Sigma^g) = \mathrm{O}(^3P) + \mathrm{O}_2(b^1\Sigma^+_g)$
37.	$\mathrm{H}_{2}\mathrm{O}_{2}+M=2\cdot\mathrm{OH}+M$	75.	$\mathrm{O}(^1D) + \mathrm{O}_2(a^1\Delta_g) = \mathrm{O}(^3P) + \mathrm{O}_2(b^1\Sigma_g^+)$
38.	$\mathrm{H} + \mathrm{H}_2\mathrm{O}_2 = \mathrm{H}_2 + \mathrm{H}\mathrm{O}_2$	76.	$\mathcal{O}(^1D) + M = \mathcal{O}(^3P) + M$

для случаев, когда время индуцированных переходов $\tau_I \gg \tau_R$, τ_V , где τ_R и τ_V — характерные времена вращательной и колебательной релаксации. При этом можно полагать, что между вращательными, колебательными и поступательными степенями свободы молекул существует термодинамическое равновесие. Будем рассматривать электронно-возбужденные молекулы $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$ и атомы $O(^1D)$ как отдельные химические компоненты со своей энтальпией образования. В этом случае E-E-обмен и E-T-релаксацию можно рассматривать как обычные химические реакции.

При сделанных допущениях уравнения, описывающие процессы в реагирующей смеси газов при возбуждении молекул O_2 в состоянии $a^1\Delta_g$ или $b^1\Sigma_g^+$ лазерным излучением, можно представить в следующем виде:

$$\frac{\partial N_i}{\partial t} + \nabla \left[N_i (V_i + u) \right] = G_i + q_I^i + q_{sp}^i, \tag{3}$$

$$\rho \,\frac{\partial u}{\partial t} + \rho(u\nabla) \,u + \nabla P = \sum_{i=1}^{M} N_i X_i,\tag{4}$$

$$\begin{split} \frac{\partial}{\partial t} \left[\rho \left(E + \frac{u^2}{2} \right) \right] + \nabla \left[\rho u \left(E + \frac{P}{\rho} + \frac{u^2}{2} \right) + q_e \right] \\ &= \mathcal{Q}_I - \rho \sum_{i=1}^M \frac{h_{0i}}{N} \left(G_i + q_I^i + q_{sp}^i \right) + \sum_{i=1}^M N_i X_i (V_i + u), \\ G_i &= \sum_{q=1}^M S_{iq}, \qquad S_{iq} = \left(\alpha_{iq}^- - \alpha_{iq}^+ \right) [R_q^+ - R_q^-], \\ R_q^{+(-)} &= k_{+(-)q} \prod_{j=1}^{n_q^{+(-)}} N_j^{a_{jq}^{+(-)}}, \\ q_{sp}^i &= \sum_{q=1}^3 (A_{qi}^s N_q - A_{iq}^s N_i), \\ q_I^i &= l_{Ii} W_I \left(\frac{g_n}{g_m} N_m - N_n \right), \qquad W_I = \sigma_{mn} I / h v_I, \\ \sigma_{mn} &= \frac{\lambda_{mm}^2}{4\pi b_D} A_{mn} \sqrt{\frac{\ln 2}{\pi}} H(x, a), \qquad P = \frac{\rho RT}{\mu}, \\ Q_I &= k_v I, \qquad k_v = \sigma_{mn} \left(\frac{g_n}{g_m} N_m - N_n \right), \\ q_e &= \rho T \sum_{i=1}^M C_{VT}^i V_i - \lambda \nabla T + \frac{k_B T}{N} \sum_{i \neq j} \frac{D_i^T N_i}{m_i D_{ij}} \left(V_i - V_j \right), \\ V_i &= \frac{N^2}{N_i \rho} \sum_{j=1}^M m_j D_{ij} d_j - \frac{1}{m_i N_i} D_i^T \nabla \ln T, \\ E &= \sum_{i=1}^M C_{VT}^i T, \\ d_j &= \nabla \frac{N_j}{N} + \left(\frac{N_j}{N} + \frac{N_j m_j}{\rho} \right) \nabla \ln P + \frac{N_j m_j}{\rho P} \sum_{i=1}^M N_i X_i - \frac{N_j X_j}{\rho}, \\ \gamma_i &= N_i / N, \\ C_V^i &= \sum_{l=1}^L \left(\frac{\Theta_{il}}{T} \right)^2 \frac{\exp(\Theta_{li}/T)}{\left[\exp(\Theta_{li}/T) - 1\right]^2}, \\ \mu &= \sum_{i=1}^M \mu_i \gamma_i, \qquad N = \sum_{i=1}^M N_i. \end{split}$$
(5)

Здесь ρ , *T*, *P*, *u* — плотность, температура, давление и скорость газа; N_i — плотность молекул *i*-го сорта (i = 1...M); m_i — их масса; h_{0i} — энтальпия образования *i*-го компонента при T = 298 K; μ_i — его молярная масса (i = 1, 2, 3 отвечают $O_2(X^3\Sigma_g^-)$, $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$), α_{iq}^+ и α_{iq}^- — стехиометрические коэффициенты *q*-й реакции; $k_{+(-)q}$ — константы скорости *q*-й реакции, протекающей в прямом (+) и обратном (-) направлениях; $n_q^{+(-)}$ — число компонентов, участвующих в этой реакции; M_1 — число реакций,

приводящих к образованию (разрушению) і-го компонента; D_i^T и D_{ij} — соответственно коэффициенты термои многокомпонентной диффузии *i*-го компонента; λ коэффициент теплопроводности; R — универсальная газовая постоянная; k_B — постоянная Больцмана; h постоянная Планка; *l_{li}* — число квантов, теряемых (приобретаемых) молекулой *i*-го сорта при индуцированных переходах; $C_R^i = 0$ — для атомов, $C_R^i = 1$ — для линейных и $C_R^i = 1.5$ — для нелинейных молекул; Θ_{il} характеристическая температура *l*-го типа колебаний в молекуле *i*-го сорта; L_i — полное число типов колебаний в этой молекуле; v_I — частота воздействующего излучения; I — его интенсивность; A_{ai}^{s} — скорость разрушения молекулы q-го и образования молекулы i-го сорта при спонтанных переходах; λ_{mn} — длина волны, соответствующая центру линии перехода $m \rightarrow n$; A_{mn} коэффициент Эйнштейна для этого перехода; g_n и g_m кратности вырождения состояний *n* и *m*; *N_n* и *N_m* заселенности этих состояний; Х_i — сила, действующая на молекулу і-го сорта со стороны электромагнитного поля.

В общем случае выражение для *X_i* можно представить в виде [17]

$$X_{i} = f_{ig}l_{r} + (f_{iA} + f_{ip}) l_{z},$$

$$f_{ig} = \alpha_{i} \frac{2\pi}{cn_{0}} \frac{\partial I}{\partial r}, \qquad f_{ip} = \frac{k_{\nu}I}{N_{i}c},$$

$$f_{iA} = \frac{4\pi\alpha_{i}}{c^{2}} \frac{\partial I}{\partial t} + \frac{4\pi I}{c^{2}} \frac{\partial \operatorname{Re} \alpha_{i}}{\partial t}.$$

Здесь f_{ig} — так называемая градиентная или стрикционная сила; f_{ip} — сила светового давления; f_{iA} — сила Абрагама; l_z и l_r — единичные векторы, направленные вдоль распространения пучка и по его радиусу; α_i — поляризуемость молекул *i*-го сорта; *c* — скорость света в вакууме; n_0 — показатель преломления невозмущенной смеси при t = 0. Будем рассматривать условия, когда величиной f_A и f_p можно пренебречь.

Конкретный анализ будем проводить на примере поглощения излучения в центре спектральной линии переходов $X^3\Sigma_g^- \to a^1\Delta_g$ и $X^3\Sigma_g^- \to b^1\Sigma_g^+$ при v' = v'' = 0 и j' = 9, j'' = K' = K'' = 8 (при таких вращательных числах для $T_0 = 300 \,\mathrm{K}$ коэффициент поглощения максимален). Переходу $X^3 \Sigma_g^- \to a^1 \Delta_g$ при данных v', j', K' и v'', j'', K'' соответствует длина волны излучения $\lambda_I = 1.268 \,\mu\text{m}$, а переходу $X^3 \Sigma_{\rho}^- \rightarrow b^1 \Sigma_{\rho}^+$ λ_I = 762 nm. Коэффициенты Эйнштейна слабо зависят от вращательного квантового числа и для рассматриваемых переходов ветви ^QP(9) были приняты равными $2.58 \cdot 10^{-4}$ и $8.5 \cdot 10^{-2}$ s⁻¹ [8]. При вычислении функции Фойхгта H(x, a) (в центре линии x = 0) полагалось, что сечения столкновительного уширения спектральной линии равны газокинетическим сечениям. Вращательные энергии молекулы О2 в состояниях т и п вычислялись с учетом расщепления уровня j' в состоянии $X^3 \Sigma_g^-$ на три компонента с j' = K' + 1, j' = K' и j' = K' - 1°[18].

Рассмотрим воспламенение горючей смеси в лазерном пучке с гауссовым распределением интенсивности по

радиусу $I(r, t) = I_0(t) \exp(-r^2/R_a^2)$, где R_a — характерный радиус пучка, $I_0(t) = I_0$ при $0 < t \leq \tau_p$ и $I_0(t) = 0$ при $t > \tau_p$. Пусть $R_a \ll k_v^{-1}$, при этом изменением параметров в продольном направлении по сравнению с их изменением в поперечном сечении области воздействия можно пренебречь и рассматривать оптически тонкий слой газа, в котором изменение параметров среды происходит только по радиусу пучка. Вводя безразмерные координаты $r' = r/R_a$ и $t' = t/\tau_p$ и переходя к безразмерным переменным $\tilde{N}_i = N_i/N_0$, $\tilde{\rho} = \rho/\rho_0$, $\tilde{u} = u(\tau_p/R_a)$, $\tilde{P} = P/N_0k_BT_0$, $\tilde{T} = T/T_0$, $\tilde{V}_i = V_i \tau_p/R_a$, $\tilde{k}_v = k_v/k_v^0$, $\tilde{I} = I/I_0$, $\tilde{X}_i = f_{ig}/f_g^0$, $f_g^0 = 2\pi\alpha_{10}I_0N_{10}/cn_0R_a$ (индекс нуль относится к моменту времени t = 0), приведем систему (3)–(5) к безразмерному виду (штрихи и тильды далее опускаем)

$$\frac{\partial N_i}{\partial t} = \sum_{q=1}^{M_1} S_{iq} \frac{\tau_p}{\tau_{iq}^{ch}}
- \nabla \left[N_i \left(\tau_p \sum_k \frac{N_0 m_k N^2 d_k}{\rho_0 N_i \rho \tau_D^{ik}} - \frac{\tau_p}{\tau_{Ti}} \frac{\nabla \ln T}{N_i} + u \right) \right]
+ l_{Ii} k_\nu I \gamma_{10} \frac{\tau_p}{\tau_I} + \sum_{q=1}^3 \left(N_q \frac{\tau_p}{\tau_{qi}^s} - N_i \frac{\tau_p}{\tau_{iq}^s} \right),$$
(6)

$$\rho \frac{\partial u}{\partial t} + \rho(u\nabla) u = -\frac{\nabla P}{\chi} \left(\frac{\tau_p}{\tau_a}\right)^2 + \left(\frac{\tau_p}{\tau_F}\right)^2 \sum_{i=1}^M N_i f_{ig}, \quad (7)$$

$$\rho \frac{\partial E}{\partial t} + \rho(u\nabla)E = k_{\nu}I\delta_{I} - \frac{\rho}{N} \left[\sum_{i=1}^{\infty} \left(k_{\nu}Il_{Ii}\gamma_{10} \frac{\tau_{p}}{\tau_{I}} + \sum_{q=1}^{3} \left(\frac{N_{q}}{\tau_{qi}^{s}} - \frac{N_{i}}{\tau_{iq}^{s}} \right)\tau_{p} \right) \frac{h_{0i}}{C_{VT}^{0}T_{0}} + \sum_{i=1}^{M} \frac{\tau_{p}}{\tau_{i}^{ch}}G_{i} \frac{h_{0i}}{C_{VT}^{0}T_{0}} \right]$$

$$- (\chi - 1) \left[P\nabla u - \chi \left(\frac{\tau_{a}}{\tau_{F}} \right)^{2} \sum_{i=1}^{M} N_{i}f_{ig}V_{i} \right]$$

$$- \nabla \left[\frac{\rho T}{C_{VT}^{0}} \sum_{i=1}^{M} C_{VT}^{i}V_{i} - \frac{\tau_{p}}{\tau_{\lambda}} \nabla T \right]$$

$$+ (\chi - 1) \frac{T}{N} \sum_{i \neq j} (V_{i} - V_{j}) \frac{\tau_{D}^{ij}N_{i}}{\tau_{Ti}} \right],$$

$$V_{i} = -\frac{\tau_{p}}{\tau_{Ti}} \frac{\nabla \ln T}{N_{i}} - \frac{\tau_{p}}{\tau_{D}} \sum_{j} \nabla d_{j} \frac{N_{0}m_{j}}{\rho_{0}\gamma_{i}\rho},$$

$$\chi = 1 + \left(C_{VT}^{0} \frac{\mu_{0}}{R} \right)^{-1},$$

$$d_{k} = \gamma_{k0} \nabla(\gamma_{k}) + \gamma_{k0} \left(\gamma_{k} - \frac{N_{k}}{\rho} \frac{m_{k}N_{0}}{\rho_{0}} \right) \nabla \ln P$$

$$+ \frac{\chi \gamma_{k0} \tau_{a}^{2}}{P \tau_{F}^{2}} \left[\frac{N_{k}m_{k}}{\rho \gamma_{10}} \sum_{i=1}^{M} N_{i}f_{ig} - N_{k}f_{kg} \right].$$
(8)

Журнал технической физики, 2003, том 73, вып. 3

Здесь $\tau_a = R_a/\sqrt{\chi P_0/\rho_0}$ — время распространения звуковых колебаний поперек пучка $\tau_D^{ij} = R_a^2/D_{ij}$, $\tau_{Ti} = R_a^2 m_i N_0/D_i^T$ — соответственно времена многомпонентной диффузии и термодиффузии; $\tau_{\lambda} = \rho_0 R_a^2 C_{VT}^0/\lambda$ время теплопроводности; $\tau_{iq}^{ch} = N_0 (S_{iq}^0)^{-1}$ — характерное время *q*-й химической реакции, приводящей к образованию *i*-го компонента; $\tau_I = N_{10}hv_I/k_v^0 I_0$ время индуцированных переходов; $\tau_{qi}^s = (A_{qi}^s)^{-1}$ время радиационного распада возбужденных состояний O₂ (*i* = 1, 2, 3) в результате спонтанных переходов; $\tau_F = \sqrt{\rho_0 R_a/f_g^0 N_0}$ — время изменения состояния среды при воздействии стрикционной силы, $\delta_I =$ $= -k_v^0 I_0 \tau_p/\rho_0 C_{VT}^0 T_0$.

Проведем теперь оценку характерных времен при воздействии на стехиометрическую смесь 2H₂+O₂ лазерного излучения с длиной волны $\lambda_I = 762 \, \mathrm{nm}$ при условиях численного эксперимента $I_0 = 1 - 10 \, \text{kW/cm}^2$, $R_a = 10 \text{ cm}, P_0 = 10^3 - 10^4 \text{ Pa}, T_0 = 300 - 700 \text{ K}.$ Uepapхия этих времен в значительной мере определяет степень влияния различных процессов на изменение концентрации компонентов в зоне воздействия, а следовательно, и на процесс воспламенения. При указанных условиях $\tau_I \approx 2 \cdot 10^{-1} - 4 \cdot 10^{-3}$ s, $au_a \approx 2 \cdot 10^{-4} \,\mathrm{s}, \quad au_D \sim au_{Ti} \sim au_\lambda = 0.3 - 10 \,\mathrm{s}, \quad au_F = 1 - 10 \,\mathrm{s},$ для перехода $a^1\Delta_g o X^3\Sigma_g^ au_{21}^s = 3.87\cdot 10^3\,{
m s}$ и для перехода $b^1 \Sigma_g^+ \to X^3 \Sigma_g^ \tau_{31}^s = 1.18 \cdot 10^1$ s. Будем рассматривать режимы, когда $au_a \ll au_p \sim au_I \leq au_{
m in} \ll au_D$, где $\tau_{\rm in}$ — характерное время воспламенения (период индукции).

В этом случае на интервале $[0, \tau_{in}]$ процессами макропереноса и спонтанной эмиссией возбужденных состояний можно пренебрегать и считать, что при u(t = 0) = 0заметного движения газа поперек пучка не происходит. Уравнения (6)–(8) при этом можно представить в виде

$$\frac{\partial N_i}{\partial t} = \sum_{q=1}^{M_1} S_{iq} \frac{\tau_p}{\tau_{iq}^{ch}} + l_{Ii} k_\nu I \gamma_{i0} \frac{\tau_p}{\tau_I},\tag{9}$$

$$\nabla P = 0, \tag{10}$$

$$\rho \frac{\partial E}{\partial t} = k_{\nu} I \left(\delta_I - \frac{\rho}{N} \sum_{i=1}^3 \frac{h_{0i}}{C_{VT}^0 T_0} l_{Ii} \gamma_{10} \frac{\tau_p}{\tau_I} \right) - \frac{\rho}{N} \sum_{i=1}^M \frac{h_{0i}}{C_{VT}^0 T_0} \frac{\tau_p}{\tau_i^{ch}} G_i.$$
(11)

Уравнение (10) имеет простое решение $P(r) = P_a$, где P_a — давление в невозмущенном газе ($P_a = P_0$). Уравнения вида (9) для $i = O_2(X^3\Sigma_g^-), O_2(a^1\Delta_g),$ $O_2(b^1\Sigma_g^+), H_2, H_2O, OH, HO_2, H_2O_2, O_3, O(^3P), O(^1D), H$ и уравнение (11) решались численно с использованием неявной разностной схемы второго порядка аппроксимации.

Воспламенение смеси $H_2 + O_2$ при возбуждении молекул O_2 в состоянии $a^1\Delta_g$ и $b^1\Sigma_o^+$

Известно, что воспламенение водородно-воздушных смесей обусловлено протеканием цепных реакций с участием активных атомов О, Н и радикалов ОН. Образование в смеси $H_2 + O_2$ атомов и радикалов происходит вследствие химических превращений и характеризуется временем соответствующих химических реакций τ_{iq}^{ch} . Величина этих времен определяет период индукции или время задержки воспламенения τ_{in} . Уход активных радикалов из зоны реакции осуществляется помимо их гибели в реакциях обрыва цепи также вследствие диффузии. Режим самовоспламенения реализуется только при $\tau_i^{ch} \sim \tau_{in} \leq \tau_D^1$. Для смеси $H_2 + O_2 \tau_D^i$ соответствует времени диффузии самых легких носителей цепного механизма — атомов H (τ_D^H).

На рис. 2 представлена зависимость периода индукции au_{in} и времени диффузии атомов Н au_D^{H} от начальной температуры T_0 смеси $H_2/O_2 = 2/1$ при $P_0 = 10^3$ Ра в случае воздействия излучения с $\lambda_I = 1.286 \, \mu m$ и 762 nm, $\tau_p = 10^{-3}$ s различным значениям $I_0 = 1$, 5, 10 kW/cm². При данных I_0 , τ_p и параметрах среды значения энергии лазерного излучения Е_c, поглощенной одной молекулой O2, в случае действия излучения с $\lambda_I = 762 \,\mathrm{nm}$ равны 0.017, 0.082, 0.15 eV/mol соответственно, а при воздействии излучения с $\lambda_I = 1.268 \, \mu \text{m}$ — $2.4 \cdot 10^{-4}$, $1.2 \cdot 10^{-3}$, $2.4 \cdot 10^{-3}$ eV/mol. Видно, что воздействие излучения с $\lambda_I = 762 \, \mathrm{nm}$ приводит к существенно большему снижению τ_{in} и соответствующему уменьшению температуры самовоспламенения, которая в первом приближении может быть определена из равенства $\tau_{in}(T, I_0) = \tau_D^{H}(T)$ по сравнению с воздействием излучения с λ_I = 1.268 μm. Для излучения с $\lambda_I = 762 \,\mathrm{nm}$ и подведенной энергии $E_{\mathrm{in}} = I_0 \tau_p \geq 5 \,\mathrm{J/cm}^2$

Рис. 2. Зависимость $\tau_D^H(T_0)$ (пунктир) и $\tau_{in}(T_0)$ в случае воздействия излучения $\lambda_I = 762$ nm и $1.268 \,\mu$ m (сплошные и штриховые линии) с интенсивностью $I_0 = 1$, 5, $10 \,\text{kW/cm}^2$ (*I*-3). Штрихпунктир — зависимость $\tau_{in}(T_0)$ при $I_0 = 0$.

температура самовоспламенения может быть уменьшена до $T_{\rm ign} = 300$ К. Укажем здесь, что даже при таком значении $E_{\rm in}$ величина энергии, идущей на возбуждение одной молекулы O₂ в состояние $b^1\Sigma_g^+$, составляет всего 0.15 eV, в то время как для фотодиссоциации молекулы O₂ из основного электронного состояния (этот процесс инициирует цепной механизм воспламенения смеси H₂ + O₂ вследствие образования атомов О) необходимо затратить 5.8 eV. Кроме того, при низких температурах газа ($T_0 \leq 600$ K) рекомбинация атомов О протекает с весьма большой скоростью, что дополнительно снижает эффективность фотохимического метода воспламенения [19], основанного на фотодиссоциации молекул лазерным излучением.

Уменьшение τ_{in} при возбуждении молекул О₂ в состояния $a^{1}\Delta_{g}$ ($\lambda_{I} = 1.268\,\mu{
m m}$) и $b^{1}\Sigma_{g}^{+}$ ($\lambda_{I} = 762\,{
m nm}$) обусловлено изменением кинетики образования активных атомов О, Н и радикалов ОН. Это иллюстрирует рис. 3, на котором показано изменение концентраций (мольных долей) компонентов во времени при отсутствии лазерного излучения и при воздействии излучения с $\lambda_I = 1.268 \,\mu\mathrm{m}$ и $\lambda_I = 762 \,\mathrm{nm}$. Видно, что при возбужении молекул О₂ в состояния $a^1\Delta_g$ ($\lambda_I = 1.268\,\mu m$) и $b^1\Sigma_g^+$ $(\lambda_I = 762 \,\mathrm{nm})$ меняется не только величина τ_{in} , но и динамика изменения концентраций компонентов на интервале [0, т_{in}]. Интересным здесь является тот факт, что при возбуждении молекул O_2 в состояние $b^1\Sigma_g^+$ увеличивается и концентрация молекул $O_2(a^1\Delta_g)$, что обусловлено процессом столкновительной Е-Т-релаксации по каналу 72 (здесь и далее нумерация реакций соответствует нумерации в таблице). При этом концентрация молекул $O_2(a^1\Delta_g)$ при действии излучения с $\lambda_I = 762 \,\mathrm{nm}$ при $t = \tau_p$ существенно (в ~ 50 раз) больше, чем при непосредственном возбуждении молекул О₂ в состояние $a^1\Delta_g$ излучением с $\lambda_I = 1.268\,\mu$ m. Связано это с тем, что скорость индуцированных переходов $X^3\Sigma_g^- o b^1\Sigma_g^+$ при одинаковом значении I_0 и параметров среды существенно (40-75 раз) больше, чем скорость переходов $X^{3}\Sigma_{g}^{-} \rightarrow a^{1}\Delta_{g}$.

Достаточно интенсивное столкновительное тушение состояния $b^1 \Sigma_o^+$ при рассматриваемых параметрах среды приводит не только к росту концентрации $O_2(a^1\Delta_g)$, но и к небольшому увеличению температуры на интервале $[0, \tau_{in}]$. В то же время при возбуждении молекул О₂ в состояние $a^1\Delta_g$ такого увеличения T не наблюдается вследствие существенно меньшей скорости тушения состояния $a^{1}\Delta_{q}$ (реакция 73). Это иллюстрирует рис. 4, на котором показано изменение температуры газа во времени при воздействии на смесь $H_2/O_2 = 2/1$ с $T_0 = 600$ К и $P_0 = 10^3$ Ра излучения с $\lambda_I = 1.268 \,\mu\text{m}$ и 762 nm и значениях $I_0 = 5$ и $10 \,\mathrm{kW/cm^2}$, $\tau_p = 10^{-3} \,\mathrm{s}$. Для излучения с $\lambda_I = 762 \,\mathrm{nm}$ при указанных I_0 температура на интервале $[0, \tau_p]$ меняется от 600 до 647 и 688 К соответственно. Величина au_{in} при этом составляет $9.8 \cdot 10^{-3}$ s и 4.6 \cdot 10⁻³ s. Отметим здесь, что время горения τ_c (его величина определялась по моменту времени, при кото-

Рис. 3. Изменение концентраций компонентов во времени при воспламенении смеси $T_0 = 600$ K при отсутствии лазерного излучения (*a*) и при воздействии излучения с $\lambda_I = 1.268 \,\mu\text{m}$ (*b*) и $\lambda_I = 762 \,\text{nm}$ (*c*). $I_0 = 10 \,\text{kW/cm}^2$.

Рис. 4. Изменение температуры при инициировании воспламенения смеси при $T_0 = 600$ К лазерным излучением с $\lambda_I = 1.268 \,\mu$ m (пунктир) и $\lambda_I = 762$ nm (сплошные кривые) при $I_0 = 5$, $10 \,$ kW/cm² (I, 2).

ром достигается значение $T = 0.99T_e$, где T_e — равновесная температура продуктов сгорания) изменяется не столь значительно при увеличении I_0 от 5 до 10 kW/cm².

Сокращение времени задержки воспламенения связано в основном не с увеличением температуры при поглощении излучения с $\lambda_I = 762 \, \text{nm}$, а с появлением новых каналов образования активных атомов О, Н и радикалов ОН. Это хорошо видно из рис. 5, где показано изменение скоростей S_q образования (+) и разрушения (-) атомов О (a) и Н (б) и ОН (в) в случае воздействия излучения с $\lambda_I = 1.268 \, \mu {
m m}$ и 762 nm (штриховые и сплошные кривые соответственно). Напомним, что при отсутствии возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ главной реакцией инициирования цепи при воспламенении смесей H₂+O₂ (воздух) при низких температурах (T₀ < 800 K) является реакция H₂+O₂=2OH (реакция 15). Далее в реакции продолжения цепи H₂ + OH = H₂O + Н образуются атомы H, которые реагируют с молекулами О2 с образованием О и ОН (реакция разветвления цепи 9). Замыкание цепного механизма происходит в процессе $H_2 + O = OH + H$ (реакция 7).

При возбуждении молекул O_2 лазерным излучением с $\lambda_I = 1.268 \,\mu\text{m}$ основной реакцией инициирования цепи становится реакция 16 с участием $O_2(a^1\Delta_g)$. Атомы Н образуются, как и в случае отсутствия возбужденных молекул $O_2(a^1\Delta_g)$, в реакции 14, протекающей в обрат-

Рис. 5. Изменение скоростей S_{iq} образования (+) и разрушения (-) О (*a*), Н (*b*), ОН (*c*) во времени при горении смеси при воздействии излучения с $\lambda_I = 1.268 \,\mu\text{m}$ и $\lambda_I = 762 \,\text{nm}$ (пунктир и сплошные кривые) при $I_0 = 10 \,\text{kW/cm}^2$.

Рис. 6. Зависимость $\tau_{in}(P_0)$ при воздействии на смесь при $T_0 = 400$ и 600 K (штриховые и сплошные кривые соответственно) излучения с $\lambda_I = 762$ nm при $I_0 = 0$ (*I*), 1 (*2*), 5 (*3*), 10 kW/cm² (*4*).

ном направлении. Определяющую роль в образовании атомов О здесь начинает играть реакция 10. Следует отметить, что присутствие молекул $O_2(a^1\Delta_g)$ даже в незначительном количестве (при $I_0 = 10$ kW/cm², $\tau_p = 10^{-3}$ s их концентрация в смеси не превышает 0.1%) приводит к тому, что заметный вклад в увеличение концентрации атомов О начинает давать реакция 68 в участием молекул O_3 и $O_2(a^1\Delta_g)$. Указанные процессы протекают с существенно большими скоростями, чем соответствующие реакции с участием невозбужденных молекул O_2 . Поэтому даже при небольшом содержании $O_2(a^1\Delta_g)$ в смеси (~ 0.1%) величина $\tau_{\rm in}$ уменьшается весьма существенно (при $T_0 = 600$ K, $P_0 = 10^3$ Pa, $I_0 = 10$ kW/cm², более чем в 10 раз) по сравнению со случаем отсутствия излучения.

При возбуждении молекул $O_2(b^1\Sigma_g^+)$ основными реакциями инициирования цепи становятся реакции 17 и 23 с участием $O_2(b^1\Sigma_{\rho}^+)$. При этом в реакции 17 образуются радикалы ОН, а в реакции 23 атомы Н. Поскольку при воздействии излучения с $\lambda_I = 762 \, \mathrm{nm}$ помимо молекул ${
m O}_2(b^1\Sigma_g^+)$ в смеси также возникают и молекулы $O_2(a^1\Delta_g)$, то образование атомов О происходит на начальной стадии развития процесса в основном в реакциях разветвления цепи 11 и 10. Именно появление новых интенсивных каналов образования носителей цепного механизма воспламенения приводит к ускорению цепных реакций и сокращению т_{in}. Так, если бы действовал только тепловой механизм воспламенения при воздействии излучения с $\lambda_I = 762 \, \text{nm}$, то при $T_0 = 688 \,\mathrm{K}$ (температура, которая достигается при $t = \tau_p = 10^{-3} \,\mathrm{s}$ для $I_0 = 10 \,\mathrm{kW/cm^2})$ период индукции был бы равен $1.4 \cdot 10^{-1}$ s, т.е. в 30 раз больше, чем при учете интенсификации цепных реакций вследствие присутствия молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ в смеси. Если бы энергия излучения, подводимая к газу, шла только на его нагрев, то при рассматриваемых параметрах температура смеси при $t = \tau_p$ составила бы 806 K, а величина τ_{in} была бы равна $2 \cdot 10^{-2}$ s, что в 4.4 раза больше значения τ_{in} , которое реализуется при возбуждении молекул O_2 в состояние $b^1\Sigma_g^+$. При более низких T_0 и больших значениях P_0 отличие еще существеннее. Так, при $T_0 = 400$ K, $P_0 = 10^4$ Pa, $I_0 = 10$ kW/cm², $\tau_p = 10^{-3}$ s период индукции более чем в 60 раз меньше в случае возбуждения молекул O_2 в состояние $b^1\Sigma_g^+$, чем при чисто тепловом воздействии излучения с $\lambda_I = 762$ nm.

Влияние начального давления смеси 2H₂ + O₂ на величину задержки воспламенения в случае возбуждения молекул О₂ излучением с $\lambda_I = 762 \, \mathrm{nm}$ при различных значениях I_0 для $T_0 = 400$ и 600 K иллюстрирует рис. 6. Видно, что существует три области изменения Ро для каждого значения T₀ и I₀. В первой величина т_{in} уменьшается с ростом P_0 , во второй увеличивается, а в третьей опять начинает уменьшаться. Возбуждение молекул O₂ излучением с $\lambda_I = 762 \, \text{nm}$ приводит не только к значительному уменьшению τ_{in} (например, для $I_0 = 10 \, \mathrm{kW/cm^2}$ величина τ_{in} при $P_0 = 10^4 \, \mathrm{Pa}$ в 600 раз меньше, чем при отсутствии излучения), но и к увеличению граничных значений P₀, разделяющих эти области. Чем больше значение Іо, тем выше значения P_0 , при которых наступает изменение характера зависимости $\tau_{in}(P_0)$. Так, если при $I_0 = 0$ и $T_0 = 600$ К значение Ров, разделяющее первую и вторую области, составляет 10^3 Pa, то при $I_0 = 10 \,\mathrm{kW/cm^3}$ оно равно 2 · 10⁴ Ра. Наличие этих областей объясняется тем, что при достаточно низких T₀ при P₀ > T_{0b} происходят интенсивное образование химически инертных молекул H₂O₂ и уменьшение скорости образования атомов О, Н и радикалов ОН, что и приводит к замедлению процесса воспламенения [13]. Из представленных зависимостей $\tau_{in}(P_0)$ следует, что существует диапазон P_0 (третья область): $P_0 > P_{0c}$, $P_{0c} = f(I_0, T_0)$, в котором воздействие излучения не приводит к заметному изменению τ_{in} . Так, при $T_0 = 600 \,\mathrm{K}$ и $I_0 = 10 \,\mathrm{kW/cm^2}$ величина $P_{0c} = 2 \cdot 10^5$ Ра. При более низких начальных температурах смеси значение P_{0c} при тех же I_0 увеличивается.

Заключение

Возбуждение молекул О₂ в состояние $b^1 \Sigma_g^+$ резонансным лазерным излучением с $\lambda_I = 762$ nm приводит в результате E-E- и E-T-процессов к образованию в смеси не только электронно-возбужденных молекул $O_2(b^1 \Sigma_g^+)$, но и метастабильных молекул $O_2(a^1 \Delta_g)$. Концентрация молекул $O_2(a^1 \Delta_g)$ в смеси при этом даже больше (в ~ 50 раз), чем при непосредственном возбуждении молекул O_2 в состояние $O_2(a^1 \Delta_g)$ излучением с $\lambda_I = 1.268 \,\mu$ m той же интенсивности. Присутствие

в смеси $H_2 + O_2$ возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_q^+)$ приводит к появлению новых каналов образования активных атомов О, Н и радикалов ОН и интенсификации цепного механизма воспламенения. Это позволяет существенно уменьшить время индукции и температуру воспламенения. Даже при относительно небольшой энергии лазерного излучения с $\lambda_I = 762 \text{ nm}$, подведенной к газу $E_{in} = 5 \text{ J/cm}^2$, температура самовоспламенения может быть уменьшена до 300 К. Возбуждение молекул O₂ в электронное состояние O₂ $(b^1 \Sigma_a^+)$ резонансным лазерным излучением с точки зрения воздействия на процесс горения существенно (в десятки раз) эффективнее термического нагрева среды лазерным излучением. Поскольку молекулярный кислород является окислителем в процессах горения большинства органических и неорганических топлив, то можно ожидать, что данный метод интенсификации цепных процессов будет весьма эффективным и для других горючих смесей.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 02-01-00703 и 02-02-16915).

Список литературы

- [1] *Advanced* Combustion Methods / Ed F.J. Weinberg. London: Academic Press, 1986.
- [2] Lucas D., Dunn-Rankin D., Hom K., Brown N.J. // Combust. Flame. 1987. Vol. 69. N 2. P. 171–184.
- [3] Morris R.A., Viggiano A.A., Arnold S.T. et al. // 27th Intern. Symposium on Combustion. Boulder. Colorado, 1988. WIP. Abstracts. P. 343.
- [4] Басевич В.Я., Когарко С.М. // Кинетика и катализ. 1966.
 Т. 7. № 3. С. 393–399.
- [5] Старик А.М., Даутов Н.Г. // ДАН. 1994. Т. 336. № 5. С. 617-622.
- [6] Старик А.М., Титова Н.С. // ДАН. 2000. Т. 370. № 1. С. 38–42.
- [7] Захаров А.И., Клоповский К.С., Осипов А.П. и др. // Физика плазмы. 1988. Т. 14. Вып. 3. С. 327–333.
- [8] Старик А.М., Таранов О.В. // Хим. физика. 1999. Т. 18. № 3. С. 15–26.
- [9] Старик А.М., Титова Н.С. // Хим. физика. 2001. Т. 20. № 5. С. 17–25.
- [10] Dougherty E.P., Rabitz H. // J. Chem. Phys. 1980. Vol. 72. N 12. P. 6571–6586.
- [11] Русанов В.Д., Фридман А.А. Физика химически активной плазмы. М.: Наука, 1984. 416 с.
- [12] Бирюков А.С., Решетняк С.А., Шелепин Л.А. // Труды ФИАН им. Л.Н. Лебедева. 1979. Т. 107. С. 179–194.
- [13] Старик А.М., Титова Н.С. // Хим. физика. 2000. Т. 19. № 9. С. 61–70.
- [14] Басевич В.Я., Беляев А.А. // Хим. физика. 1989. Т. 8. № 8. С. 1124–1127.
- [15] Atkinson R., Baulch D.L., Cox R.A. et al. // J. Phys. Chem. Ref. Data. 1992. Vol. 21. N 6. P. 1125–1568.
- [16] Кулагин Ю.А., Шелепин Л.А., Ярыгина В.И. // Труды ФИАН им. Л.Н. Лебедева. 1994. Т. 212. С. 166–227.
- [17] Грабовский В.И., Старик А.М. // Квантовая электрон. 1994. Т. 21. № 4. С. 365–370.

- [18] Ландау Л.Д., Лифици Е.М. Теоретическая физика. Т. III. Квантовая механика. М.: Наука, 1989. 768 с.
- [19] Chou M.S., Fendell F.E., Behrens H.W. // Proc. SPIE. 1993.
 Vol. 1862. P. 45–58.