05;06;09 О проникновении магнитного поля в гранулированный сверхпроводник

© М.В. Белодедов, С.В. Черных

Волгоградский государственный университет, 400062 Волгоград, Россия e-mail: mic_bel@tele-kom.ru

(Поступило в Редакцию 18 мая 2001 г. В окончательной редакции 30 мая 2002 г.)

Представлены результаты экспериментальных исследований частотной зависимости магнитного отклика образца высокотемпературной сверхпроводящей керамики состава $YBa_2Cu_3O_{7-x}$ при различных значениях постоянной ($0-99 \cdot 10^{-4}$ T) и переменной ($0.18 \cdot 10^{-4} - 7.24 \cdot 10^{-4}$ T) составляющих внешнего магнитного поля в диапазоне частот от 60 Hz до 1 MHz. Предлагается простая качественная модель распределенной джозефсоновской среды, объясняющая полученные результаты.

Введение

Известно, что если на поверхность проводника падает электромагнитная волна, то поле проникает внутрь на глубину скин-слоя. Явление скин-эффекта свойственно не только металлам, но и сверхпроводникам. Так, в работах [1,2] рассматриваются нормальный и аномальный скин-эффект в сверхпроводниках в рамках двухжидкостной модели.

Картина проникновения магнитного поля в гранулированный сверхпроводник достаточно сложна (см., например, [3]) и, по-видимому, не до конца исследована, о чем свидетельствуют работы [4,5].

Так, в работе [4] с помощью датчика Холла исследовалось проникновение переменного магнитного поля в гранулированный сверхпроводник цилиндрической формы. В этой же работе сообщалось о независимости градиента потока индукции в образцах от частоты во всем интервале использовавшихся частот от 5 до 500 Hz.

В работе [5] с помощью специальной прецизионной измерительной техники исследовалась частотная зависимость значений вещественной составляющей поверхностного импеданса сверхпроводящих образцов, которые по составу аналогичны образцам, использовавшимся в работе [4]. Здесь также указывается на независимость вещественной составляющей поверхностного импеданса сверхпроводящих образцов от частоты в диапазоне частот от 10 Hz до 1 kHz и амплитудах переменной составляющей от 10^{-5} до 10^{-3} T.

Методика эксперимента

Исследования проводились на образцах высокотемпературной сверхпроводящей (ВТСП) керамики $YBa_2Cu_3O_{7-x}$, изготовленных методом твердофазного синтеза. Исследуемые образцы имели форму цилиндра диаметром 9 mm и высотой 15 mm. Схема экспериментальной установки представлена на рис. 1.

Установка состоит из генератора синусоидального напряжения *G* (ГЗ–117), управляемого им источника то-

ка *C* (усилитель мощности У7-5, на выходе которого последовательно с датчиком включено постоянное сопротивление *R*), а также датчика сигнала *D* и селективного нановольтметра *V* (Selective Nanovoltmeter type 233). Датчик представлял собой две катушки (токовая и сигнальная), намотанных на цилиндрический образец ВТСП керамики одна поверх другой. Сначала на образец ВТСП керамики наматывалась сигнальная катушка, а поверх нее наматывалась токовая. Катушки были намотаны проводом ПЭЛШО-0.05 по N = 95 витков каждая, длина катушкой включалось сопротивление R ($R \gg 2\pi f L_k$ для частоты *f* в диапазоне от нуля до $f = 2 \cdot 10^6$ Hz, где L_k — индуктивность токовой катушки).

Внешнее магнитное поле, представляющее собой суперпозицию постоянной H_0 и переменной $h_0 \cos(\omega t + \psi)$ компонент, было направлено вдоль оси образца. Постоянная H_0 компонента магнитного поля задавалась внешней катушкой (на рис. 1 не указана), в которую вставлялся датчик, переменная компонента создавалась токовой катушкой датчика.

С помощью описанной установки исследовалась частотная зависимость первой гармоники отклика образца

Рис. 1. Схема экспериментальной установки и калибровочные графики. λ_{teor} и λ_{meas} — расчетная и измеренная глубина проникновения поля в медный образец.

Рис. 2. Зависимость амплитуды магнитного потока Φ , проникающего в образец, от частоты для различных значений h_0 при $H_0 = 0$. Цифры у кривых — значения h_0 , $10^{-4} \cdot T$.

ВТСП на внешнее магнитное поле $H = H_0 + h_0 \cos(\omega t)$ в диапазоне частот от 60 Hz до 1 MHz при различных значениях постоянной ($H_0 = 0-99 \cdot 10^{-4}$ T) и переменной ($h_0 = 0.18 \cdot 10^{-4} - 7.24 \cdot 10^{-4}$ T) составляющих.

Установка позволяет оценивать глубину проникновения магнитного поля в образец с использованием формулы

$$U_1/U_0 = \left[\pi r^2 - \pi (r - \lambda_{\text{meas}})^2\right]/\pi r^2 = \left[2r\lambda_{\text{meas}} - \lambda_{\text{meas}}^2\right]/r^2,$$

где U_1 — показания селективного вольтметра при наличии образца; U_0 — показания селективного вольтметра, когда образец отсутствует; r — радиус образца.

Установка калибрована на образце из отожженной меди. На рис. 1 показана зависимость глубины проникновения λ поля в медный образец от частоты: λ_{teor} — рассчитанная с использованием справочных данных [6] и [7]; λ_{meas} — измеренная с помощью установки и рассчитанная по приведенной формуле.

Проведенная оценка случайной погрешности измерений позволяет заключить, что измерения глубины проникновения магнитного поля в образец проводятся описанным методом с точностью 0.03 mm, что составляет относительную погрешность около 3%. При этом относительная погрешность измерения магнитного потока составляет величину

$$\frac{\Delta\Phi}{\Phi} = \frac{2\pi B(r-\lambda)\Delta\lambda}{\pi B(2r\lambda-\lambda^2)} = \frac{2r-2\lambda}{2r-\lambda}\frac{\Delta\lambda}{\lambda},$$

откуда следует, что она не должна превышать относительной погрешности измерения глубины проникновения магнитного поля в образец.

Таким образом, описанная методика измерения магнитного потока, проникающего в образец, обеспечивает относительную погрешность измерений 3%.

Экспериментальные результаты

Амплитуда магнитного потока Φ , проникающего в образец, связана с показаниями селективного вольтметра U_1^* соотношением $\Phi = U_1^*/2\pi f N$.

На рис. 2 показаны зависимости Φ от частоты f в разных частотных диапазонах при $H_0 = 0$ и различных h_0 . При исследованиях в частотном диапазоне 120 kHz-1 MHz применялись следующие приборы: генератор Г4-164, усилитель мощности У7-5 и селективный микровольтметр B6-10.

На рис. З показана зависимость Φ от амплитуды переменного магнитного поля h_0 при $H_0 = 0$ и f = 2 kHz.

Рис. 3. Зависимость Φ от амплитуды переменного магнитного поля при $H_0 = 0$ и f = 2 kHz.

Рис. 4. Зависимость Φ от частоты для различных значений постоянного магнитного поля H_0 ($1 - 33 \cdot 10^{-4}$ T, $2 - \approx 0.2 \cdot 10^{-4}$ T).

Журнал технической физики, 2003, том 73, вып. 2

На рис. 4 приведена зависимость Φ от частоты при фиксированной амплитуде переменного поля $h_0 = 1.83 \cdot 10^{-4}$ Т в постоянном магнитном поле величиной $H_0 \approx 0.2 \cdot 10^{-4}$ и $33 \cdot 10^{-4}$ Т.

Обсуждение результатов

В работе [4] независимость градиента потока индукции в образцах от частоты в интервале частот от 5 до 500 Hz объясняется отсутствием влияния вязких сил. Согласно оценкам работы [8], эффекты вязкого течения вихревой структуры в ВТСП становятся существенными при частотах $\omega_{\eta} \ge 10^8$ rad/s. В экспериментах [4] использовались частоты, на много порядков меньшие, поэтому вязкими силами авторы [4] с полным правом пренебрегают.

Полученные в работе [5] результаты объясняются в рамках модели пиннинга и вязкого течения гипервихрей, но они, к сожалению, не подтверждаются ни одной конкретной оценкой.

Для объяснения представленных результатов и получения оценок магнитных параметров высокотемпературных сверхпроводников в настоящей работе делается попытка проведения некоторых аналогий между гранулированными сверхпроводником и известным [9] распределенным джозефсоновским переходом. Такая модель, не претендуя на численную строгость и полноту, дает возможность получить качественное объяснение магнитных процессов в ВТСП керамике.

Рассмотрим проникновение магнитного поля в цилиндрический сверхпроводник из ВТСП керамики. Будем основываться на представлении керамики в виде набора сверхпроводящих гранул, соединенных слабыми связями. Общепризнанно, что материал гранул обладает свойствами сверхпроводника второго рода, магнитное поле в который проникает в виде абрикосовских вихрей. Средний размер L* гранул по порядку величины совпадает с физическими размерами кристаллитов, имеющими типичное значение порядка 10 µm [4]. Это позволяет считать выполненным условие $L^* \gg \lambda_I$, где λ_L — лондоновская глубина проникновения поля в гранулы, составляющая при $T = 77 \,\mathrm{K}$ величину порядка 10^{-5} cm [4]. Будем считать, что, хотя между крупными гранулами и имеются пустоты либо области, заполненные мелкими кристаллитами L* < λ_I , число их пренебрежимо мало и в образце преобладают протяженные (не точечные) слабые связи (джозефсоновские контакты). Схематически такая структура показана на рис. 5. Первое критическое поле гранулы H_{c1}^{g} составляет величину порядка (50-100) · 10⁻⁴ Т при 77 К [10].

Таким образом, магнитное поле, меньшее H_{c1}^{g} , проникает от края цилиндра к его центру по джозефсоновским переходам. Несколько таких переходов выделено на рис. 5 жирными линиями. Очевидно, в этом случае можно предположить, что наблюдаемые экспериментально

Рис. 5. Структура образца ВТСП керамики во внешнем магнитном поле (схематично). Сплошные линии — протяженные слабые связи между гранулами.

эффекты связаны с процессами проникновения магнитного поля в распределенный джозефсоновский переход. Рассмотрим распределенный джозефсоновский переход $-L/2 \leq z \leq L/2$, помещенный во внешнее магнитное поле (рис. 6). Считаем, что магнитное поле однородно и направлено вдоль оси Y. Как уже отмечалось, толщина сверхпроводящих электродов много больше лондоновской глубины проникновения.

Электродинамика протяженного джозефсоновского контакта описывается дифференциальным уравнением в частных производных типа sin-Gordon [9,11]. В нашем одномерном случае без учета диссипации это уравнение имеет вид

$$\left(\frac{\partial^2}{\partial z^2} - \frac{1}{v_{\phi}^2} \frac{\partial^2}{\partial t^2}\right) \varphi = \frac{1}{\lambda_j^2} \sin \varphi, \qquad (1)$$

где φ — разность фаз параметра порядка на джозефсоновском туннельном переходе, v_{ϕ} — фазовая скорость

Рис. 6. Распределенный джозефсоновский переход во внешнем магнитном поле *H*_{ex}.

распространения волны (скорость Свихарта), λ_j — джозефсоновская глубина проникновения.

Физически наблюдаемые величины связаны с разностью фаз $\varphi(z, t)$ соотношениями [9]

$$H(z) = \frac{\Phi_0}{2\pi d} \frac{d\varphi(z)}{dz}, \quad J(z) = J_c \sin(\varphi), \qquad (2)$$

где H(z) — напряженность магнитного поля в джозефсоновском переходе в точке z в направлении оси Y, $d = 2\lambda_L + s$, s — толщина диэлектрика (оксидный слой), λ_L — лондоновская глубина проникновения магнитного поля, J(z) — плотность сверхпроводящего тока в направлении оси X.

Пусть внешнее магнитное поле H_{ex} изменяется по закону $H_{ex} = h_0 \cos \omega t$ (при этом направления H_{ex} и *j*, показанные на рис. 6, могут меняться на противоположные). Найдем стационарное распределение амплитуды магнитного поля H(z) в переходе.

Для слабых магнитных полей, т.е. для $h_0 \ll \Phi_0/(2\pi\lambda_j d)$ [1], токи, текущие через переход, будут слабы $(J(z) \ll J_c)$ и разность фаз φ будет мала. Поэтому уравнение (1) примет вид

$$\left(\frac{\partial^2}{\partial z^2} - \frac{1}{v_{\phi}^2} \frac{\partial^2}{\partial t^2}\right) \varphi = \frac{\varphi}{\lambda_j^2}.$$
 (3)

Будем искать стационарный режим колебаний в переходе в виде

$$\varphi(z,t) = \varphi(z)\cos(\omega t + \psi). \tag{4}$$

Подставив (4) в (3) и продифференцировав, получим

$$\frac{d^2\varphi(z)}{dz^2} = \left(\frac{1}{\lambda_j^2} - \frac{\omega^2}{v_{\phi}^2}\right)\varphi(z).$$
(5)

Будем искать решения уравнения (5) с граничными условиями

$$\frac{\Phi_0}{2\pi d} \left. \frac{d\varphi(z)}{dz} \right|_{z=-L/2} = \frac{\Phi_0}{2\pi d} \left. \frac{d\varphi(z)}{dz} \right|_{z=L/2} = H_{\text{ex}}.$$
 (6)

В случае $\omega^2/v_{\phi}^2 < 1/\lambda_j^2$ с учетом выражений (2) и (6) распределение амплитуды магнитного поля в переходе равно

$$H(z) = \frac{\operatorname{ch}(\xi z)}{\operatorname{ch}(\xi L/2)} H_{\mathrm{ex}},\tag{7}$$

где $\xi^2 = 1/\lambda_j^2 - \omega^2/v_{\phi}^2$.

Отсюда амплитуда полного магнитного потока в переходе имеет величину

$$\Phi = d \int_{-L/2}^{L/2} H(z) dz = \frac{2d}{\xi} \frac{\operatorname{sh}(\xi L/2)}{\operatorname{ch}(\xi L/2)} H_{\operatorname{ex}}.$$
 (8)

В случае $\omega^2/v_{\phi}^2 > 1/\lambda_j^2$ распределение амплитуды магнитного поля равно

$$H(z) = \frac{\cos(k_v z)}{\cos(k_v L/2)} H_{\text{ex}},\tag{9}$$

Рис. 7. Частотная зависимость амплитуды магнитного потока, захваченного распределенным джозефсоновским переходом, где $A = \Phi(\omega = 0) = 2d\lambda_j H_{ex} \operatorname{sh}(L/2\lambda_j) / \operatorname{ch}(L/2\lambda_j)$.

где $k_v^2 = \omega^2 / v_\phi^2 - 1 / \lambda_j^2$, а амплитуда магнитного потока имеет значение

$$\Phi = d \int_{-L/2}^{L/2} H(z) dz = \frac{2d}{k_v} \frac{\sin(k_v L/2)}{\cos(k_v L/2)} H_{\text{ex}}.$$
 (10)

График $\Phi(\omega)$ представлен на рис. 7. Оценим ω , начиная с которого уравнение (5) имеет решение в виде стоячих волн. Приравняв в $(k_v)^2 = 0$ и подставив в него значения $v_{\phi} = 0.05c$ и $\lambda_j \sim 100 \,\mu\text{m}$ [9], где c скорость света в вакууме, получаем $f \approx 2.4 \cdot 10^{10}$ Hz, что совпадает со значениями характерной плазменной частоты, указанными в [9].

Как нетрудно заметить из рис. 2, зависимость амплитуды магнитного потока, захваченного образцом, от частоты возбуждающего поля отсутствует при амплитуде поля, меньшей $2 \cdot 10^{-4}$ Т. Это дает основание утверждать, что величина H_{c1} ВТСП керамики не может превышать значения $2 \cdot 10^{-4}$ Т.

Более корректным является описание электродинамики гранулярного сверхпроводника на основе его материального уравнения. Такое уравнение было предложено в [12]

$$\mathbf{j} = -k\mathbf{A}\exp\left(-\frac{|\mathbf{A}|^2}{A_0^2}\right) - a\dot{\mathbf{A}} - b\ddot{\mathbf{A}},\tag{11}$$

где **j** — плотность тока в сверхпроводнике; **A** — векторный потенциал магнитного поля **H** = rot **A**; положительные константы k, A_0, a, b определяются параметрами гранулярной сверхпроводящей среды.

Рис. 8. Проникновение магнитного поля в гранулярную сверхпроводящую среду.

При условии малости магнитного поля $|\mathbf{A}| \ll A_0$ уравнение (11) примет вид

$$\mathbf{j} = -k\mathbf{A} - a\dot{\mathbf{A}} - b\ddot{\mathbf{A}}.$$

Учитывая уравнение Максвелла rot $\mathbf{H} = \operatorname{rot rot} \mathbf{A} = (4\pi/c)\mathbf{j}$, сведем рассмотренную ранее задачу о проникновении магнитного поля в гранулярную сверхпроводящую среду к дифференциальному уравнению

$$\frac{\partial^2 A}{\partial z^2} = k^* A + a^* \dot{A} + b^* \ddot{A},$$

которое без учета диссипативного члена $a^*\dot{A}$ полностью аналогично уравнению (3), описывающему проникновение магнитного поля в распределенный джозефсоновский переход.

Проникновение магнитного поля в гранулярную сверхпроводящую среду происходит как в гранулы, ее составляющие, так и в межгранульные промежутки [3], являющиеся распределенными джозефсоновскими переходами. В межгранульные промежутки поле проникает по закону $H_1 = H_{\rm ex} \exp(-x/\lambda_j)$ ([1]) при условии малости внешнего поля $H_{\rm ex} \ll H_{c1}$, где H_{c1} — это

такое внешнее поле H_{ex} , при котором существование вихря в переходе становится энергетически оправданным. Распределение магнитного поля в гранулах описывается выражением $H_2 = H_{ex} \exp(-x/\lambda_L)$ при условии малости внешнего поля $H_{ex} \ll H_{c1}^g$. Индукция магнитного поля в гранулярной среде, представляющая собой усредненное значение поля H (при усреднении по объему, содержащему большое количество гранул), будет определяться выражением

$$B = \alpha H_1 + \beta H_2 = H_{\text{ex}} (\alpha \exp(-x/\lambda_j) + \beta \exp(-x/\lambda_L)),$$

где α и β — вклады в общий объем соответственно межгранульных промежутков и гранул.

Поскольку $\alpha < \beta$, индукция магнитного поля в среде должна иметь распределение, показанное на рис. 8. Как видно на этом рисунке, магнитное поле претерпевает скачок на границе гранулярной сверхпроводящей среды. Именно такой скачок экспериментально наблюдался, например, в работе [4]. Интересно отметить, что в [4] магнитное поле измерялось датчиком Холла, имеющим размеры рабочей области $50 \times 50 \,\mu$ m и толщину 180 μ m, что существенно больше размера гранул (~ $10 \,\mu$ m [4]). Указанные экспериментальное косвенное подтверждение справедливости представленной модели.

Заключение

Рассматриваемая аналогия джозефсоновской среды и распределенного джозефсоновского перехода позволяет объяснить ряд свойств гранулярных сверхпроводников. Важнейшим из этих свойств является обнаруженная ранее частотная независимость магнитного отклика ВТСП образца. Полученную оценку верхней граничной частоты проникновения электромагнитного поля в ВТСП (около 10 GHz) следует учитывать при проектировании, например, компенсационных ВТСП магнитометров [13], повышение рабочей частоты которых должно повысить их чувствительность.

Список литературы

- [1] Шмидт В.В. Введение в физику сверхпроводников. М.: Наука, 1982.
- [2] Матис Д., Бардин Дж. В сб.: Теория сверхпроводимости / Под ред. Н.Н. Боголюбова. М.: ИЛ, 1960. С. 172.
- [3] Сонин Э.Б. // Письма в ЖЭТФ. 1988. Т. 47. Вып. 8. С. 415– 418.
- [4] Дзугутов В.М., Подлевских Н.А., Фишер Л.М. // СФХТ. 1990. Т. З. № 1. С. 52–61.
- [5] Игнатьев В.К., Негинский И.В. // ФНТ. 2000. Т. 26. № 4. С. 340–349.
- [6] Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: Наука, 1989.
- [7] Справочник по электротехническим материалам / Под ред. Ю.В. Корицкого, В.В. Пасынкова, Б.М. Тареева. Т. 3. 3-е изд., перераб. Л.: Энергоатомиздат, 1988.

- [8] Сонин Э.Б., Таганцев А.К. // ЖЭТФ. 1989. Т. 95. Вып. 3. С. 994–1004.
- [9] Бароне А., Патерно Джс. Эффект Джозефсона: физика и применениия. Пер. с англ. М.: Мир, 1984.
- [10] Физические свойства высокотемпературных сверхпроводников. Пер. с англ. / Под ред. Д.М. Гинзберга. М.: Мир, 1990.
- [11] Ван Дузер Т., Тернер Ч.У. Физические основы сверхпроводниковых устройств и цепей. Пер. с англ. М.: Радио и связь, 1984.
- [12] Белодедов М.В., Игнатьев В.К. // СФХТ. 1991. Т. 4. С. 1661–1667.
- [13] Игнатьев В.К., Черных С.В. // ПТЭ. 1996. № 2. С. 124– 126.