10;12 Диагностика трубчатого пучка релятивистских электронов по передаточной функции мишени-конвертера

© Н.Г. Мордасов

Федеральное государственное унитарное предприятие "Научно-исследовательский институт приборов" 140080 Лыткарино, Московская область, Россия e-mail: risi@tsr.ru

(Поступило в Редакцию 27 февраля 2002 г.)

Разработаны методы измерения угловых, геометрических и энергетических характеристик трубчатого пучка релятивистских электронов с использованием передаточной функции мишени-конвертера. Установлен характер зависимости между параметрами анизотропии тормозного излучения за мишенью-конвертером и угловыми характеристиками электронов, геометрическими параметрами пучка электронов в плоскости мишени. Исследовано уравнение энергобаланса при взаимодействии пучка электронов с мишенью-конвертером. Определены передаточная функция мишени-конвертера и характер ее зависимости от энергии электронов. Исследованы временные и интегральные энергетические характеристики пучка электронов.

Введение

В работах по моделированию эффектов ядерного излучения и других прикладных научных исследованиях для получения высокоинтенсивного импульсного фотонного излучения широко используются ускорители с энергией электронов до 15 MeV [1,2]. Генерация фотонного излучения происходит в мишени-конвертере, состоящей из материала с атомным номером Z, посредством преобразования части энергии электронов в тормозное излучение. Характеристики тормозного излучения находятся в прямой связи с типом и толщиной мишени D, энергией E, током J и углом падения Θ электронов на мишень.

Несмотря на достаточно длительное и широкое использование пучков электронов ускорителей, до настоящего времени нет полной информации о взаимосвязи характеристик тормозного излучения и электронного пучка, которые позволили бы оптимизировать процесс конвертирования электронного пучка с целью получения полей тормозного излучения с заданными характеристиками. Согласно [3], нормированный на один электрон энергетический выход тормозного излучения I без учета самопоглощения для мишеней с атомным номером Zпри полном поглощении в них нормально падающих электронов с энергией E имеет следующий вид:

$$I = ZE^2/(ZE + 6.53 \cdot 10^3), \text{ MeV.}$$
 (1)

Наличие сильной зависимости между энергетическим выходом тормозного излучения и энергией электронов стимулировало развитие методов измерения энергетических и токовых характеристик пучков электронов, основанных на измерении характеристик тормозного излучения. Так, в работе [4] предложена методика определения временны́х распределений энергии E(t) и тока J(t)электронов с помощью сборки комптоновских детекторов, обладающих существенно различными характеристиками энергетической зависимости чувствительности к фотонному излучению.

В работе [5] для этой цели использовался набор детекторов мощности дозы с различными фильтрами-насадками, при этом предполагалось, что угол падения электронов на мишень нормальный. Недостатком работ [4,5] является неадекватность условий при градуировке устройств и проведении измерений, а также узкий энергетический диапазон использования, обусловленный принципиальными ограничениями. В работе [6] с помощью диодной коллиматорной матрицы исследовалась по выходу тормозного излучения радиальная структура пучка электронов во времени. Более широко проведено исследование возможности измерения параметров сплошного цилиндрического пучка электронов по характеристикам вторичного излучения в работе [7]. Результаты исследований позволили определить алгоритм формирования передаточных функций мишени-конвертера для оценки энергии, тока и угла падения электронов в энергетическом диапазоне до 3 MeV. Для этого используется набор детекторов мощности дозы фотонного излучения с идентичными характеристиками энергетической зависимости чувствительности (не менее 4 штук), размещаемых на фиксированных расстояниях от мишени под различными углами к оси транспортировки пучка электронов ($G = 0-180^{\circ}$), а также средства измерения тока пучка электронов.

Разработанные методы измерений являются косвенными, при этом предполагается, что средства измерений параметров тормозного излучения дают заведомо верную информацию. В определенных условиях такой подход, по-видимому, оправдан.

До настоящего времени в научно-технической литературе нет информации о возможности использования аналогичных методов для измерения характеристик сильноточных трубчатых пучков релятивистских электронов. Данная работа в определенной степени заполняет этот пробел, предлагая на рассмотрение некоторые экспериментальные подходы для определения геометрических, угловых и энергетических характеристик трубчатых пучков электронов в плоскости мишени-конвертера.

Объект исследования и методика эксперимента

Задача повышения интенсивности выхода тормозного излучения в лабораторных условиях была в определенной степени решена с использованием линейных импульсных ускорителей с трубчатым пучком электронов типа ЛИУ [8]. Трубчатые пучки электронов ускоряются и транспортируются в вакууме в аксиальносимметричных электрических и магнитных полях. Подобные условия способны обеспечить транспортировку предельного тока J_{lim} определяемого зависимостью

$$J_{\rm lim} = J_0 (\gamma^{2/3} - 1)^{3/2} [1 + 2\ln(l/r)], \qquad (2)$$

где: $J_0 = 17 \text{ kA}$ — ток Альфвена; γ — относительная энергия электронов; l, r — толщина и эффективный радиус сечения трубчатого пучка электронов соответственно.

Последовательность расположения индукторов ускорителя, выполненных на радиальных линиях, обеспечивает широкий диапазон наращивания энергии электронов, при этом разброс энергии электронов $\Delta \gamma$ в сечении пучка зависит от тока пучка *J* и удовлетворяет соотношению

$$\Delta \gamma / \gamma = 0.5 l J / r J_{\rm lim}.$$
 (3)

Максимальная энергия электронов ускорителя ЛИУ-10 составляет 12 MeV, ток пучка ≤ 40 kA, при этом диаметр катода составляет 8-12 cm, а длительность импульса $\leq 3 \cdot 10^{-8}$ s.

При транспортировке высокоинтенсивных трубчатых пучков электронов вдоль ускоряющей трубки в аксиально-симметричом магнитном поле вектор скорости частицы составляет некоторый угол с вектором индукции магнитного поля, который зависит от самосогласованной структуры собственных электромагнитных полей пучка и внешних полей. Сложное движение электрона в таких полях представляется посредством составляющих скорости точки в соответствующей системе координат, а также движения в виде вращения около этой движущейся точки — ведущего центра. Траектория ведущего центра электрона представляет собой спираль с радиусом, определяемым азимутальной скоростью ведущего центра, зависящего от величины собственного электрического (радиальная составляющая) и результирующего магнитного (аксиальная составляющая) полей, а траектория отдельного электрона — спираль с ларморовским радиусом, навитая на траекторию ведущего центра.

Такое представление движения частицы не является строгим, но наиболее наглядно отражает характер ее влияния на формирование поля тормозного излучения

за мишенью-конвертером. Относительно оси транспортировки пучка электроны будут характеризоваться аксиальной V_{\parallel} , азимутальной V_a и радиальной V_r составляющими скорости, определяющими угол падения частицы Θ в следующем виде:

$$\Theta = \operatorname{arctg}\left\{\sqrt{(V_a^2 + V_r^2)/V_{\parallel}}\right\} = \operatorname{arctg}\sqrt{(\operatorname{tg}^2\beta + \operatorname{tg}^2\varphi)}.$$
 (4)

При воспроизводимости аксиально-симметричного магнитного и ускоряющего электрического полей угол падения электронов зависит в основном от их энергии и при ширине энергетического диапазона в несколько мегаэлектрон-вольт будет мало изменяться в пределах длительности излучения, т.е. при этих условиях пучок электронов за импульс излучения можно характеризовать эффективным углом падения *Q*.

Суть способа определения угловых и геометрических характеристик трубчатого пучка релятивистских электронов на входе в мишень-конвертер вытекает из того, что энергетическое и угловое распределения тормозного излучения, выходящего из поглотителя с атомным номером Z, зависит от его толщины D, энергии электронов Е и их эффективного угла падения Q. Основной особенностью углового распределения тормозного излучения, образующегося при отклонении релятивистского электрона в поле ядра или связанного электрона, является преимущественная генерация фотонов в направлении движения первичного электрона, главным образом в конусе, половина угла которого обратно пропорциональна относительной энергии электрона у [2]. На характер углового распределения тормозного излучения мишеней-конвертеров, сравнимых по толщине с пробегом первичных электронов и превышающих его, оказывают влияние многократное рассеяние и энергетические потери электронов. Аналитическое выражение, описывающее угловое распределение тормозного излучения для таких поглотителей, не получено. Руководствуясь качественными соображениями можно полагать, что с увеличением толщины мишени ширина углового распределения будет расти, а направление максимального выхода тормозного излучения в случае, когда $Q \neq 0$, может и не совпадать с ним. Величина различия У между углами Q и максимального выхода тормозного излучения увеличивается с ростом Z, D, Q и уменьшается с ростом Е. Для конкретных условий и геометрии измерений величина У может быть определена в независимых экспериментах на моноэнергетических пучках электронов. Составляющие эффективного угла выхода тормозного излучения из мишени-конвертера при трубчатом пучке электронов, аналогичные (4), определяются по координатам последовательности максимумов в распределении дозы тормозного излучения в j плоскостях ($j \ge 3$), сформированных на различных расстояниях от мишени, нормально оси транспортировки пучка электронов [9] (например, с помощью детекторов дозы фотонного излучения).

Последовательности распределений максимумов дозы тормозного излучения в координатных плоскостях за импульс представляются относительно оси транспортировки пучка электронов нормальными сечениями однополостного гиперболоида (при $Q \neq 0$). По геометрическим параметрам этих сечений определяют параметры a, c, h уравнения однополостного гиперболоида (в канонической форме), прямолинейные образующие которого коллинеарны с направлением максимального выхода тормозного излучения. Таким образом, составляющие эффективного угла падения электронов (4) за импульс излучения выражаются через параметры a, c, h в каноническом уравнении однополостного гиперболоида а следующем виде:

$$\beta = \arctan(a/c) + Y_{\beta}, \tag{5}$$

$$\varphi = \operatorname{arctg}\left\{ ah/c\sqrt{(c^2 + h^2)} \right\} + Y_{\varphi}.$$
 (6)

Предложенная методика позволяет определить и эффективный радиус *r* сечения трубчатого пучка электронов за импульс излучения в плоскости мишени.

$$r = (a/c)\sqrt{(c^2 + h^2)}.$$
 (7)

Для определения энергетических характеристик электронов в пучке рассмотрим уравнение энергетического баланса при взаимодействии пучка с мишенью-конвертером из однородного материала с толщиной, удовлетворяющей условию полного поглощения для первичных электронов. В рассматриваемом энергетическом диапазоне электронов в импульсе излучения энергия пучка W частично поглощается в мишени-конверторе W_n , уносится тормозным W_t , обратно рассеянным электронным W_Q , δ -электронным W_δ и фотонейтронным W_f излучениями, т. е.

$$W - W_n - W_Q - W_\delta - W_t - W_f = 0.$$
 (8)

Энергию пучка электронов в импульсе излучения W можно выразить через временные характеристики тока пучка J(t) и энергии электронов E(t) в следующем виде:

$$W = e^{-1} \int_{0}^{\tau} J(t)E(t) dt,$$
 (9)

где *е* — заряд электрона.

Согласно [7,10,11], энергию электронов E(t), падающих на мишень-конвертер в момент времени tв пределах длительности импульса электронного излучения τ , можно представить через динамическую характеристику передаточной функции мишени-конвертера [U(t) = P(t)/J(t)] в следующем виде:

$$E(t) = b^{-1} [P(t)/J(t)]^{-n(t)} |_{Q=\text{const}},$$
 (10)

где P(t) — временна́я характеристика мощности дозы тормозного излучения в локальной точке поля;

$$u(t) = \alpha_0 + \beta_0 [P(t)/J(t)] + \gamma_0 [P(t)/J(t)]^2 + \dots; \quad (11)$$

b, *α*₀, *β*₀, *γ*₀ — коэффициенты, зависящие от условий и геометрии измерений.

Параметры W_n , J(t), P(t), Q определяются экспериментально в импульсе излучения, а составляющие W_f , W_t , W_Q , W_δ (8) могут быть выражены в виде аналитической зависимости от W (9) с учетом соотношения (10).

Рассмотрим условия, определяющие формирование составляющих уравнения (8) при однослойной мишени-конвертере. Благодаря небольшой массе, электроны интенсивно рассеиваются в веществе, поэтому вероятность их отражения от мишени сравнительно высока, особенно при $Q \neq 0$. По аналогии с (9) составляющая уравнения (8), отражающая энергетические потери пучка в импульсе излучения посредством обратного рассеяния электронов W_Q , может быть определена в следующем виде:

$$W_Q = e^{-1} \int_0^t R(Q, E, Z) J(t) E_c(t) dt, \qquad (12)$$

где R(Q, E, Z) — полный коэффициент обратного рассеяния электронов; $E_c(t)$ — средняя энергия обратно рассеянных электронов.

Полный коэффициент обратного рассеяния (отражения) электронов R зависит в основном от их энергии E, эффективного угла падения Q на мишень-конвертер, атомного номера вещества мишени Z и может быть представлен, согласно [12], в аналитической форме

$$R = V + \{1 - V\} \{1 - (1 + \sigma)^{-0.5} \\ \times \left[(1 - 1.73 \cos Q) / (1 + 1.73 \\ \times \{\cos Q(1 - \sigma) / (1 + \sigma)\}^{-0.5}) \right] \exp(-1/\sigma), \quad (13)$$

где: V — табулированная функция угла рассеяния электрона [12], $\sigma \approx (Z+1)/E$ — число событий рассеяния электрона на углы порядка единицы.

Средняя энергия *E_c* обратно рассеянных электронов, согласно [12], оценивается по соотношению

$$E_c \approx 0.6E [1 - E(1 - \sin Q)/(Z + 1)].$$
 (14)

Составляющая W_t уравнения (8), представляющая энергию пучка электронов, уносимую из мишени-конвертера тормозным излучением, определяется по радиационному выходу посредством введения коэффициента эффективности тормозного излучения мишени-конвертера [2], зависящего от атомного номера материала мишени и энергии электронов, а также оценки самопоглощения тормозного излучения в теле мишени, т.е.

$$W_{t} = e^{-1}KZ \int_{0}^{t} W(t)E(t) \\ \times \exp[-\mu\{E(t)\}(D - d\{E(t)\})/\cos Q]dt, \quad (15)$$

где K — коэффицент, MeV^{-1} ; $\mu\{E(t)\}$ — массовый коэффициент поглощения фотонов в теле мишени-конвертера, усредненный по их энергетическому спектру; $D, d\{E(t)\}$ — толщина мишени и слоя мишени до эффективного рождения фотонов [2] соответственно. Составляющая уравнения (8) W_{δ} , представляющая энергию, уносимую из мишени-конвертера δ -электронами, оценивается согласно [13], при этом учитывается, что спектральное распределение тормозного излучения, исключая характеристическое, практически не зависит от Z вещества мишени, а относительное спектральное распределение тормозного излучения практически не зависит от энергии электронов. Таким образом, величина W_{δ} зависит только от функции сечения тормозного излучения и для вещества мишени ($Z \leq 74$) не будет превышать 0.2% от величины W (9).

Анализ энергетического выхода фотонейтронов, проведенный согласно [2], показывает, что величина W_f (8) не превышает 0.1% от энергии пучка электронов W для абсолютного большинства веществ, т.е. величины W_{δ} и W_f могут учитываться в виде поправки в уравнении (8). Как следует из вышеизложенного, в рассматриваемом энергетическом диапазоне электронов для уравнения (8) существенны составляющие W, W_n, W_t и W_Q, при этом W_t и W_Q аналитически выражаются через составляющие параметра W (9), а величина W_n определяется экспериментально. Погрешности определения составляющих W_t и W_0 , а также экспериментально измеряемых параметров $P(t), J(t), Q, W_n$ могут оказывать существенное влияние на решение. Составляющие W_Q, W_t и W_n по отношению к W зависят от атомного номера вещества мишени-конвертера. Чем меньше Z, тем меньше соотношение W_O/W и W_t/W , тем больше W_n/W , т. е. выбором Z мишени можно минимизировать влияние составляющих W_O и W_t в уравнении энергобаланса (8). Для определения коэффициентов $b, \alpha_0, \beta_0, \gamma_0$ (10), (11) используется методом [14], основанный на измерении параметров $P(t), J(t), Q, W_n$ при неизменной геометрии и условиях, в серии импульсов излучения исследуемого ускорителя d (d > 4), существенно отличающихся друг от друга максимальной энергией электронов, и решения полученной на этой основе системы нелинейных интегральных уравнений типа (8).

Экспериментальная часть

Изложенные методики были использованы для исследования угловых и энергетических характеристик электронов в трубчатом пучке на выходе линейного импульсного ускорителя типа ЛИН-10 с целью оптимизации его режима работы для получения высокоинтенсивного равномерного поля тормозного излучения. Мишень-конвертер была выполнена из железа $(Z = 26, D = 7.2 \text{ g} \cdot \text{cm}^{-2})$, а мощность дозы тормозного излучения измерялась с помощью сцинтилляционного детектора типа СД2-01 (сцинтиллятор из пластмассы П-15), расположенного на расстоянии 1 m за мишенью на оси транспортировки пучка электронов. Измерение тока пучка электронов осуществлялось с помощью секционированного пояса Роговского. Каналы регистрации тока и мощности дозы были синхронизированы и имели

Рис. 1. Характер зависимости Y(Q) в заданных условиях транспортировки пучка электронов. *E*, MeV: — \blacksquare — 4, — \bullet — 12.

Рис. 2. Характер зависимости Y(E) в заданных условиях транспортировки пучка электронов. Q, deg: — — — 15, — — — 30.

одинаковое временное разрешение. Поглощенная в мишени энергия пучка W_n определялась с помощью медного терморезистора, нанесенного равноупорядоченно на поверхность мишени-конвертера с одинаковым погонным сопротивлением [14]. Для определения координат максимумов дозных распределений использовались термолюминесцентные детекторы на основе стекол ИС-7 с последующей программной обработкой результатов измерений. В независимых экспериментах на сплошных цилиндрических пучках моноэнергетических электронов в аналогичной геометрии с помощью термолюминесцентных детекторов был определен параметр *Y* в зависимости от энергии и угла падения электронов в заданных пределах их изменения (рис. 1 и 2).

При индукции внешнего аксиально-симметричного магнитного поля в канале ускорителя B = 0.4 T и изменении максимальной энергии электронов от 8 до 12 MeV эффективный угол падения электронов изменялся от 16 ($\beta = 14^\circ$, $\varphi = -8^\circ$) до 13° ($\beta = 11^\circ$, $\varphi = -7^\circ$). Отрицательное значение величины φ свидетельствует о радиальной расходимости пучка электронов в области мишени-конвертера, а его величина $\varphi \neq 0$ характеризует

степень отклонения пучка электронов от цилиндрической формы.

Как следует из эксперимента, величина индукции внешнего аксиально-симметричного магнитного поля B = 0.4 Т, удерживающая от расплывания пучок электронов в ускорительной трубке ($\varphi = 0$), при проявляющихся краевых и скин-эффектах в примишенной области существенно уменьшается, что и вызывает изменение угловых характеристик электронов. При возрастании внешнего магнитного поля в районе мишени до 0.55 Т составляющая эффективного угла падения электронов $\varphi \approx 0$, а составляющая β возрастает до 18° (для режима с E = 12 MeV).

Посредством машинной обработки результатов измерений P(t) и J(t) в импульсе излучения ускорителя определяется динамическая характеристика передаточной функции мишени-конвертера U(t) для заданных условий и геометрии измерений. По результатам экспериментов с учетом погрешности измерений параметров P, J, Q, W_n решение системы уравнений на основе (8) при количестве уравнений в системе $d \ge m$ (m — число неизвестных b, α_0 , β_0 , γ_0 , ...) для заданных условий и геометрии измерений получено в следующем виде:

$$b = 0.047, \quad \alpha_0 = 7.23 \cdot 10^{-2},$$

 $\beta_0 = 0.91 \cdot 10^{-2}, \quad \gamma_0 = -2 \cdot 10^{-4}.$

Полученные результаты решения позволяют определить характер зависимости передаточной функции мишени-конвертера (U = P/J) от энергии электронов U(E) в исследуемом диапазоне, который представлен на рис. 3. При известной зависимости U(E) и динамической характеристике передаточной функции U(t)в импульсе излучения возможно определение зависимостей E(t), W(t), а также энергетического спектра электронов F(E) в плоскости мишени. Характер зависимостей E(t) и F(E) для двух предельных режимов работы ускорителя по энергии представлен на рис. 4,5 соответственно. Неадекватность по длительности фронта нарастания энергии электронов при использовании различного числа индукторов ускорителя (рис. 4), наличие

Рис. 3. Вид зависимости передаточной функции мишени-конвертера U(E) при заданной геометрии измерений.

Рис. 4. Характер распределения энергии электронов в импульсе излучения ускорителя. — при промежуточном режиме ускорения по энергии, — — при оптимальном режиме ускорения по энергии электронов.

Рис. 5. Энергетические спектры электронов в импульсе излучения. Режимы ускорения по энергии те же, что и на рис. 4.

"хвоста" в низкоэнергетической области интегральных спектров электронов (рис. 5) позволяют оценить степень рассинхронизации ускоряющих полей индукторов, участвующих в ускорительном процессе.

Заключение

Проведенные исследования позволили установить характер связи между параметрами поля тормозного излучения и трубчатого пучка электронов, падающего на мишень-конвертер толщиной, удовлетворяющей условию полного поглощения для первичных электронов.

Показано, что при формировании поля тормозного излучения от трубчатого пучка электронов, транспортируемого в аксиально-симметричном магнитном поле, составляющие эффективного угла падения релятивистских электронов на мишень-конвертер могут быть определены по геометрическим параметрам максимумов в распределении дозы тормозного излучения в несколь-

ких плоскостях облучения. Исследовано влияние угла падения и энергии электронов на характер этой связи. Определена передаточная функция мишени-конвертера как отношение мощности дозы тормозного излучения в выбранной точке поля на оси транспортировки пучка электронов к току пучка. Решение системы уравнений типа (8) при заданных условиях является по существу градуировкой измерительной системы с первичными преобразователями тока, мощности дозы тормозного излучения и мишени-конвертера в выбранной геометрии, определяющей характер зависимости передаточной функции мишени-конвертера от энергии электронов U(E) в пучке. Градуировка проводится абсолютным методом с использованием канала измерения энерговыделения в мишени-конвертере *W_n*, применение которого в последующих измерениях не является обязательным.

На основе разработанных методик проведено исследование геометрических, угловых и энергетических характеристик трубчатого пучка электронов, транспортируемого до мишени-конвертера в аксиально-симметричном магнитном поле. Полученные временные характеристики энергии и тока электронов позволяют анализировать процессы ускорения, оптимизировать синхронизацию индукторов ускоряющего поля вкупе с определяемыми угловыми и геометрическими характеристиками пучка электронов в плоскости мишени-конвертера. Получаемая информация постаточна для определения энергетического спектра тормозного излучения за любой интервал времени (в пределах длительности импульса) численными методами и позволяет определить способы воздействия на трубчатый пучок электронов с целью формирования поля тормозного излучения с заданными характеристиками (доза, мощность дозы, равномерность облучения, размерность изодозных плоскостей и т.п.).

Список литературы

- [1] Диденко А.Н., Григорьев В.П., Усов Ю.П. Мощные электронные пучки и их применение. М.: Атомиздат, 1977. 410 с.
- [2] Ковалев В.П. Вторичные излучения ускорителей электронов. М.: Атомиздат, 1979. 200 с.
- [3] Баранов В.Ф. Дозиметрия электронного излучения. М.: Атомиздат, 1974. 208 с.
- [4] Уолкер, Стивенс. // Приборы для научных исследований. 1974. Т. 45. № 2. С. 16–25.
- [5] Иванов М.И., Казаков В.М., Козлов О.В. и др. // Атомная энергия. 1978. Т. 45. Вып. 4. С. 280.
- [6] Маричев С.В., Сажин В.Д. // Диагностика пучков заряженных частиц в ускорителях. М.: РТИ АН СССР, 1984. С. 12–23.
- [7] Завада Н.И., Комаров П.П., Цукерман В.А. и др. // Физика и техника импульсных источников ионизирующих излучений для исследования быстропротекающих процессов / Под ред. Н.Г. Макеева. ВНИИЭФ, 1996. С. 56–95.
- [8] Павловский А.И., Босамыкин В.С. и др. // ДАН СССР. 1980. Т. 250. № 5. С. 1117–1123.
- [9] Мордасов Н.Г., Муратов Н.И. А.С. № 1276101. G01T1/29. 1985.

- [10] Мордасов Н.Г., Муратов Н.И. А.С. № 1410679. G01T1/36. H01T39/34. 1981.
- [11] Мордасов Н.Г. // Радиационная стойкость электронных систем стойкость 2001. М.: Паимс. 2001. 258 с.
- [12] Рязанов М.И., Тилинин И.С. Исследование поверхности по обратному рассеянию частиц. М.: Энергоатомиздат, 1985. 151 с.
- [13] Аккерман А.Ф., Грудский М.Я., Смирнов В.В. Вторичное электронное излучение из твердых тел под действием гамма-квантов. М.: Энергоатомиздат, 1986. 168 с.
- [14] Мордасов Н.Г. А.С. № 1737994, G01T1/36. 1992.