05;11;12 Устойчивость субатомных пленок углерода на поверхности металлов к бомбардировке низкоэнергетичными газовыми ионами

© А.Л. Суворов, В.П. Бабаев, А.Г. Залужный, Ю.Н. Девятко, Н.Е. Лазарев, А.А. Залужный

Государственный научный центр РФ, Институт теоретической и экспериментальной физики, 117218 Москва, Россия e-mail: alex.suvorov@itep.ru

(Поступило в Редакцию 29 мая 2002 г.)

Развитая ранее оригинальная экспериментальная методика измерения и анализа параметров низкочастотных флуктуаций автоэлектронного тока металлопленочных систем использована для измерения коэффициентов распыления (Y_f) пленок углерода (степень покрытия Θ от 1 до 4) на Fe, Nb, Ta и U. Расчет Y_f проведен с использованием аналитического выражения развитой теоретической модели. Измерены коэффициенты распыления Y_f углеродных пленок ионами H⁺ и He⁺ с энергиями E_i в диапазоне 2.0–10.0 keV. Для фиксированных Θ для каждого типа ионов получены энергетические зависимости Y_f ; кроме того, для некоторых фиксированных значений энергий ионов E_i для каждого типа ионов получены зависимости Y_f от Θ . Измеренные величины Y_f во всех случаях заметно превышают таковые для чистого углерода. Используя другую оригинальную методику, совмещающую автоионную микроскопию и тонкие измерения токовых и (или) световых характеристик локальных участков автоионно-микроскопических изображений, определены энергетические пороги E_{th} начала распыления пленок углерода на металлической поверхности. Измерены энергетические распределения Y_f для разных Θ в припороговой области энергий.

Введение

Как известно, чувствительность и точность измерения коэффициентов распыления (У) поверхностных атомов материалов различными частицами традиционными методами (см., например, [1,2]) заметно снижается при переходе в область низких энергий. Существенный разброс и неопределенность имеют в этой области и развитые к настоящему времени методы теоретических расчетов и оценок У [3,4]. В связи с этим имеется существенная потребность в разработке и реализации оригинальных прецизионных методик измерения У в подпороговой и припороговой областях энергий частиц, бомбардирующих поверхность материалов. Цель настоящей работы состояла в прецизионных измерениях коэффициентов распыления Y_f субатомных пленок углерода (степень покрытия Θ от 1 до 4) на поверхности монокристаллов Fe, Nb, Ta и U ионами H⁺ и He⁺ в энергетическом диапазоне 2.0-10.0 keV, а также в определении энергетических порогов Eth начала распыления таких пленок в зависимости от величины Θ . При этом выбор материала пленки был определен его исключительной важностью и перспективностью как конструкционного в разнообразных технических устройствах и установках, в то время как выбор материала подложек в значительной степени был обусловлен спецификой использованной оригинальной методики расчета Y_f из измеряемых экспериментально параметров низкочастотных флуктуаций автоэлектронного тока (НИФЛАЭТ) металлопленочных систем [5,6].

Помимо методики анализа параметров НИФЛАЭТ в работе была использована еще одна, ранее разработанная авторами, оригинальная методика; она совмещала прямые автоионно-микроскопические анализы с тонкими измерениями токовых и (или) световых характеристик микроскопических изображений [7,8]. С помощью этой методики в работе были определены энергетические пороги $E_{\rm th}$ начала распыления пленок углерода на поверхности выбранных материалов подложек, а также измерены энергетические распределения Y_f для различных значений Θ в припороговой области энергий.

Распыление пленок углерода ионами H⁺ и He⁺ с энергиями 2.0–10.0 keV

Как уже отмечалось во Введении, для измерения Y_f в указанной области энергий бомбардирующих частиц была использована оригинальная методика, основанная на анализе параметров НИФЛАЭТ металлопленочных систем, обусловленных ионной бомбардировкой эмиттирующей поверхности. Суть методики, реализованной в настоящей работе с помощью оригинального прибора — автоэлектронного микроскопа-анализатора [9], состоит в следующем. На предварительно сглаженную и очищенную термически или полем поверхность металлического острия наносится тонкая пленка вещества, характеризуемого условием $\varphi_f > \varphi_s$, где φ_f — работа выхода пленки, φ_s — работа выхода подложки. Затем к острию прикладывают отрицательный потенциал V_0 ,

Материал подложки	Рекомендуемое значение φ для поликристаллов, eV [13]	Значения <i>ф</i> для поликристаллов, измеренные методом автоэлектронной эмиссии, eV [13]	Значения φ для монокристаллов различной ориентации (hkl), eV [13]	Значения <i>ф</i> для поликристаллов, определенные в настоящей работе, eV	Значения φ для монокристаллов, определенные в настоящей работе, eV
Fe	4.31	4.85	$\begin{array}{c} 4.31{-}4.81\\ \langle 111\rangle\end{array}$	4.20	4.50 (111)
Nb	3.99	Нет	$\begin{array}{c} 4.09{-}4.80 \\ \langle 110 angle \end{array}$	3.90	$\begin{array}{c} 4.10 \ \langle 110 angle \end{array}$
Та	4.12	4.12	$\begin{array}{c} 4.95 \ \langle 110 angle \end{array}$	4.20	4.50 (110)
U	3.30	3.50 [14]	$\begin{array}{c} \textbf{3.40} \hspace{0.1cm} [\textbf{14}] \\ \langle \textbf{100} \rangle \end{array}$	3.50	3.40 (100)
С	4.70	Нет	$4.70{-}4.80 \ \langle 100 angle$	4.80	$\begin{array}{c} 4.80 \ \langle 100 angle \end{array}$

Таблица 1. Значения работы выхода φ материалов подложек и пленки для поликристаллов и монокристаллов (литературные данные и результаты измерений в настоящей работе)

достаточный для генерации им автоэлектронов (напряженность электрического поля вблизи поверхности острия на уровне $10^{10} V/m$, V_0 — несколько kV). С помощью вводимого в пространство острия — детектор электронов флуоресцирующего экрана-индикатора напротив детектора устанавливается выбранная кристаллографическая грань (hkl) поверхности острия. После этого экран из указанного пространства удаляется, на образец под определенным углом направляется пучок бомбардирующих ионов и осуществляется непрерывная регистрация параметров НИФЛАЭТ (набор амплитуд $\Delta I_n(hkl)$). Поясним: если единичное попадание иона газа в анализируемый участок выбранной кристаллографической грани образца расчищает часть подложки, автоэлектронный ток с этого участка резко возрастает на величину ΔI_n , тем бо́льшую, чем больше различие между φ_f и φ_s . Такая возможность, однако, далеко не единственная; другие анализируются в [10].

Для того чтобы расчищаемые при ионных ударах участки поверхности острия "зарастали" (для получения возможности многократных измерений ΔI_n , т.е. увеличения статистики), используют дополняющие друг друга операции: во-первых, температуру острия поддерживают достаточной для эффективной поверхностной миграции по ней материала пленки; во-вторых, если это возможно, осуществляют периодическое "допыление" вещества пленки из внешнего источника, следя при этом за неизменностью степени покрытия Θ .

При окончательном расчете величины Y_f полагают, что расчищаемые единичным бомбардирующим ионом участки металлической поверхности имеют форму круга радиуса r_i , т. е. удаленный объем есть $\pi r_i^2 \Theta$, а число удаленных атомов (некоторое "промежуточное" значение коэффициента распыления) $Y'_f = c' r_i^2 \Theta / r_{af}^3$, где r_{af} —

атомный радиус материала пленки, с' — размерный коэффициент. Пользуясь уравнением Фаулера–Нордгейма, для автоэлектронной эмиссии [11] получим

$$\Delta I_n = \frac{c_1 V_0 r_i^2}{\beta R_{0,\text{loc}}} \left\{ \frac{1}{\varphi_s(hkl)} \exp\left(-\frac{c_2 \beta R_{0,\text{loc}}}{V_0} \left[\varphi_s(hkl)\right]^{3/2}\right) - \frac{1}{\varphi_f(hkl)} \exp\left(-\frac{c_2 \beta R_{0,\text{loc}}}{V_0} \left[\varphi_f(hkl)\right]^{3/2}\right) \right\}^{-1}, \quad (1)$$

где $R_{0,\text{loc}}$ — локальный радиус кривизны острия в области анализируемой кристаллографической грани (hkl), $\varphi_s(hkl)$ — работа выхода грани (hkl) металлической подложки, $\varphi_f(hkl)$ — работа выхода той же грани при наличии на ней материала пленки, c_1 и c_2 — размерные константы, β — геометрический фактор ($\beta \approx 2-5$).

Отсюда, суммируя по всем *n* измерениям, имеем окончательно

$$Y_{f} = \frac{\beta\Theta}{c_{1}nV_{0}r} \sum_{(hkl)}^{n} \left\{ \Delta I_{n}R_{0,\text{loc}} \left[\left[\frac{1}{\varphi_{s}(hkl)} \right] \times \exp\left(-\frac{c_{2}\beta R_{0,\text{loc}}}{V_{0}} [\varphi_{s}(hkl)]^{3/2} \right) - \frac{1}{\varphi_{f}(nkl)} \exp\left(-\frac{c_{2}\beta R_{0,\text{loc}}}{V_{0}} [\varphi_{f}(hkl)]^{3/2} \right) \right] \right\}.$$
(2)

Отметим, что развитый способ измерения Y_f обладает не только существенно большей чувствительностью, но и открывает качественно новую возможность определения Y_f в случаях, когда толщина пленки не превышает нескольких атомных слоев, т.е пленки являются субатомными.

Необходимо подчеркнуть, что определенный таким образом коэффициент распыления Y_f представляет собой некоторое завышенное значение $Y_f = (Y_f)_{max}$. Связано это с тем, что фактическое значение Y_f рассчитывается по данным тех случаев взаимодействия бомбардирующих ионов с пленкой на металлической подложке, которые привели к расчистке локализованных участков подложки и вызвали флуктуации автоэлектронного тока с аномально высокими амплитудами. Если общее число таких взаимодействий с зондируемым участком поверхности металлопленочной системы в единицу времени обозначить ξ_n^* (т.е. $\xi_n^* = n$), а полное число ударов ионов в эту же поверхность — ξ_n^{**} , то рассчитанное из эксперимента по уравнению (2) значение Y_f будет связано с действительным значением Y_f^* следующим соотношением:

$$Y_f^* = Y_f(\xi_n^* \xi_n^{**}) = a' Y_f,$$
(3)

где отношение α' учитывает возможность распыления атомов пленки без расчистки подложки ($\alpha' < 1$).

В настоящей работе значение ξ_n^{**} рассчитывалось в соответствии с идеями работы [12] на основании измеряемых в эксперименте параметров облучения.

В табл. 1 приведены заимствованные из [13] и измеренные в настоящей работе значения работы выхода φ_s для четырех материалов подложек и материала пленок (углерода). Отметим, что соответствующие данные для урана принадлежат авторам в обоих случаях [14]. Поскольку измерения параметров НИФЛАЭТ проводились с участков центральной части острий, при расчетах значений Y_f по уравнению (2) были использованы данные измерений ΔI_n , полученные в настоящей работе для монокристаллов, ориентированных в соответствии с известной текстурой проволочных заготовок острий (табл. 1).

Нанесение пленок углерода на поверхность предварительно изготовленных острий из четырех выбранных материалов подложек осуществлялось путем испарения углеродной мишени импульсным лазером в вакууме. При этом после каждого импульса лазера проводилось измерение величины суммарного автоэлектронного тока I_{fe} с поверхности острия при его фиксированном (неизменном) потенциале. По мере покрытия поверхности подложки пленкой углерода ($\Theta < 1$) величина I_{fe} снижалась. Выход I_{fe} на насыщение принимался соответствующим нанесению на поверхность подложки одного атомного слоя углерода ($\Theta = 1$). Удвоение количества лазерных импульсов соответствовало достижению $\Theta = 2$ и т.д.

Облучение поверхности игольчатых образцов — острий ионами H⁺ и He⁺ осуществлялось непосредственно в автоэлектронном микроскопе-анализаторе с помощью специального источника. Угол падения ионов на поверхность острия был близок к нормальному.

Некоторые из полученных в настоящей работе экспериментальных данных иллюстрируют рис. 1–6. При этом

Рис. 1. Энергетическая зависимость коэффициента распыления Y_f пленок углерода на поверхности железа (*I*) и урана (*2*) ионами H⁺. Степень покрытия в обоих случаях $\Theta = 1$.

Рис. 2. То же, что на рис. 1, на поверхности урана ионами H^+ . Значения Θ — у кривых.

рис. 1,2 демонстрируют энергетичекие зависимости коэффициентов распыления Y_f для случаев бомбардировки поверхности образцов ионами H⁺, тогда как рис. 3–6 ионами He⁺. Расчеты Y_f проводились по уравнению (2) с учетом величины α' (т.е. окончательно по уравнению (3)).

Прежде чем анализировать полученные результаты, сделаем несколько замечаний. Во-первых, еще раз обратим внимание на некоторую условность определяемых указанным методом значений Y_f . Во-вторых, подчеркнем, что значения Y_f могут быть измерены по данной методике только в том случае, когда бомбардирующий ион "пробивает" всю пленку, т.е. освобождает некоторый участок подложки. Иными словами, начиная с определенных значений $\Theta \approx \Theta^* + 1$, НИФЛАЭТ пропадают и измерение Y_f становится невозможным. Наконец, форма образуемого бомбардирующим ионом

Рис. 3. То же, что на рис. 1, на поверхности железа ионами He^+ . Степень покрытия $\Theta = 1$.

Рис. 4. То же, что на рис. 1, на поверхности ниобия ионами He^+ . Значения Θ — у кривых.

Рис. 5. То же, что на рис. 1, на поверхности тантала ионами He^+ . Значения Θ — у кривых.

Рис. 6. То же, что на рис. 1, на поверхности урана ионами He^+ . Значения Θ — у кривых.

в пленке "кратера" (при $\Theta \geq 2$) может быть отлична от цилиндра (в верхних атомных слоях удалено больше атомов, чем в нижних) и, таким образом, рассчитанное по уравнению (2) значение Y_f оказывается заниженным. Несмотря на все сказанное, получаемые с помощью развитой методики значения Y_f демонстрируют определенные тенденции процесса распыления пленок различной субатомной толщины различными ионами с разной энергией.

Обратимся теперь к результатам. Как видно из рис. 1–6, при выбранных значениях энергий ионов и ионы H⁺, и ионы He⁺ расчищают определенные участки подложек при $\Theta = 1$. Однако уже в случае $\Theta = 2$ ионы H⁺ с энергией 2.0 keV практически не расчищают подложки из Nb, Та и U, а при $\Theta = 3$ это имеет место для энергий ионов 2.0 и 4.0 keV. В случае ионов H⁺ толщина покрытия $\Theta = \Theta^* = 3$ является предельной для расчистки подложки в выбранном диапазоне энергий; для ионов He⁺ $\Theta^* = 4$.

Из зависимостей рис. 1-6 также видно, что значения Y_f для пленок углерода при их бомбардировке ионами H⁺ примерно на порядок превышают соответствующие значения У для чистого углерода; для ионов He⁺ это различие уже менее существенно [2]. Как следует из полученных данных, различие значений Y_f в случае бомбардировки образцов ионами Н+ и Не+ одинаковых энергий менее существенно, чем это имеет место для чистого углерода. Наконец, довольно явно прослеживается тенденция возрастания значений Y_f (при прочих равных условиях) от Nb и Ta к U и Fe. Предположительно это может быть связано со спецификой формирования пленок углерода на поверхности подложек из различных материалов в конкретных условиях их нанесения. При этом об образовании карбидов ни в каких случаях речь, по-видимому, не идет.

Распыление пленок углерода ионами H⁺ и He⁺ в припороговой области энергий

Как уже было отмечено во Введении, использование разработанной авторами оригинальной методики позволило определить в настоящей работе энергетические пороги E_{th} начала распыления субатомных пленок углерода различной толщины на поверхности выбранных для анализа металлов, а также измерить энергетические зависимости Y_f в припороговой области энергий. Детально суть методики и последовательность ее реализации рассмотрены в [8,15]. Коротко она сводится к следующему. В основу методики положено использование автоионного микроскопа, измерение вариаций тока изображающих ионов на микроканальную пластину и вариации яркости автоионных изображений на экране микроскопа. При этом микроканальная пластина используется и, как обычно в автоионном микроскопе, для усиления яркости автоионных изображений. Измерение вариаций ионного тока и яркости (точнее, светового потока со всего флуоресцирующего экрана микроскопа либо с выбранного участка) изображений осуществлялось всякий раз после импульсного облучения поверхности образцов ионами изображающего газа (в данном случае H⁺ или He⁺). Расчет числа удаленных с поверхности атомов (величины Y_f) осуществлялся с использованием предварительных оценок тока изображающих ионов с одного атома образца и параллельно даваемого изображением этого атома светового потока. В результате такой процедуры удавалось получать значения коэффициентов распыления Y_f даже для материалов, не дающих стабильные автоионно-микроскопические изображения с атомарным разрешением. Как известно, именно к таким материалам относятся и углеродные [16,17]. Следует отметить, что отработка такой методики была проведена на вольфраме. При этом для корректировки получаемых таким образом значений У использовались аналогичные значения, оцениваемые путем непосредственного подсчета числа поверхностных вакансий на разрешаемых в атомных деталях изображениях вольфрама [7,8].

В работе использовался цельнометаллический автоионный микроскоп оригинальной конструкции [18]. Для формирования системы импульсов между острием (катодом) и микроканальной пластиной (анодом) использовалась сетка металлокерамического катодного узла; узел помещался в пространство образец—флуоресцирующий экран только во время реализации одиночных импульсов облучения.

Для облучения образцов была разработана и использована оригинальная методика импульсного двухступенчатого изменения полярности высокого напряжения. При этом ионизация газа, который одновременно служил и изображающим, осуществлялась по механизму электронного удара в момент подачи короткого высоковольтного импульса обратной (отрицатель-

Рис. 7. Энергетические зависимости коэффициента распыления Y_f пленок углерода на поверхности урана ионами H^+ в припороговой области энергий. Значения Θ — у кривых.

Рис. 8. То же, что на рис. 7, на поверхности урана ионами He^+ . Значения Θ — у кривых.

ной) полярности и генерации острием автоэлектронов. Длительность таких "ионообразующих" импульсов не превышала $0.1\,\mu$ s, их амплитуда была равна $5.0\,\mathrm{kV}$. Одновременно с высоковольтным импульсом на образец подавался и низковольтный отрицательный импульс; его длительность была $\Delta \tau \geq 10\,\mu$ s, а амплитуда ΔV соответствовала задаваемой энергии бомбардирующих ионов и варьировалась от 10 до 500 V с шагом 10 V. Параллельно проводились и разнообразные контрольные анализы, реализующие различную последовательность импульсов и их параметров (в диодной и триодной конфигурациях); именно в последнем случае использовалась упомянутая выше сетка катодного узла.

Важным этапом процедуры определения коэффициентов распыления *Y_f* является расчет флюенсов облучения. Подчеркнем, что это весьма нетривиальная задача. **Таблица 2.** Экспериментальные значения E_{th} (eV) пороговых энергий начала распыления пленок углерода на различных подложках

Бомбардирую-	Θ	Материал подложки			
щие ионы		Fe	Nb	Ta	U
H^+	1	30	50	40	30
	2	30	50	40	40
	3	30	40	40	40
He ⁺	1	20	40	30	30
	2	30	40	40	30
	3	30	40	40	30

Именно она наряду с оценкой энергии бомбардирующих ионов и подсчетом числа образуемых при облучении единичных "поверхностных" вакансий определяет некоторую условность получаемых значений Y_f . Как указывалось выше, флюенс облучения рассчитывался в настоящей работе, основываясь на измеряемых экспериментально параметрах облучения [12].

Некоторые экспериментальные результаты, полученные в настоящей работе с помощью рассмотренной оригинальной методики, иллюстрируют рис. 7, 8. В табл. 2 приведены определенные экспериментально значения $E_{\rm th}$ пороговых энергий начала распыления ионами H⁺ и He⁺ пленок углерода на всех исследованных материалах для различных величин степени покрытия Θ .

Как видно из приведенных данных, величины $E_{\rm th}$ приближенно соответствуют значениям Y_f , определенным по параметрам НИФЛАЭТ: они снижаются от Nb и Ta к Fe и U. Если сравнить $E_{\rm th}$ с данными, полученными авторами с использованием этой же методики, но для чистого углерода [15], легко установить, что в случае пленок значения $E_{\rm th}$ ниже. Кроме того, из полученных результатов также видно, что величины Y_f в припороговой области энергий заметно различны для $\Theta = 1$ и $\Theta = 2$ и весьма близки для $\Theta = 2$ и $\Theta = 3$, т.е. роль подложек снижается по мере увеличения Θ .

Выводы

Полученные в настоящей работе данные позволяют сделать следующие выводы.

Развитые авторами оригинальные методики измерения коэффициентов распыления металлопленочных систем и чистых электропроводящих материалов позволяют изучать этот процесс для пленок субатомных толщин ($\Theta \ge 1$) в области низких (включая подпороговые и припороговые) энергий бомбардирующих частиц. При этом, обладая высокой чувствительностью, они дают в некоторых отношениях весьма условные количественные результаты. Являясь безусловно перспективными, методики требуют дальнейшего развития, уточнения и совершенствования.

В выбранном диапазоне энергий (2.0-10.0 keV) бомбардирующих ионов толщина пленки $\Theta = \Theta^* = 3$ является предельной для расчистки подложек ионами H⁺; для ионов He⁺ $\Theta^* = 4$.

Измеренные для пленок углерода значения коэффициентов распыления при их бомбардировке ионами H^+ примерно на порядок превышают соответствующие значения Y для чистого углерода; для ионов He^+ это различие заметно ниже. При этом различие значений Y_f в случае бомбардировки пленок углерода ионами H^+ и He^+ одинаковых энергий менее существенно, чем это имеет место для чистого углерода.

При прочих равных условиях величины коэффициентов распыления Y_f возрастают от Nb и Ta к U и Fe.

В припороговой области энергий бомбардирующих ионов энергетические зависимости коэффициентов распыления Y_f пленок углерода заметно различаются для $\Theta \approx 1$ и $\Theta \geq 2$ как для ионов H^+ , так и для ионов He⁺.

Энергетические пороги E_{th} начала распыления пленок углерода ионами H^+ и He^+ снижаются при переходе от Nb и Ta к Fe и U. При этом они во всех случаях ниже для металлопленочных систем, чем для чистого углерода.

Существует различие величин порогов начала распыления $E_{\rm th}$ для $\Theta \approx 1$ и для $\Theta \geq 2$, причем в случае ионов He⁺ оно проявляется более заметно, чем в случае ионов H⁺.

Авторы благодарны РФФИ, при частичной финансовой поддержке которого выполнены рассмотренные в этой работе исследовния, грант № 01-02-17934.

Список литературы

- Распыление твердых тел ионной бомбардировкой / Под ред. Р. Бериша. М.: Мир, 1984. Т. 1. 495 с. 1986. Т. 2. 494 с.
- [2] Ekstein W., Garcia-Rosales C., Roth J. et al. Sputtering Data, Max-Planck Institut fur Plasmaphysik. Report IPP 9/82. 1993.
 412 p.
- [3] Oen O.S., Robinson M.T. // Nucl. Instrum. Meth. 1976.
 Vol. 132. P. 647–651.
- Biersack J.P., Eckstein W. // Appl. Phys. 1984. Vol. A34.
 P. 73–76.
- [5] Suvorov A.L., Sheshin E.P., Dolin D.E. et al. // Appl. Surf. Sci. 1994. Vol. 76/77. P. 26–29.
- [6] Суворов А.Л., Квинтрадзе В.И., Бобков А.Ф. и др. // ЖТФ. 1988. Т. 58. Вып. 6. С. 1134–1143.
- [7] Guseva M.I., Suvorov A.L., Korshunov S.N. et al. // J. Nucl. Mater. 1999. Vol. 266–269. P. 222–227.
- [8] Гусева М.И., Суворов А.Л., Коршунов С.Н. и др. // ЖТФ. 1999. Т. 69. Вып. 9. С. 137–142.
- [9] Касаткин В.А., Квинтрадзе В.И., Суворов А.Л. // ПТЭ. 1987. № 1. С. 191–195.
- [10] Суворов А.Л. Структура и свойства поверхностных атомных слоев металлов. М.: Энергоатомиздат, 1990. 285 с.

- [11] Елинсон М.И., Васильев Г.Ф. Автоэлектронная эмиссия. М.: Физматгиз, 1958. 186 с.
- [12] Березняк П.А., Слезов В.В. // РиЭ. 1972. Т. 17. С. 354–359.
- [13] Фоменко В.С. Эмиссионные свойства материалов. Справочник. Киев: Наукова думка, 1981. 338 с.
- [14] Суворов А.Л. // Атомная энергия. 1977. Т. 42. Вып. 4. С. 280–285.
- [15] Суворов А.Л., Гусева М.И., Коршунов С.Н. и др. // Физика радиационных явлений и радиационное материаловедение. Тр. конф. Харьков: ННЦ ХФТИ, 2001, Т. 1. С. 78–83.
- [16] Долин Д.Е., Сосунов А.А., Суворов А.Л. и др. // ЖТФ. 1990.
 Т. 60. Вып. 12. С. 115–121.
- [17] Suvorov A.L., Cheblukov Yu.N., Lazarev N.E. et al. // Surface and Near Surface Analysis of Materials / Ed. P. Vincenzini, S. Valeri. Adv. Sci. Technol. Fienza. Techna, 1999. Vol. 19. P. 191–198.
- [18] Бобков А.Ф., Зайцев С.В., Касаткин В.А. и др. // ПТЭ. 1985. № 6. С. 188–191.