# Новый подход к поверхностной ионизации и дрейф-спектроскопии органических молекул

© О.А. Банных, К.Б. Поварова, В.И. Капустин

Институт металлургии и материаловедения им. А.А. Байкова РАН, 117911 Москва, Россия, e-mail: Povarova@ultra.imet.ac.ru

(Поступило в Редакцию 15 апреля 2002 г.)

Предложена новая физическая модель поверхностной ионизации органических молекул из класса аминов на окисленной поверхности переходных металлов, согласно которой процесс ионизации протекает с захватом протонов или гидраксильных групп, образующихся на поверхности оксидов при адсорбции молекул воды. Адекватность предложенной модели подтверждена результатами экспериментальных исследований поверхностной ионизации тестовых аминов: новокаина, бенкаина, димедрола и т.д. Предложена теория дрейфового движения ионных пучков, учитывающая роль объемного заряда, и показано, что величина  $P_i = \mu j / \varepsilon_0 v_g^2$ , где  $\mu$  — подвижность ионов, j — плотность ионного тока,  $\varepsilon_0$  — диэлектрическая постоянная,  $v_g$  — продольная газовая скорость ионов, играет роль первеанса интенсивных дрейфовых ионных пучков. Разработан дрейф-спектрометр нового типа с поверхностно-ионизационным источником ионов.

### Введение

02:11:12

Физическое явление ионизации атомов и молекул на поверхности нагретого твердого тела в условиях вакуума известно давно и первоначально изучалось применительно к ионизации атомов щелочных металлов и щелочно-галлоидных солей на поверхности тугоплавких и благородных металлов [1]. При этом полученные экспериментальные данные успешно интерпретировались в рамках известного уравнения Саха–Ленгмюра [2].

В середине 60-х годов было обнаружено явление селективной поверхностной ионизации молекул некоторых типов органических соединений, в частности аминов, на нагретой и предварительно окисленной поверхности тугоплавких металлов (вольфрама, молибдена, рения) в условиях среднего вакуума [3] и атмосферы воздуха [4]. Процесс поверхностной ионизации предполагался протекающим в две стадии: диссоциации органической молекулы М на поверхности адсорбента на фрагменты типа (M - H) и (M - R), где H — атом водорода, R один из радикалов молекулы М, и десорбции фрагментов  $(M-H)^+$  и  $(M-R)^+$  в виде ионов с передачей одного электрона твердому телу [5,6]. Рассмотрение этого процесса в рамках уравнения Саха-Ленгмюра приводило к следующему выражению для величины тока ионов с поверхности твердого тела [5,6]:

$$I_i(T) = e\nu S\gamma_i(T)\beta_i(T, E), \qquad (1)$$

где T — температура; E — напряженность электрического поля у поверхности твердого тела;  $I_i(T)$  — ток ионов *i*-го типа с поверхности твердого тела, e — заряд электрона,  $\nu$  — поток органических молекул на единицу площади поверхности твердого тела; S — площадь поверхности твердого тела;  $\gamma_i(T)$  — поправочный коэффициент, называемый в [5] коэффициентом преобразования потока органических молекул в частицы

*i*-го типа;  $\beta_i(T, E)$  — коэффициент поверхностной ионизации частиц *i*-го типа, равный [5],

$$\beta_i(T) = \frac{1}{1 + \frac{1}{A_i(T)} \exp\left(\frac{V_i - \varphi - (eE)^{1/2}}{kT}\right)},$$
(2)

где  $V_i$  — адиабатический потенциал ионизации частиц *i*-го типа,  $A_i(T)$  — отношение статических сумм ионного и нейтрального состояния частиц *i*-го типа,  $\varphi$  — так называемая "ионная работа выхода" твердого тела.

Традиционный подход к поверхностной ионизации органических молекул, на наш взгляд, неадекватно отражает данное физическое явление, так как, во-первых, приводит к необходимости вводить понятие "ионной работы выхода" твердого тела, не имеющее определенного физического смысла, во-вторых, не объясняет экспериментально наблюдаемые зависимости ионного тока от величины напряженности электрического поля, в третьих, не объясняет появление в спектрах ионов типа  $(M+H)^+, (M-H-2nH)^+$  и  $(M-R-2nH)^+,$  в четвертых, не объясняет "концентрационные зависимости" ионного тока, т.е. зависимости величины ионного тока от величины потока органических молекул на поверхность твердого тела, и, в-пятых, не объясняет саму причину селективности ионизации органических молекул аминов на поверхности окисленных тугоплавких металлов.

## Физическая модель поверхностной ионизации

При рассмотрении поверхностной ионизации органических молекул аминов необходимо учитывать особенности электронного строения аминогрупп, входящих в данные соединения, а также особенности строения поверхности оксидов металлов.



Рис. 1. Модель поверхности оксида Ме<sub>*m*</sub>О<sub>*n*</sub>: *1* — кислотный центр Бренстеда {КЦБ}, *2* — основной центр Бренстеда {ОЦБ}.

На рис. 1 приведена модель поверхности оксида, содержащая так называемые кислотные {КЦБ} *1* и основные {ОЦБ} *2* центры Бренстеда [7]. Указанные центры образуются на поверхности оксидов W, Mo, Re, Al, Zr, Mg и т.д. и представляют собой ионы водорода и гидроксильной группы, хемосорбированные соответственно на ионах кислорода и металла оксида в результате диссоциативной адсорбции на его поверхности молекул воды. Поверхность оксида, содержащая активные центры типа {КЦБ} и {ОЦБ}, может инициировать протекание поверхностных реакций с обменом протонами и гидроксил-ионами.

Известно, что в молекуле органического соединения из класса аминов у атомов азота имеется одна свободная пара валентных электронов [8], которая может присоединять протон с образованием вторичного иона при одновременном формировании у этого протона замкнутой электронной орбитали

$$\begin{array}{c} ..R_2 \\ R_1:N: \\ R_3 \end{array} + H^{\oplus} \rightarrow \begin{bmatrix} R_1:N:H \end{bmatrix}^{\oplus}. \tag{3}$$

Роль протона в реакции (3) может выполнять и ион щелочного металла, например натрия. Однако конфигурация такого вторичного иона будет менее устойчивой, так как величина электронного сродства натрия  $S_{\text{Na}} = +0.08 \text{ eV}$  меньше электронного сродства атома водорода  $S_{\text{H}} = +0.75 \text{ eV}$  [1].

Таким образом, образование ионов аминов на поверхности оксида может протекать без электронного обмена между органическими молекулами и поверхностью оксида, а сам процесс ионизации может быть представлен последовательностью реакций ионизации

$${\rm \{KLLb\}} + M \Leftrightarrow (M+H)^+ \Leftrightarrow (M-H)^+ + H_{2gas}, \quad (4a)$$

$${O \amalg Б} + M \Leftrightarrow (M + OH)^{-} \Leftrightarrow (M - H)^{-} + H_2O_{gas},$$
 (46)

$$\{\mathsf{K}\mathsf{L}\mathsf{L}\mathsf{B}\} + M \Leftrightarrow (M - R)^+ + (R + H)_{\mathsf{gas}}.$$
 (4b)

Так как уравнение Саха–Ленгмюра к реакциям (4а)–(4в) неприменимо, то скорость поверхностной ионизации органических молекул (величины ионного тока) по данным реакциям может быть рассчитана, например, с использованием методов теории абсолютных скоростей реакций [9]

$$I_i(T) = A \frac{P^n}{T^{5/2}} \exp\left(-\frac{\Delta W - (eE)^{1/2}}{kT}\right),$$
 (5)

где A — константа; P — парциальное давление пара или газа органических молекул у поверхности оксида;  $\Delta W$  — энергия активации десорбции иона с поверхности оксида; n — порядок реакции, определямый кратностью связей адсорбированной органической молекулы с поверхностью оксида.

На рис. 2 приведены температурные зависимости фонового ионного тока в условиях атмосферы воздуха с поверхности окисленного молибдена для положительных (кривая I) и для отрицательных (кривая II) ионов. Пик I ионного тока соответствует десорбции ионов гидроксила с центров типа {ОЦБ}, пик 2 — десорбции протонов с центров {ОЦБ}, пик 3 — десорбции протонов с центров {КЦБ}, пики 4 связаны с фазовым переходом в слое оксида молибдена при температуре 467°С, а эквидистантные пики 5 — с тепловыми колебаниями ионов водорода на поверхности оксида. В табл. 1 приведены основные характеристики центров Бренстеда окисленного молибдена, рассчитанные по данным рис. 2. При



**Рис. 2.** Термограммы фоновых токов положительных (*I*) и отрицательных (*II*) ионов в условиях атмосферы воздуха с поверхности окисленного Мо.

Таблица 1. Характеристики центров Бренстеда окисленного молибдена

| Тип десорби-                                                                     | Тип       | Температура   | Энергия       |
|----------------------------------------------------------------------------------|-----------|---------------|---------------|
| рующего                                                                          | центра    | максимума     | активации     |
| иона                                                                             | Бренстеда | десорбции, °С | десорбции, eV |
| $\begin{array}{c} \mathrm{H^{+}}\\ \mathrm{OH^{-}}\\ \mathrm{H^{+}} \end{array}$ | Основной  | 268           | 1.36          |
|                                                                                  | "         | 234           | 1.27          |
|                                                                                  | Кислотный | 610           | 2.34          |

этом частота основной моды колебаний ионов водорода на поверхности окисленного молибдена, рассчитанная по положению пиков 5, равна 6.4 · 10<sup>11</sup> Hz.

### Конструкция дрейф-спектрометра

Нами был разработан и испытан новый тип дрейф-спектрометра с поверхностной ионизацией паров органических молекул, подаваемых в прибор в потоке газа-носителя. Схема спектрометра приведена на рис. 3.

Эмиттер ионов 1, осущестляющий функцию селективной ионизации органических молекул, выполнен на основе окисленного молибдена. Поддержание рабочей температуры эмиттера ионов в интервале 200–500°С обеспечивает нагреватель 2. Анализируемая проба M, содержащая органические молекулы аминов, подается в потоке газа-носителя  $Q_1$ , в качестве которого использован воздух атмосферного давления. Транспорт ионов в приборе осуществляется потоком транспортирующего газа  $Q_0$ , в качестве которого также использован воздух атмосферного давления.

Ионы органических молекул, образовавшиеся на эмиттере 1 с плоской конфигурацией рабочей поверхности, вытягиваются ионной линзой 3, направляются в анализатор поперечной дрейфовой подвижности 4 и регистрируются в цепи коллектора ионов 6. Для повышения эффективности сбора ионов использован супрессор ионов 5.

Известно [10,11], что дрейфовая скорость ионов V<sub>D</sub> в условиях атмосферы воздуха зависит от величины напряженности электрического поля *E* в пространстве



**Рис. 3.** Схема дрейф-спектрометра с селективным поверхностно-ионизационным эмиттером ионов органических молекул.

дрейфа и определяется выражением

$$V_D = \mu_0 (1 + \alpha E^2) E, \qquad (6)$$

где  $\mu_0$  — подвижность иона при малых электрических полях,  $\alpha$  — нелинейная часть дрейфовой подвижности, причем  $\mu_0$  и  $\alpha$  могут быть как положительными, так и отрицательными в зависимости от структуры органической молекулы и ее электрического заряда.

Для идентификации ионов в дрейф-спектрометрах поперечной подвижности между внешним и центральным электродами анализатора 4 обычно прикладывают электрическое поле с напряженностью до 30 kV/cm, в котором и происходит сепарация ионов по величине нелинейной части их дрейфовой подвижности [12,13]. Напряжение на анализаторе состоит из двух составляющих: импульсного несимметричного напряжения с частотой 500–800 kHz, с импульсом положительной полярности величиной U и длительностью  $\tau$  и импульсом отрицательной полярности величиной U/2 и длительностью  $2\tau$ , а также постоянного напряжения развертки спектра, изменяемого в интервале +10 - -10 V.

# Объемный заряд в дрейфовом движении ионов

Дрейфовое движение ионов в газе атмосферного давления обычно рассматривают без учета их объемного заряда [10]. Однако при величинах ионных токов выше  $10^{-9} - 10^{-10}$  А роль объемного заряда может оказаться весьма существенной.

Решение уравнения Пуассона для дрейфового движения ионов с поверхности эмиттера ионов в плоском зазоре величиной *d* в отсутствие продольного газового потока приводит к следующему выражению для вольт-амперной характеристики такого диода:

$$j = \frac{9}{8} \frac{\varepsilon_0 \mu}{d^3} U^2,$$
 (7)

где j — плотность тока коллектора ионов, U — напряжение между эмиттером и коллектором ионов.

Совместное решение уравнения Пуассона и уравнения движения ионов в трубке дрейфа, в которой имеется газовый поток вдоль оси z трубки, приводит к следующему выражению для радиуса r первоначально параллельного пучка ионов с радиусом  $r_0$ :

$$r = r_0 [1 + P_i^* z/2]^{1/2}.$$
 (8)

Величина  $P_i = \mu j / \varepsilon_0 v_g^2$ , где  $\mu$  — подвижность ионов, j — плотность ионного тока,  $\varepsilon_0$  — диэлектрическая постоянная,  $v_g$  — продольная газовая скорость ионов (играет роль первеанса интенсивынх ионных пучков).

В качестве примера на рис. 4 для различных значений ионного тока приведены рассчитанные по (8) траектории границ первоначально параллельного ионного пучка с радиусом 0.5 mm при движении его в трубке



**Рис. 4.** Расчетные контуры осесимметричного ионного пучка в трубке дрейфа диаметром 1 mm при расходе газа-носителя 3.51/min и токе пучка, А:  $I - 1 \cdot 10^{-8}$ ,  $2 - 3 \cdot 10^{-9}$ ,  $3 - 3 \cdot 10^{-10}$ .



**Рис. 5.** Расчетные контуры ленточного ионного пучка в плоском канале с зазором 1 mm при расходе газа-носителя 3.5 l/min и токе пучка, А:  $I - 5 \cdot 10^{-11}$ ,  $2 - 3 \cdot 10^{-11}$ ,  $3 - 1 \cdot 10^{-11}$ .

дрейфа радиусом 1 mm и длиной 9 mm (контуры трубки дрейфа нанесены пунктирной линией) и расходе транспортирующего газа 3.51/min вдоль оси трубки. Видно, что "пропускная способность" такой трубки дрейфа не превышает  $7 \cdot 10^{-9}$  Å.

Аналогичным образом ширина *а* ленточного ионного пучка, входящего симметрично в плоский зазор, будет изменяться в соответствии с выражением

$$a = a_0 [1 + P_i^* z], (9)$$

где *a*<sub>0</sub> — первоначальная ширина ионного пучка.

В качестве примера на рис. 5 для различных значений ионного тока приведены рассчитанные траектории границ ленточного пучка с первоначальной шириной 0.5 mm при движении его в плоском канале шириной 35 mm, длиной 40 mm и расстоянием между обкладками канала 1 mm при расходе транспортирующего газа 3.51/min. Видно, что "пропускная способность" такого канала не превышает  $5 \cdot 10^{-11}$  Å.

Наличие объемного заряда осесимметричных или ленточных ионных пучков сопровождается появлением

потенциала на осевой линии ионных пучков, причем величина данного потенциала в зависимости от величин ионного тока и расхода транспортирующего газа по нашим расчетам может достигать 200–300 V.

Расчеты, выполненные для ионных пучков, движущихся в несимметричном плоском зазоре, показали, что в данном случае появляется поперечная составляющая ионного тока даже при отсутствии разности потенциалов между стенками плоского канала.

Развитый нами подход, учитывающий роль объемного заряда в дрейфовом движении ионных пучков, позволил оптимизировать геометрию дрейф-спектрометра, показанного на рис. 3.

### Поверхностная ионизация аминов

Измерение физических характеристик поверхностной ионизации органических молекул тестовых аминов было проведено на дрейф-спектрометре, показаннном на рис. 3. Микропробы тестовых веществ массой  $1 \text{ ng}-10 \mu g$  вносили в поток газа-носителя на нагревательной спирали, после чего пробы испаряли с помощью импульсного нагрева спирали за время 2-3 s. При фиксированном значении температуры эмиттера ионов с использованием двухкоординатного самописца и временной развертке по оси x, по оси y регистрировали импульсы тока первого коллектора. Для каждого значения температуры эмиттера, каждого значения напряжения эмиттер–первый коллектор и каждой величины микропробы проводили 5-7 измерений, при этом, изменяя величину напряжения



**Рис. 6.** Зависимость тока положительных ионов от величины дозы органических молекул аминов: новокаина (1), бенкаина (2), димедрола (3).

| Доза новокаина в потоке<br>воздуха, нанограмм | Энергия активации<br>десорбции иона, eV | Порядок реакции<br>ионизации, а.и. | Эффективность<br>ионизации, C/mol |
|-----------------------------------------------|-----------------------------------------|------------------------------------|-----------------------------------|
| 3300                                          | 1.77                                    | -1/6                               | 20                                |
| 400                                           | 1.29                                    | 1/2                                | 100                               |
| 50                                            | 1.26                                    | 1                                  | 200                               |

Таблица 2. Параметры ионизации молекул новокаина на окисленной поверхности молибдена

эмиттер-первый коллектор, строили вольт-амперные характристики диодного промежутка.

Все экспериментально полученные вольт-амперные характеристики имели два характерных участка, граница между которыми лежала в интервале 120–200 V в зависимости от температуры эмиттера, величины микропробы и потока транспортирующего газа. При этом "низковольтная" часть вольт-амперных характеристик хорошо описывалась уравнением (7), а "высоковольтная" уравнением (5). С учетом данного уравнения находили величину тока ионов при нулевом электрическом поле у поверхности эмиттера, которая дальше обрабатывалась для определения энергии активации десорбции ионов с поверхности эмиттера и величины порядка реакции десорбции, входящих в уравнение (5).

На рис. 6 приведены экспериментальные зависимости величины тока положительных ионов при поверхностной ионизации органических молекул новокаина, бенкаина и димедрола от величины дозы, вводимой в зону ионизации. На всех концентрационных зависимостях имеются характерные области, отличающиеся тангенсом угла наклона, а значит, и величиной порядка реакции десорбции ионов. В качестве примера в табл. 2 приведены значения порядка реакции десорбции, а также значения энергий активации десорбции для новокаина, определенные нами из температурных зависимостей токов положительных ионов для указанных характерных областей.

#### Дрейф-спектры тестовых аминов

Разработанный дрейф-спектрометр с поверхностной ионизацией органических молекул, показанный схематично на рис. 3, обладает более высокими аналитическими и эксплуатационными характеристиками, чем известные дрейф-спектрометры.

В качестве примера на рис. 7 приведен дрейф-спектр одного из тестовых аминов — хинина гидрохлорида при концентрации его в потоке газа-носителя, равной  $1 \cdot 10^{-10}$  g/cm<sup>3</sup>. Дрейф-спектр данного вещества, так же как и спектры других исследованных нами аминов, содержит два пика: основной при величине напряжения развертки, близкой к нулю, и боковой при отрицательном напряжении смещения, равном для хинина гидрохлорида 4.15 V. Положения указанных пиков позволяют определить величины нелинейной части дрейфовой подвижности  $\alpha$  этих пиков, причем значения этих величин Таблица 3. Коэффициенты нелинейной дрейфовой подвижности ионов некоторых типов органических молекул из класса аминов

| Пик                 | $\alpha$ , $\cdot 10^{10}$ , cm <sup>2</sup> /V <sup>2</sup> |                   |                   |                   |                   |  |  |
|---------------------|--------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|--|--|
| в спектре           | Новокаин                                                     | Папаверин         | Димедрол          | Бенкаин           | Хинин             |  |  |
| Основной<br>Боковой | $+0.018 \\ -0.65$                                            | $-0.045 \\ -0.21$ | $-0.034 \\ -0.53$ | $+0.034 \\ -0.50$ | $+0.023 \\ -0.94$ |  |  |

индивидуальны для каждого типа органических молекул. В табл. З приведены значения величин  $\alpha$  для нескольких исследованных нами тестовых органических соединений из класса аминов.

Таким образом, прибор позволяет осуществлять групповую идентификацию класса органических молекул в пробе: при использовании соответствующего материала эмиттера само наличие ионного тока эмиттера свидетельствует о присутствии в пробе органических молекул из класса аминов.

Количественный анализ содержания органических молекул в пробе осуществляется по величине тока эмиттера ионов и по величине тока коллектора ионов. В качестве примера на рис. 8 приведена концентрационная зависимость чувствительности прибора по величине тока эмиттера для новокаина (кривая 1), а также концен-



**Рис. 7.** Дрейф-спектр хинина гидрохлорида при величине концентрации в потоке воздуха  $1 \cdot 10^{-10}$  g/cm<sup>3</sup>.



**Рис. 8.** Зависимости чувствительности дрейф-спектрометра от величины пробы новокаина в цепи эмиттера ионов (1) и коллектора ионов (2).

трационная зависимость чувствительности прибора для новокаина по величине тока коллектора (кривая 2).

Идентификация типа органических молекул из группы аминов в пробе осуществляется по положению пиков в дрейф-спектре прибора, т. е. по величинам нелинейной части дрейфовой подвижности ионов двух пиков спектра  $\alpha_{1,2}$ .

Разработанный прибор не чувствителен к величине влажности газа-носителя и транспортирующего газа и позволяет проводить анализ твердых и жидких микропроб, микросборов с поверхности предметов, а также анализ проб воздуха в режиме его протока через прибор или в режиме накопления органических микропримесей воздуха в специальных сорбентах. При этом чувствительность прибора достигает  $1 \cdot 10^{-16}$  g (проба) или  $3 \cdot 10^{-17}$  g/cm<sup>3</sup> (концентрация) по току эмиттера и  $1 \cdot 10^{-12}$  g (проба) или  $3 \cdot 10^{-13}$  g/cm<sup>3</sup> (концентрация) по току коллектора. Дрейф-спектрометр имеет размер  $200 \times 50 \times 60$  mm, массу 0.8 kg и может быть использован в малогабаритных и переносных приборах для обнаружения наркотических и взрывчатых веществ [14].

### Заключение

1. Предложена новая физическая модель селективной поверхностной ионизации аминов на поверхности окисленных переходных металлов в условиях атмосферы воздуха. Модель хорошо объясняет основные экспериментальные закономерности данного физического явления: наличие селективности ионизации, зависимости ионного тока от концентрации аминов, температуры и величины

Журнал технической физики, 2002, том 72, вып. 12

напряженности электрического поля у поверхности оксида металла.

2. Предложен новый подход к явлению дрейфового движения ионов в газе атмосферного давления, учитывающий влияние объемного заряда ионов на траектории их движения, в том числе при наличии газового потока в канале дрейфа ионов. Введено понятие первеанса дрейфового движения интенсивных ионных пучков.

3. Разработан новый тип дрейф-спектрометра, содержащий поверхностно-ионизационный эмиттер ионов, и показано, что чувствительность такого прибора на два-три порядка выше чувствительности приборов аналогичного назначения, но содержащих радиоизотопные источники ионов.

4. Экспериментально определены параметры нелинейной дрейфовой подвижности ряда аминов: новокаина, бенкаина, папаверина, хинина гидрохлорида, димедрола.

### Список литературы

- [1] Добрецов Л.Н., Гомоюнова М.В. Эмиссионная электроника. М.: Наука, 1966, 564 с.
- [2] Rasulev U.Kh., Zandberg E.Ya. // Progress in Surf. Sci. 1988.
   Vol. 28. N 3/4. Р. 181–212 [3] Зандберг Э.Я., Ионов Н.И.// ДАН СССР. 1962. Т. 141. С. 181–212.
- [3] Зандберг Э.Я., Ионов Н.И. // ДАН СССР. 1962. Т. 141. С. 139–142.
- [4] US Patent № 5038544. G 01N33/00. 1991.
- [5] Назаров Э.Г., Расулев У.Х. Нестационарные процесссы поверхностной ионизации. Ташкент: Фан, 1991. 204 с.
- [6] Rasulev U.Kh. // Int. Ion Mob. Spec. 2001. Vol. 4. N 2. P. 13– 18.
- [7] Моррисон С. Химическая физика поверхности твердого тела. Пер. с англ. М.: Мир, 1980. 488 с. (Morrison S.R. The Chemical Physics of Surface. New York: Plenum Press, 1977).
- [8] Потапов В.М. Органическая химия. М.: Просвещение, 1970. 390 с.
- [9] Лушпа А.И. Основы химической термодинамики и кинетики химических реакций. М.: Машиностроение, 1981. 240 с.
- [10] Мак-Даниель И., Мэзон Э. Подвижность и диффузия ионов в газах. Пер. с англ. М.: Мир, 1976. 423 с. (McDaniel E., Mason E. The Mobility and Diffusion of Ions in Gases. New York: John Wikey ans Sons, 1973).
- [11] Nazarov E.G., Miller R.A., Eiceman G.A. et al. // Int. J. Ion Mob. Spec. 2001. Vol. 4. N 2. P. 43–46.
- [12] McGann W. //Proc. SPIE. 1996. Vol. 2937. P. 78-88.
- [13] Carnahan B., Day S., Kouznetsov V. et al. // Proc. SPIE. 1996.
   Vol. 2937. P. 106–119.
- [14] Review of the In Vision Technologies Inc. (US). ICAO Journal. 1995. N 12. P. 11–13.