01;05 Фрактально-кластерная модель откольного разрушения

© Г.Г. Савенков

Федеральное государственное унитарное предприятие Научно-производственное предприятие "Краснознаменец", 195043 Санкт-Петербург, Россия e-mail: sog@hotbox.ru

(Поступило в Редакцию 1 марта 2002 г. В окончательной редакции 13 мая 2002 г.)

Разработана модель откольного разрушения материалов, учитывающая дефектность и вид образующейся поверхности разрыва. Проведено экспериментально-теоретическое исследование откольной прочности и ее связи с различными характеристиками откольного процесса. Предлагаемая модель устраняет ряд недостатков традиционного определения откольной прочности.

Достигнутый в последние годы определенный прогресс в общем понимании процессов откольного разрушения тем не менее не снимает с повестки дня актуальность проблемы создания адекватных моделей, описывающих явления, происходящие при данном виде разрушения.

Кроме того, существует ряд проблем экспериментального определения откольной прочности материалов, которые требуют своего прояснения. Например, в силу сложности волновой картины в образцах при их ударном нагружении существуют различные способы определения откольной прочности [1], не до конца понятные вопросы взаимосвязи откольной прочности с уровнем дефектности в мишенях, при этом попутно возникает проблема распределения дефектов по размерам в зависимости от интенсивности приложенного напряжения, вида поверхности разрушения и ее связи с откольной прочностью [2,3].

В данной работе по аналогии с [3] исходим из концепции (неоднократно экспериментально подтвержденной Ю.И. Мещеряковым с сотрудниками), заключающейся в том, что движение частиц материала в волнах нагрузки и разгрузки происходит в виде совокупности мезопотоков, скорость которых различна относительно друг друга.

Кроме средней скорости частиц $\langle u \rangle$ в этом случае процесс нагружения будет характеризоваться еще двумя параметрами: $\Delta u = u - \langle u \rangle$ — изменение скорости относительно средней в терминах турбулентной гидродинамики — "пульсационная" скорость [4], а также $\delta u = u_{\text{max}} - u_{\text{min}}$ — разность между максимальной и минимальной скоростями мезопотоков. Вопросы их определения подробно изложены в ряде работ, например в [5].

Модель процесса

Рассмотрим стадийность процесса откольного разрушения. В работе [6] и в ряде других обсуждаются две стадии откола, в работе [7] — три стадии. В работах [3,8] было показано, что контур откольной щели и поверхность откольного разрушения являются фрактальными кластерами, состоящими из микро- и мезодефектов первого и второго уровня (по терминологии В.Е. Панина с сотрудниками [9]), поэтому в качестве модели образования откольной щели можно предложить следующий ход равития событий: 1-я стадия — возникновение "взрывоподобным" образом множества одиночных микро- и мезотрещин; 2-я стадия объединение одиночных трещин в группы (конечные кластеры); 3-я стадия — смыкание конечных кластеров в бесконечный перколяционный (фрактальный) кластер; 4-я стадия — разрушение образца на части (образование откольной "тарелочки"). Четвертая стадия процесса является необязательной, поэтому можно ограничиться первыми тремя.

Исходя из предложенной модели, определим откольную прочность материалов. Сопротивление откольному разрушению σ_p при одноосной деформации ε_p в общем виде определяется соотношениями [10] $\sigma_p = K\varepsilon_p + (4/3)\tau$ или в скоростных терминах

$$\sigma_p = K \langle u \rangle / c_p + (4/3)(\tau_0 + \mu_\tau \dot{\gamma}), \qquad (1)$$

где K — модуль объемного сжатия, τ — сопротивление сдвигу, τ_0 — его статистическая составляющая, $\dot{\gamma}$ — скорость сдвиговой деформации, c_p — скорость продольной пластической волны, μ_{τ} — коэффициент динамической вязкости при сдвиге.

Поскольку первая стадия процесса носит "взрывоподобный" характер (и вряд ли поддается расчету), очевидно, что основные события разворачиваются и являются определяющими на второй и третьей стадиях. В этом случае можно считать, что материал образца является трещиноватой средой, для которой скорость сдвиговой деформации определяется по соотношению, полученному в [11],

$$\dot{\gamma} = (1/G) \, d\tau/dt + \Delta h \int_{0}^{\infty} V(l) \, n(l,t) \, dl. \tag{2}$$

Здесь G — модуль сдвига; Δh — смещение берегов трещины; n(l,t)dl — число трещин на единицу поверхности; V(l) — скорость трещин; t — время. Определим функцию n(l,t) распределения трещин по

размерам исходя из результатов, полученных в теории перколяционных кластеров. В соответствии с [12] вероятность существования p конечного кластера из n узлов (в нашем случае трещин или дефектов), нормированная в виде

$$\sum_{n=1}^{\infty} p_n = 1,$$

имеет при достаточно больших *n* асимптотику

$$p_n = p(n) = A n^{1-m} \exp(-an^{\lambda}), \qquad (3)$$

где A — нормирующий множитель; $a = a(p, d_1)$; $m = m(p, d_1)$; d_1 — размерность топологического пространства (для рассматриваемого случая $d_1 = 2$).

Степенные показатели m и λ при $d_1 = 2$ имеют следующие значения:

$$m(0
 $\lambda(0 (4)$$$

где $p_* \ge 1/7$ — критическое значение вероятности, при котором образуется бесконечный кластер [13]; коэффициент $a(p = 0, 15 > 1/7) \cong 0.36, a(p_*) = 0$ при $d_1 = 2$ [12].

Размер конечного кластера, состоящего из n дефектов со средней длиной l_0 дефекта, будет равен $L = nl_0$. По определению плотности вероятности можно записать $p_n dn = f(L)dL$, здесь f(L) — плотность вероятности того, что размеры конечных кластеров попадают в интервал L-L+dL. С учетом (3) плотность вероятности определяется из соотношения

$$f(L) = (A/l_0)(L/l_0)^{1-m} \exp(-a(L/l_0)^{\lambda}).$$
 (5)

Поскольку, по определению, доля кластеров, размер которых превосходит *L*, равна

$$Z(L) = \int_{L}^{\infty} f(L) \, dL,$$

то с учетом (5) и (4)

$$Z(L) = (A/l_0) \exp\left(-a(L/l_0)\right)$$

или L = nx (x — характерный размер дефекта), тогда

$$n(x) = (A/l_0) \exp[-an(x/l_0)],$$

что соответствует закону Розина-Рамлера [14]

$$n(x) = n_0 \exp[-b(x/l_0)]$$
 (6)

с функцией распределения

$$F(x) = 1 - n_0 \exp[-b(x/l_0)]$$

которая является частным случаем функции распределения Вейбулла [14].

Следует отметить, что в отличие от экспериментально полученного авторами [15] распределения дефектов по размерам при ударном нагружении в виде

$$N_g = N_0 \exp(-R/R_1),$$

где N_g — количество дефектов, размер которых превосходит R; N_0 — общее количество дефектов; R_1 — математическое ожидание функции распределения длин трещин; зависимость (6) является теоретической оценкой распределения n.

Поскольку в соотношении (2) трещины, определяющие сдвиговую деформацию, являются трещинами сдвига, то, как показано в [16] для них выполняются соотношения

$$x = \Delta u \,\Delta t$$
 и $l_0 = \delta u \,\Delta t$.

Подставляя эти зависимости в (9) и принимая, что количество трещин отрыва равно количеству трещин сдвига, получим

$$n(x) = 0.5n_0 \exp[-b(\Delta u/\delta u)].$$
(7)

Здесь n_0 — количество трещин сдвига, соответствующих средней длине l_0 на единицу объема.

Скорость трещин при ударно-волновом нагружении разумно принять предельно допустимой и постоянной, т. е. $V \cong 0.7c_R$ (c_R — скорость поверхностных волн Рэлея) [16]. Это допущение подтверждается также и экспериментальными результатами [17]. В качестве значения Δh аналогично работе [11] выбираем величину критического раскрытия трещины в модели Леонова– Панасюка [18] — δ_k . Подставляя зависимость (7) и значение V в соотношение (2), а также принимая $c_R = \delta_k/\Delta t$, с учетом того, что $\mu_{\tau} = \rho \Delta u l_0 = \rho \Delta u \, \delta u \, \Delta t$, получим следующий вид уравнения (1):

$$\sigma_p \cong K \langle u \rangle / c_p + (4/3)\tau_0 - 0.5n_0 \rho \,\Delta u \,\delta u \,\delta_k. \tag{8}$$

Здесь ввиду малости первого слагаемого в формуле (2) этот член не учтен, ρ — плотность материала мишени. Полученное выражение для откольной прочности имеет как преимущества, так и недостатки по сравнению с традиционными зависимостями по ее определению. Во-первых, оно снимает вопрос о том, какую скорость (продольную c_1 или объемную c_0) звука подставлять в традиционную формулу [1]

$$\sigma_p = \varphi \rho \, u_p + \Delta \sigma, \tag{9}$$

где $\varphi = 0.5$ или $\varphi = 1/(1 + c_1/c_0)$; $u_p = V_{\text{max}} - V_{\text{min}}$ — разность между максимальной и минимальной скоростями свободной поверхности.

Во-вторых, не требуется определять $\Delta \sigma$, о структуре которой также нет единого мнения, и, наконец, снимается сам вопрос о расчете откольной прочности по формуле (9).

Журнал технической физики, 2002, том 72, вып. 12

К недостаткам соотношения (8) следует отнести сложность определения c_p в условиях нестационарного нагружения, а также некоторые трудности при расчете (определении) n_0 и δ_k . Трудность определения последней характеристики (δ_k) связана в основном с высокой динамичностью процесса откольного разрушения и слабой разработанностью методик определения параметров трещиностойкости материалов в условиях высокоскоростного нагружения.

Рассмотрим вопрос о влиянии кластеризации на процесс откольного разрушения с других позиций. Как уже упоминалось ранее, на третьей стадии откола конечные кластеры смыкаются во фрактальный кластер, в этом случае [19] плотность частиц (дефектов), составляющих его, является функцией вида

$$n_1 \cong \beta H^{D-d_1},\tag{10}$$

где β — нормирующий множитель; H — ширина зоны откола (для осесимметричного удара $H \cong B$ — диаметр откольной зоны); D — фрактальная размерность (Хаусдорфа–Безиковича) [19].

В нашем случае n_1 определяет n_0 в полученных выше соотношениях, тогда зависимость (8) для откольной прочности с учетом (10) принимает вид

$$\sigma_p = K \langle u \rangle / c_p + (4/3)\tau_0 - 0.5\beta \,\rho \Delta u \,\delta u \,\delta_k H^{D-d_1}, \quad (11)$$

из которой видно, что с увеличением фрактальной размерности откольная прочность растет (по определению $D < d_1$). Этот вывод полностью совпадает с выводом работы [8] и физически означает рост σ_p с увеличением поверхности, вовлекаемой в откольное разрушение.

Проведем анализ влияния характеристик процесса динамического нагружения на фрактальную размерность. Для этого воспользуемся тем фактом, что распространение упруго-пластического фронта в структурнонеоднородной среде является случайным процессом, для которого применимо уравнение Фоккера–Планка [3], определяющее неравновесную функцию распределения частиц среды по скоростям f(x, V, t)

$$\partial f/\partial t + V \partial f/\partial x + (F_1/m) \partial f/\partial t$$

= $-\partial (Q_1 V)/\partial V + 0.5 \partial^2 (Q_2 f)/\partial V^2$

где F_1 — внешняя сила, m — масса частицы, Q_1 — коэффициент дрейфа; Q_2 — коэффициент диффузии (перколяции).

Решение этого уравнения соответствует наличию в системе механизма самоорганизации при взаимодействии двух явлений переноса: дрейфа и диффузии. Как известно, возможны два вида решений уравнения Фоккера– Планка: стационарные, когда аргумент не зависит от времени, и нестационарные, которые достигаются только в автомодельном режиме [20], где зависимость от двух аргументов (в одномерном случае) x, t выражается через единственную переменную y = x/a(t),

$$f(x,t) = l_0^{\alpha} \varphi(y),$$

где функции $l_0(t)$, $\varphi(y)$ и показатель α подлежат определению, причем функция $\varphi(y)$ может быть найдена только при задании скейлинговых свойств дрейфовой силы (Q_1mf) и диффузионной составляющей Q_2f [20].

В этой же работе показано, что для автомодельности стохастической системы необходимо выполнение соотношения

$$l_0 = \left[\mu(1-\xi)\right]^{1/(1-\xi)} t^{1/(1-\xi)},$$

где $\mu = \rho \Delta u \ \Delta h$ — коэффициент динамической вязкости [4]; Δh — ширина мезопотока; $\xi - 1 - D$; l_0 — характерный масштаб, задающий характерное значение переменной x.

Подставляя в это соотношение значения μ , ξ , а также учитывая, что $l_0 = (\delta u)t$, получим

$$(\delta u)t = \left[(\rho \Delta u \,\Delta h) D \right]^{1/D} t^{1/D}.$$
(12)

Таким образом, фрактальная размерность определяется δu , t, Δu , тем самым в соответствии с (11) откольная прочность материалов определяется скоростными характеристиками $\langle u \rangle$, Δu , δu и временем разрушения t.

Таблица 1. Результаты испытаний стали 12Х18Н10Т

Скорость удара, m/s	Δu , m/s	δu , m/s	U_p , m/s
108	0	33	_
181	13.0	48	97
216	24.0	81	66
248.5	28.0	64	81
285	30.0	12	102
308	38.0	14	100
344.5	43.0	30	100
447	—	171	84.5

Таблица 2. Результаты испытаний сплава ХН75ВМЮ

Скорость удара, m/s	Δu , m/s	δu , m/s	U_p , m/s
217.8	24.0	13.3	164.7
230.1	25.8	18.3	168.0
251.8	25.8	19.2	160.1
276.2	25.2	1.1	174.9
299.2	25.3	16.6	153.3
343.0	27.1	8.875	177.3
350.4	25.4	4.9	189.5
363.5	29.9	6.6	183
386.6	41	13.7	176.2
298.2	49.5	2.18	193.7

Примечание. В таблице приведены средние данные из двух-трех опытов на каждую точку.

Рис. 1. Зависимость параметров Δu (1), δu (2), u_p (3) от скорости удара для стали 12Х18Н10Т.

Рис. 2. Зависимость параметров Δu (1), δu (2), u_p (3) от скорости удара для сплава XH75BMЮ.

Рис. 3. Зависимость фрактальной размерности от скорости удара: *1* — 12Х18Н10Т, *2* — ХН75ВМЮ.

Анализ хависимости (12) показывает, что фрактальная размерность растет с уменьшением δu , усиливая тем самым рост откольной прочности с ее уменьшением, и увеличивается с уменьшением Δu , что приводит к неопределенности функции $\sigma_p = \Phi(\Delta u)$.

Результаты экспериментов и их анализ

Испытаниям на ударное нагружение плоских мишеней в условиях одноосной деформации в диапазоне скоростей ударника 100–500 m/s подвергались образцы из стали 12X18H10T толщиной 7–35 mm (табл. 1) и никелевого сплава XH75BMЮ толщиной 5.6 mm. Толщина ударника во всех случаях 1.98–2.0 mm. Графическое представление результатов испытаний приведено на рис. 1 (12X18H10T) и 2 (ХН75ВМЮ). На рис. 3 приведены результаты по определению фрактальной размерности контура откольной щели (методика ее определения изложена в [3]).

Из анализа результатов, приведенных в таблицах и на рисунках, следует, что предложенная модель откольного разрушения и полученные соотношения не противоречат экспериментальным данным. Так, четко видна тенденция нахождения в противофазе откольной скорости (которая определяет откольную прочность) u_p и δu , в то время как между u_p и Δu явной связи нет. Из рис. 3 виден рост фрактальной размерности со скоростью удара, что в целом подтверждает вывод об увеличении откольной прочности с ростом фрактальной размерности.

Таким образом, можно заключить, что рассмотренная модель достаточно адекватно отражает реальную ситуацию условий откольного разрушения.

Список литературы

- [1] Канель Г.И. // ПМТФ. 2001. № 2. С. 194–198.
- [2] Новиков С.А. // ФГВ. 1985. № 6. С. 77-85.
- [3] Барахтин Б.К., Мещеряков Ю.И., Савенков Г.Г. // ЖТФ. 1998. № 10. С. 43–52.
- [4] Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988. 736 с.
- [5] Мещеряков Ю.И., Диваков А.К. Препринт. Л.: ЛфиМаш, 1989. № 25. 36 с.
- [6] Аптуков В.И. // ФГВ. 1985. № 2. С. 122–127.
- [7] Наймарк О.Б., Беляев В.В. // ФГВ. 1989. № 4. С. 115–123.
- [8] Савенков Г.Г., Барахтин Б.К., Мещеряков Ю.И. // Науч. тр. V Международного семинара "Современные проблемы прочности". Новгород, 2001. Т. 2. С. 43–47.
- [9] Панин В.Е. // Изв. РАН. Мех. твердого тела. 1999. № 5. С. 88–108.
- [10] Степанов Г.В. Упруго-пластическое деформирование и разрушение материалов при импульсном нагружении. Киев. Наукова думка, 1991. 288 с.

- [11] Коваленко О.В., Сироткин В.К. // ПМТФ. 1985. № 4. С. 138–144.
- [12] Staufer D. // Phys. Repts. 1979. Vol. 54. N 1. P. 23-31.
- [13] Молчанов С.А., Писаренко В.Ф., Резникова А.Я. // Математические методы в сейсмологии и геодинамике. Вычислительная сейсмология. М.: Наука, 1986. Вып. 19. С. 3–8.
- [14] *Кузнецов В.М.* Математические модели взрывного дела. Новосибирск: Наука, 1977. 262 с.
- [15] Ударные волны и явления высокоскоростной деформации металлов / Под ред. М.А. Майерса и Л.Е. Мурра. М.: Наука, 1984. 512 с.
- [16] Финкель В.М. Физика разрушения. М.: Металлургия, 1970. 376 с.
- [17] Мещеряков Ю.И., Савенков Г.Г. // ПМТФ. 1993. № 3. С. 138–142.
- [18] Панасюк В.В. Предельное равновесие хрупких тел с трещинами. Киев: Наукова думка, 1968. 246 с.
- [19] Олемской А.И., Флат А.Я. // УФН. 1993. № 12. С. 1–50.
- [20] Олемской А.И. // УФН. 1998. № 3. С. 287–321.