05;06;10;12 О диффузии ионов мышьяка и самодиффузии в кремнии при имплантации

© К.Д. Демаков, В.А. Старостин, С.Г. Шемардов

Российский научный центр "Курчатовский институт", 123182 Москва, Россия e-mail: vastarostin@mail.ru

(Поступило в Редакцию 19 октября 2001 г. В окончательной редакции 5 апреля 2002 г.)

Приведены экспериментальные профили концентрации ионов мышьяка в кремнии при температурах подложки 20, 600, 1050°C и токе ионов $40 \,\mu\text{A/cm}^2$, а также при 1050° C и токе ионов $10 \,\mu\text{A/cm}^2$. По этим профилям и по данным других экспериментов проведено моделирование процесса радиационно-ускоренной диффузии ионов и самодиффузии кремния. Получен ряд интересных закономерностей, приведенных в выводах работы.

Введение

Важное теоретическое и прикладное значение имеет исследование характера поведения различных примесных ионов, имплантируемых в полупроводниковые материалы, в зависимости от плотности тока, температуры среды, времени облучения, энергии иона и химических свойств взаимодействующих веществ. В данной работе нами исследовался процесс имплантации ионов мышьяка энергии 40 keV в кремниевую мишень в широком диапазоне температур.

Эксперимент

Опыты по облучению проводились на ионнолучевом ускорителе ИЛУ-3 [1]. Для нагрева мишени в процессе облучения был разработан специальный высокотемпературный приемник ионов. В качестве мишени был выбран монокристаллический кремний. Имплантация проводилась ионами мышьяка с энергией 40 keV, дозой $2 \cdot 10^{17}$ ion/cm². Распределение внедренных атомов по глубине исследовалось методом рентгено-структурного анализа с послойным травлением. Основные параметры облучения приведены в табл. 1. Измеренные профили концентрации приведены на рис. 1 и 2. Видно, что даже для облучения при комнатной температуре профиль содержит глубоко залегающий максимум.

Таблица 1. Основные экспериментальные параметры имплантации ионов мышьяка энергии 40 keV до дозы $2 \cdot 10^{17}$ ion/cm²

N₂	T,°C	$j_0, \frac{\mu A}{cm^2}$	$\mathscr{D}_{exp}, \frac{ion}{cm^2} \cdot 10^{16}$	$V_b \exp, \frac{\mathrm{cm}}{\mathrm{s}} \cdot 10^{-10}$	t_{\max}, s
1	1050	10	3.101	1.940	3200
2	1050	40	2.472	6.184	800
3	600	40	11.210	28.048	800
4	20	40	5.661	14.164	800

Теоретическая модель

Для объяснения дрейфа примеси на глубину, сильно превышающую ее пробег при имплантации, была применена модифицированная в [2] модель В.В. Белошицкого для этого процесса [3]. Кроме диффузионного переноса, предполагается захват примеси вакансиями. Заметим, что чисто диффузионное уравнение при наличии источ-

Рис. 1. Экспериментальные профили концентрации мышьяка в кремнии при температурах 20 (1), 600 (2) и 1050°C (3) $(40 \,\mu\text{A/cm}^2)$.

Рис. 2. Экспериментальные профили концентрации мышьяка в кремнии при токах 40 (1) и $10 \,\mu$ A/cm² (2) (1050°C).

ника не дает решения с максимумом, расположенным дальше пробега ионов источника от границы. Важным моментом модели является ее неравновесность диффузия происходит на фоне интенсивного рождения и аннигиляции дефектов. Эти процессы описываются следующей системой связанных уравнений:

$$\partial n_a / \partial t = D_a \partial^2 n_a / \partial x^2 - n_a n_v k_{cap} + n_c n_d k_{act} + j_0 \exp\left(-(R_p - x + x_0)^2 / 2\Delta R_p^2\right) / \sqrt{2}\pi \Delta R_p, \quad (1)$$

$$\partial n_c / \partial t = n_a n_v k_{cap} - n_c n_d k_{act},$$
 (2)

$$\partial n_d / \partial t = D_{dv} \partial^2 n_d / \partial x^2 - n_c n_d k_{act}$$

 $- n_v n_d k_{ann} + j_0 N \sigma_d \Theta(R_p - x + x_0),$ (3)

$$\partial n_{v} / \partial t = D_{dv} \partial^{2} n_{v} / \partial x^{2} - n_{a} n_{v} k_{cap}$$

- $n_{v} n_{d} k_{ann} + j_{0} N \sigma_{d} \Theta (R_{p} - x + x_{0}),$
 $X_{0} = -v_{b} t, \qquad N = 5.04 \cdot 10^{22} \text{ cm}^{-3},$
 $\sigma_{d} = 3.52 \cdot 10^{-16} \text{ cm}^{2},$ (4)

где $\Theta(x)$ — единичная ступенька; N — плотность ядер кремния; σ_d — ориентировочное сечение образования дефекта; R_p и ΔR_p — пробег иона и его разброс; D_a , D_{dv} , k_{cap} , k_{act} , k_{ann} — свободные параметры модели с очевидным физическим смыслом коэффициентов диффузии примеси и пар дефект-вакансия и скоростей квазихимических реакций захвата примеси вакансиями, активации примеси междоузлиями и взаимной аннигиляции вакансий и междоузлий соответственно.

Условие на границе для примеси выбиралось нулевым исходя из эксперимента, что можно интерпретировать

Рис. 3. Зависимость энтальпии миграции дефектов в кремнии от температуры по данным табл. 2 и 4.

Таблица 2. Рассчитанные диффузионные коэффициенты и энтальпии

N₂	$D_a, \frac{\mathrm{cm}^2}{\mathrm{s}} \cdot 10^{-11}$	$D_{dv}, \ \frac{\mathrm{cm}^2}{\mathrm{s}} \cdot 10^{-11}$	H_{dv} , cal/mol	$T_{\rm eff}, \ ^{\circ}{ m K}$
1	0.169	0.204	64610	1326
2	0.540	0.0633	68151	1335
3	0.007	0.0463	47157	913
4	0.499	0.0127	31937	589

Таблица 3. Рассчитанные скорости квазихимических реакций

N⁰	$K_{\rm cap}, \ \frac{{\rm cm}^3}{{ m s}}\cdot 10^{-23}$	$K_{\rm act}, \ \frac{{\rm cm}^3}{{\rm s}}\cdot 10^{-23}$	$K_{\rm ann}, \ \frac{{\rm cm}^3}{{\rm s}} \cdot 10^{-23}$
1	2.355	7.421	2.609
2	0.889	8.321	5.795
3	0.943	15.60	5.763
4	0.929	8.260	5.855

Таблица 4. Рассчитанные энтальпии для других экспериментов

Ion	<i>T</i> , °C	$j_0, \frac{\mu A}{cm^2}$	E, keV	T _{eff} , K	$H_{dv}, \frac{\mathrm{cal}}{\mathrm{mol}}$	Reference
Yb	20	10	70	488	27811*	[5,6]
					26877	
					24697	
Na	365	0.3	7	638	35845	[7]
As	20	150	25	722	38703	[8]
Tm	500	30	150	906	50900	[9]
С	20	300	40	961	46377*	[2,10]
					46931	
					47058	
As	850	40	40	1143	57164	[12]
Tl	1200	40	20	1478	70591	[3]
As	1200	40	40	1482	74154	[11]
T1	1200	100	20	1484	70064	[4]

* Для чистого кремния (и далее рост концентрации примеси).

как ее испарение с поверхности образца. Для междоузлий и вакансий использовалось такое условие, чтобы поток междоузлий вызывал смещение границы вещества со скоростью v_b (задача типа Стефана). Начальные условия и условия на противоположной границе брались нулевые. Система уравнений (1)–(4) при вышеописанных начальных и граничных условиях решалась численно на ЭВМ методом конечных разностей. Значения свободных параметров модели подбирались методом наименыших квадратов так, чтобы наилучишим образом соответствовать экспериментальным профилям.

Выводы

Результаы расчетов приведены в табл. 2 и 3. В табл. 2 показаны также энтальпии миграции дефектов (рассчитанные по закону Аррениуса) и эффективаные температуры поверхностного слоя (с учетом нагрева пучком). В табл. 4 приведены данные некоторых других наших расчетов энтальпии самодиффузии кремния. На рис. 3 приведена зависимость энтальпии миграции дефектов от температуры по данным табл. 2 и 4.

Из рис. 2 видна сильная зависимость профиля от тока ионов мышьяка, противоположная нашим результатам по имплантации ионов таллия в кремний [3,4].

Из табл. 4 видны и дозовые зависимости энтальпии миграции дефектов для примесных ионов углерода и иттербия в кремнии, имеющие противоположный характер. Заметим, что иттербий мигрирует к поверхности, а углерод в глубь образца.

Авторы благодарны П.А. Александрову за постановку задач для экспериментальной и теоретической групп, О.Л. Головину за проведение измерений профиля концентрации, а также Барановой Е.К., Литвинову В.Л. и Бударагину В.В. за полезные замечания и обсуждение результатов.

Список литературы

- [1] Гусев В.М., Бушаров Н.П., Нафтулин С.М., Проничев А.М. // ПТЭ. 1969. № 4. С. 19.
- [2] Старостин В.А. // ФиХОМ. 1999. № 5. С. 104–105.
- [3] Aleksandrov P.A., Baranova E.K., Beloshitsky V.V. et al. // Rad. Eff. 1986. Vol. 88. P. 249–255.
- [4] Демаков К.Д. Private communication.
- [5] Старостин В.А. Кинетика ионов иттербия, имплантируемых в кремний. Аннотация докл. XV Междунар. конф. "Взаимодействие ионов с поверхностью". (ВИП-2001). Звенигород, 2001. Т. 2. С. 201.
- [6] *Назыров Д.Э., Гончаров С.А., Суворов А.В. //* Письма в ЖТФ. 2000. Т. 26. Вып. 8. С. 24–27.
- [7] McCaldin J.O., Widmer A.E. // Proc. IEEE. 1964. Vol. 52.
 N 3. P. 301–302.
- [8] Uesugi F, Kikuchi Y, Watanabe K., Hashimoto I. // Phys. Stat. Sol. (a). 2000. Vol. 177. N 2. P. 331–339.
- [9] Gibbons J.F., Moll J.L., Meyer N.I. // Nucl. Instrum. & Meth. 1965. Vol. 38. P. 165–168.
- [10] Александров П.А., Баранов Е.К., Демаков К.Д. и др. // ФТП. 1987. Т. 21. Вып. 5. С. 920–922.
- [11] Баранова Е.К. Private communication.
- [12] Демаков К.Д., Старостин В.А. // ЖТФ. 2001. Т. 71. Вып. 4. С. 128–129.